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1 Introduction

There have been a number of attacks on RSA given a portion of the private key.
These attacks are so-called partial key exposure attacks, where an attacker has
some knowledge of the bits of the private key and uses it to break the system.
The results are of practical interest, since implementations may leak bits of the
private key, e.g. via side channel attacks.

In 1998, Boneh, Durfee and Frankel presented several partial key exposure
attacks on RSA in [2]. Some of these attacks require knowledge of the least
significant bits (LSBs) of the private exponent, others of the most significant bits
(MSBs). Additionally, in their attacks, the public exponent must be relatively
small. Wiener’s attack [12] and the improvement by Boneh and Durfee [1] can
be seen as partial key exposure attacks where the most significant bits of the
private exponent are known to be equal to zero.

In [2] the question is posed whether there exist partial key exposure attacks on
RSA that work for public exponents larger than the square root of the modulus.
In 2003, Blömer and May [3] described a number of attacks that do allow larger
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public exponents, but not yet to the full size of the modulus. In this paper we
present attacks for full size public exponent that work up to full size private
exponent. Additionally, we present a new attack for full size private exponent
that works up to full size public exponent.

Our attacks use Coppersmith’s ideas of finding small roots of polynomials
[4]. We look at variations on the RSA key equation over the integers, using
Coppersmith’s method of finding small integer roots, reformulated by Coron [5].

Our new results on known MSBs of d for small private exponent d and full
size public exponent e are summarized in the following theorem.

Theorem 1 (MSB small d). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 < δ <

β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = n and
bitsize(d) = βn. Given the (β− δ)n MSBs of d, N can be factored in polynomial
time if:

– δ ≤ 5
6 − 1

3

√
1 + 6β − ε (Section 4.1.1), or

– δ ≤ 3
16 − ε and β ≤ 11

16 (Section 4.1.2), or

– δ ≤ 1
3 + 1

3β − 1
3

√

4β2 + 2β − 2 − ε and β ≥ 11
16 (Section 4.1.2).

In the case of known MSBs for full size d and small e, we find an improvement
of known results by [2] and [3] for e ∈ [N

1
2 , N ]. Our result is stated in the theorem

below.

Theorem 2 (MSB small e). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 <

δ < 1
2 < α < 1. Let e, d satisfy ed ≡ 1 mod φ(N), such that bitsize(d) = n and

bitsize(e) = αn.
Given the (1 − δ)n MSBs of d, N can be factored in polynomial time if:

– δ ≤ 1
3 + 1

3α − 1
3

√
4α2 + 2α − 2 − ε (Section 4.2).

In Fig. 1 and 2 we illustrate our results on known MSBs of d. In Fig. 1, the
fraction of bits required for an attack is plotted as a function of the size of d. It
shows the parts of the key space that are insecure by the attacks in Section 4.1,
and by the results of [12] and [1]. Fig. 2 is a picture of the relation between the
fraction of bits of d required for an attack and the size of e, showing the results
of [2], [3], and Section 4.2.

Note that our attacks for known MSBs have natural starting and ending
points. One MSB attack on small d coincides with the bound d ≤ N 0.284 from
[1], the other runs up to the situation where d is of full size and is fully known.
This links our results to that of May [9], proving a deterministic polynomial time
equivalence between factoring and full knowledge of d. Our MSB attack on small
e is a natural extension of the results of [2] and [3].
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Our new result on known LSBs for relatively small d and full size e is as
follows.

Theorem 3 (LSB small d). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 < δ <

β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = n and
bitsize(d) = βn. Given the (β − δ)n LSBs of d, N can be factored in polynomial
time when:

– δ < 5
6 − 1

3

√
1 + 6β − ε (Section 4.3).

Fig. 3 illustrates our result on known LSBs. The fraction of bits required
for an attack is plotted as a function of the size of d. Fig. 4 is a picture of the
relation between the fraction of bits required for an attack, and the size of e,
showing the work of [2] and [3]. Analysis of our LSB method in the case where
e is small results in a bound equivalent to the best result of [3].
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Again, notice that the starting point of our new LSB attack for small d

coincides with the bound d ≤ N 0.284 from [1].
The bounds of Section 4.1.1 and 4.3 show a symmetry in the outcomes of the

MSB and LSB situations for small d. Likewise, the bound of Section 4.2 and the
second bound of Section 4.1.2 show a symmetry in the outcomes of the MSB cases
for small d and small e. This is a result of the general character of our method.
Instead of studying only special scenarios, we analyze the underlying polynomials
in a general framework, which also makes it possible to study numerous old and
new cryptanalytic situations, on which we shall comment in Section 4.4.

Our results can be viewed as evidence that side channel attacks are even more
dangerous to RSA than we already knew. In essence, we show that there exist
partial key exposure attacks up to full size exponents, hence if either e or d is
chosen to be significantly smaller than φ(N), the system is vulnerable to this type
of attacks. This can be understood as a warning to crypto-designers to choose
both private and public exponent at random, or take sufficient countermeasures
to prevent private key bits from leaking.

This paper is organized as follows. In Section 2, we describe the typical RSA
setting and show how we derive polynomials with small roots from the RSA
key equation when MSBs or LSBs of the private exponent d are known. In
Section 3, we give an overview of the tools we use to find the small roots of these
polynomials. In Section 4 we give the description of our attacks, proving the
results of Theorem 1, 2, and 3. In Section 5, experimental results are provided.

2 Looking at the RSA Key Equation

Let p, q,N, d, e be as usual, i.e. p and q are distinct primes, N = pq is taken
as modulus, and the encryption exponent e and decryption exponent d satisfy
ed ≡ 1 mod φ(N). For all of the attacks in this paper, we assume that p and q

have the same bitsize, thus p + q < 3
√

N . Let k ∈ Z be defined by the RSA key
equation

ed − 1 = kφ(N), where φ(N) = (p − 1)(q − 1) = N − (p + q − 1).

In our scenario, we assume one of the exponents e and d is chosen to be
small and the other one is of full size. We will first focus on the case where d is
small. Therefore, we place no restrictions on e except e < φ(N). It follows that
k < ed

φ(N) < d.

When MSBs of d are known, we write d = d̃ + d0, where d̃ (representing the
most significant bits of d) is known to the attacker, but d0 (representing the
least significant bits of d) is not. To make this precise, let β and δ be parameters
such that d ≤ Nβ , and |d0| = |d − d̃| ≤ N δ.
For the MSB case, we can thus rewrite the RSA key equation into

e(d̃ + d0) − 1 = k(N − (p + q − 1)).

Hence, the polynomial

fMSB1(x, y, z) = ex − Ny + yz + R, where R = ed̃ − 1,



has a root (x0, y0, z0) = (d0, k, p+q−1). Let X := N δ, Y := Nβ , and Z := 3N
1
2 .

Then the root is ’small’ since |x0| < X, |y0| < Y , and |z0| < Z.

The attacker can also compute k̃ = ed̃−1
N

as an approximation to k, and set

k0 = k − k̃ as the unknown part of k. It can be shown (as was done in [3])

that |k0| < e
φ(N) (N

δ + 3Nβ− 1
2 ), so in our case we have |k0| < 4Nγ , where γ =

max{δ, β − 1
2}. When we substitute the knowledge of the MSBs of k into the

RSA key equation, we obtain

e(d̃ + d0) − 1 = (k̃ + k0)(N − (p + q − 1)).

Hence,

fMSB2(x, y, z) = ex − Ny + yz + k̃z + R, with R = ed̃ − 1 − k̃N,

has a root (x0, y0, z0) = (d0, k0, p + q − 1). With X := N δ, Y := 4Nγ , and

Z := 3N
1
2 , we have |x0| < X, |y0| < Y , and |z0| < Z.

When LSBs of d are known, the attacker knows d̄ ≡ d mod M for some M ,
and we write d = d̄+d1M , where d̄ and M are known, and d1 is not. We assume
that d ≤ Nβ , and d1 ≤ N δ. We have no approximation of k in this case, so we
rewrite the RSA key equation as

e(d1M + d̄) − 1 = k(N − (p + q − 1)).

Thus,
fLSB(x, y, z) = eMx − Ny + yz + R, with R = ed̄ − 1,

has a root (x0, y0, z0) = (d1, k, p + q − 1). Using X := N δ, Y := Nβ , and

Z := 3N
1
2 , we have |x0| < X, |y0| < Y , and |z0| < Z.

3 Finding Small Roots

We have seen that in several cases, we can obtain d, k and p+q−1 when we can
find a small root of a certain trivariate polynomial. In this section, we describe
some tools that we use to solve this problem of finding small roots. For a polyno-
mial h(x, y, z) =

∑

i,j,k hijkxiyjzk, we define ||h(x, y, z)||2 :=
∑

i,j,k |hijk|2 and
||h(x, y, z)||∞ := maxi,j,k |hijk|.

In [4], Coppersmith describes rigorous techniques to find small integer roots
of polynomials in a single variable modulo n, and of polynomials in two variables
over the integers. The methods extend to more variables, making them heuris-
tical. Howgrave-Graham reformulated Coppersmith’s ideas of finding modular
roots in [6], of which we use the following lemma.

Lemma 1 (Howgrave-Graham). Let h(x, y, z) ∈ Z[x, y, z] be a polynomial
which is a sum of at most ω monomials. Suppose that h(x0, y0, z0) ≡ 0 mod n

for some |x0| < X, |y0| < Y , |z0| < Z, and ||h(xX, yY, zZ)|| < n√
ω
. Then

h(x0, y0, z0) = 0 holds over the integers.



Howgrave-Graham’s lemma is usually combined with LLL reduction of lat-
tice bases [7].

Fact 1 (LLL). Let L be a lattice of dimension ω. In polynomial time, the LLL-
algorithm outputs two reduced basis vectors v1 and v2, that satisfy

||v1|| ≤ ||v2|| ≤ 2
ω
4 det(L)

1
ω−1 .

Thus, the condition 2
ω
4 det(L)

1
ω−1 < n√

ω
implies that polynomials corresponding

to the two shortest reduced basis vectors match Howgrave-Graham’s bound. This

condition reduces to det(L) ≤ (2
−ω
4

1√
ω
)ω−1nω−1. In practice, we ignore terms

that do not depend on n, and check only if det(L) ≤ nω−1.
Coppersmith’s technique of finding small roots of polynomials over the inte-

gers has so far been less applied in cryptanalysis methods. Recently, Coron [5]
reformulated this technique analogous to Howgrave-Graham. Essentially, Coron
picks a ’suitable’ integer n and transfers the situation into finding a small root
modulo n, thereby applying Howgrave-Graham’s lemma. In the following sec-
tions, we will study the polynomials fMSB1, fMSB2, and fLSB to find their small
roots over the integers, analogous to Coron.

4 Description of the Attacks

4.1 Known MSBs and Small d

4.1.1 Attack using fMSB1

We will now describe a method that finds a small root of fMSB1 over the integers,
and prove the first result of Theorem 1, namely that we have a polynomial time
MSB attack when

δ ≤ 5

6
− 1

3

√

1 + 6β − ε.

Recalling the situation where we do not use an approximation of k, we want to
find a small root (x0, y0, z0) of the polynomial fMSB1(x, y, z) = ex−Ny+yz+R.

Our first observation is that fMSB1 is irreducible over the integers. Thus,
if we could construct two polynomials f1, f2 with the same root (x0, y0, z0)
which are not multiples of fMSB1, then they do not share a common divisor
with fMSB1. Hence, the polynomials p1(y, z) = Resx(fMSB1, f1) and p2(y, z) =
Resx(fMSB1, f2) cannot be the zero polynomials. Under the heuristic that the
resultant Resy(p1, p2) does not vanish, we obtain z0 = p + q − 1 from a lin-
ear factor (z − z0) in Resy(p1, p2), which gives us the factorization of N . All
attacks in this paper have a similar heuristic concerning resultants, common in
cryptanalysis using multivariate polynomials. Therefore we will use the following
assumption.

Assumption 1. The resultant computations for the polynomials in this paper
yield non-zero polynomials.



We will comment on how this assumption holds in practice in Appendix D,
where we also provide experimental results.

Now let us find conditions under which we can construct f1 and f2 as defined
above. Let X,Y, Z be upper bounds for x0, y0, z0, respectively. We fix an integer
m depending on 1

ε
, and a parameter t, that we will optimize later in terms of

m. We define W = ||fMSB1(xX, yY, zZ)||∞ and n = (XY )mZm+tW .
First, in order to work with a polynomial with constant term 1, we define

f(x, y, z) ≡ R−1fMSB1(x, y, z) mod n ≡ 1 + ax + by + cyz.

Let us look at the following collection of polynomials, the so-called shifts:

gijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m ; j = 0, . . . ,m − i ; k = 0, . . . , j,

hijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m ; j = 0, . . . ,m − i ; k = j + 1, . . . , j + t.

In addition to the polynomials g and h, we also use the polynomials

g′ijk(x, y, z) = nxiyjzk for i = 0, . . . ,m + 1; j = m + 1 − i; k = 0, . . . , j,

h′
ijk(x, y, z) = nxiyjzk for i = 0, . . . ,m + 1; j = m + 1 − i; k = j + 1, . . . , j + t.

Let us give an intuition of the construction of our collection of polynomials.
When m = t = 1, the polynomials g are constructed by multiplying f by its
monomials 1, x, y, yz and constants. In this way, all the monomials of f 2 appear.
In general, the polynomials g are constructed by multiplying f by the monomials
of fm, thereby creating the monomials of fm+1. Additionally, we add the z-shifts
h. In our example, the z-shifts are constructed by multiplying f by the terms
z, xz, and yz2 and constants. The terms z, xz, and yz2 are the multiplications
of z and the original monomials, without yz since this shift was already in g.
The auxiliary polynomials g′, h′ contain the monomials in g and h that were not
used for shifts.

Obviously, g, h, g′, and h′ all have the root (x0, y0, z0) modulo n: g and h

have f as a factor, and g′ and h′ are multiples of n. Let f1 and f2 be linear
combinations of these polynomials. According to Howgrave-Graham’s lemma, if
||f1(xX, yY, zZ)|| and ||f2(xX, yY, zZ)|| are smaller than n√

ω
, then f1 and f2

both have the root (x0, y0, z0) over the integers.
Moreover, we want to ensure that f1(xX, yY, zZ) and f2(xX, yY, zZ) are not

multiples of fMSB1(xX, yY, zZ), which implies that f1, f2 are not multiples of
f . By construction, each of our polynomials gijk(xX, yY, zZ), hijk(xX, yY, zZ),
g′ijk(xX, yY, zZ), h′

ijk(xX, yY, zZ) is divisible by (XY )mZm+t. So f1(xX, yY, zZ)
and f2(xX, yY, zZ) must be divisible by this term. According to a lemma of
Coron [5, Lemma 3], for any multiple h(xX, yY, zZ) of fMSB1(xX, yY, zZ) it
holds that

||h(xX, yY, zZ)|| ≥ 2−(ρ+1)2(XY )mZm+t · ||fMSB1(xX, yY, zZ)||∞ = 2−(ρ+1)2n,



where ρ is the maximum degree of the polynomials h and fMSB1 in each variable
separately. If we let terms that do not depend on n contribute to ε, we find that
a linear combination with norm smaller than n cannot be a multiple of fMSB1,
and must satisfy Howgrave-Graham’s bound.

We build a lattice L using as a basis the coefficient vectors of gijk(xX, yY, zZ),
hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and h′

ijk(xX, yY, zZ). We order the vectors
such that the matrix is triangular, and the diagonal entries of g and h are equal
to (XY )mZm+t. For m = t = 1, after dividing out XY Z2 for simplicity, the
coefficient matrix is the following (the rows correspond to the coefficient vectors
of h, g, h′, and g′, respectively).

z xz yz2 1 x y yz x2z xyz2 y2z3 x2 xy y2 y2z xyz y2z2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓






















































1 aX cY Z bY
1 aX cY Z bY

1 aX cY Z bY

1 aX bY cY Z
1 aX bY cY Z

1 aX bY cY Z
1 bY aX cY Z

WX2Z

WXY Z2

WY 2Z3

WX2

WXY

WY 2

WY 2Z
WXY Z

WY 2Z2























































In general, the computations in Appendix A show that for t = τm, if

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ ,

we find polynomials f1 and f2 that satisfy the Howgrave-Graham bound. Thus,
they have the root (x0, y0, z0) over the integers and are not multiples of f . Under
Assumption 1, the resultant method will reveal the integer root (x0, y0, z0). Note
that the bound can be applied on any irreducible polynomial with the monomials
1, x, y, and yz.

In our case, X = N δ, Y = Nβ , Z = 3N
1
2 and W = max{eX,NY, Y Z,R} ≥

NY = N1+β . We find an optimal value τ = 1
2 − δ, which implies δ ≤ 5

6 −
1
3

√
1 + 6β. Thereby, we have derived the first result of Theorem 1.

4.1.2 Attack using fMSB2

We will now show how to obtain the second and third result mentioned in
Theorem 1, namely that we have a polynomial time MSB attack whenever

δ ≤ 3

16
− ε and β ≤ 11

16
, or δ ≤ 1

3
+

1

3
β− 1

3

√

4β2 + 2β − 2− ε and β ≥ 11

16
.

For the situation where we use information on MSBs of d to get an approximation
k̃ of k, we want to find a small root (x0, y0, z0) of the polynomial fMSB2(x, y, z) =
ex − Ny + yz + k̃z + R.



We fix an integer m depending on 1
ε
, a parameter t that we optimize later,

and put W = ||fMSB2(xX, yY, zZ)||∞, and n = XmY m+tZmW . We compute
f ≡ R−1fMSB2 mod n ≡ 1 + ax + by + cyz + dz, and define the collection of
polynomials

gijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . ,m ; j = 0, . . . ,m − i ; k = 0, . . . ,m − i,

hijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . ,m ; j = m − i + 1, . . . ,m − i + t ; k = 0, . . . ,m − i,

g′ijk(x, y, z) = nxiyjzk,

for i = 0, . . . ,m + 1 ; j = 0, . . . ,m + t + 1 − i ; k = m + 1 − i,

h′
ijk(x, y, z) = nxiyjzk,

for i = 0, . . . ,m ; j = m + t + 1 − i ; k = 0, . . . ,m − i.

As before, the polynomials g are constructed by shifting f with every monomial
of fm. The polynomials h represent extra y-shifts, the shifts used are yl times
the monomials of fm, for l = 1, . . . , t (excluding shifts that were already in g).
The auxiliary polynomials g′ and h′ contain the monomials of g and h that were
not used for the shifts.

We build a lattice L using as a basis the coefficient vectors of gijk(xX, yY, zZ),
hijk(xX, yY, zZ), g′ijk(xX, yY, zZ), and h′

ijk(xX, yY, zZ), where we order the
vectors such that the corresponding lattice basis is triangular, and the diagonal
entries of g and h are equal to XmY m+tZm.

The computations in Appendix B show for t = τm, that when

X2+3τY 3+6τ+3τ2

Z3+3τ ≤ W 2+3τ

holds, we can find two reduced basis vectors that satisfy the Howgrave-Graham
bound. So under Assumption 1, we can find the factorization of N in polynomial
time.

In our case, we have X = N δ, Y = 4Nγ , with γ = max{δ, β − 1
2}, and

Z = 3N
1
2 . Also, W = max{eX,NY, Y Z, k̃Z,R} ≥ NY = 4N1+γ . The optimal

value τ =
1
2−δ−γ

2γ
leads to the condition δ ≤ 1

3γ + 1
2 − 1

3

√

4γ2 + 6γ. If γ = δ,

this implies δ ≤ 3
16 , valid for β ≤ 11

16 . If γ = β − 1
2 , we get δ ≤ 1

3 + 1
3β −

1
3

√

4β2 + 2β − 2 , valid for β ≥ 11
16 .

This concludes the proof of Theorem 1.

4.2 Known MSBs and Small e

In practice, one often chooses the public exponent e to be small. Therefore, we
now let e = Nα and d < φ(N). Note that we are able to use the same polynomials
fMSB1 and fMSB2, when we make some changes in the size of the parameters.
The best result in this situation, as mentioned in Theorem 2, is that we obtain
a polynomial time MSB attack whenever

δ ≤ 1

3
+

1

3
α − 1

3

√

4α2 + 2α − 2 for α >
1

2
.



We can again use fMSB1(x, y, z) = ex−Ny+yz+R, now with |d0| < X = N δ,

|k| < Y = Nα and |p+ q− 1| < Z = 3N
1
2 . Using W = N1+α, as in Section 4.1.1

we find δ ≤ 5
6 − 1

3

√
1 + 6α. This result only holds for α > 1

2 . In the case α < 1
2 ,

from [2, Theorem 4.1], we can assume that k is known, and the polynomial to
be analyzed becomes bivariate. Since our attack using fMSB1 obtains a worse
bound than the one using fMSB2, it is not mentioned in Theorem 2.

When we use partial information on k, where k is partly unknown (so α > 1
2 ),

we can use fMSB2(x, y, z) = ex − Ny + yz + k̃z + R. We have |d0| < X = N δ,

|k0| < Y = 4Nγ , with γ = max{α + δ − 1, α − 1
2}, and |p + q − 1| < Z = 3N

1
2 .

Using W = N1+γ , we get the same condition as in the previous paragraph,
namely δ ≤ 1

3γ + 1
2 − 1

3

√

4γ2 + 6γ, that we analyze for two possibilities for γ.
If we substitute γ = α + δ − 1 (in other words, we assume δ > 1

2 ), we obtain

the condition δ < 3+4α−4α2

16α
. However, for α > 1

2 , δ < 3+4α−4α2

16α
< 1

2 , so we get

no result. If γ = α − 1
2 , we find δ ≤ 1

3 + 1
3α − 1

3

√
4α2 + 2α − 2. This concludes

the proof of Theorem 2.

4.3 Known LSBs and Small d

In this section, we will show how to obtain the result of Theorem 3, namely that
we have a polynomial time LSB attack whenever

δ ≤ 5

6
− 1

3

√

1 + 6β − ε.

The polynomial fLSB(x, y, z) = eMx − Ny + yz + R, where R = ed̄ − 1, has
the same monomials as fMSB1. So we can directly apply the analysis of Section
4.1.1. We use

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ ,

on X = N δ, Y = Nβ , Z = 3N
1
2 and W = max{eMX,NY, Y Z,R} ≥ NY =

N1+β . This implies δ ≤ 5
6 − 1

3

√
1 + 6β, which concludes the proof of Theorem 3.

If we adapt the LSB attack for the situation when e is not of full size, we get
exactly the result from Blömer and May in [3, Section 6].

4.4 Other Applications of the General Method

We have already mentioned that the analysis of the approaches using fMSB1

and fMSB2 is general, in the sense that for every irreducible polynomial with
the monomials 1, x, y, yz, the inequality X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ defines
the condition for a successful (heuristic) attack. Also, for every irreducible poly-

nomial with the monomials 1, x, y, yz, z, the condition X2+3τY 3+6τ+3τ2

Z3+3τ ≤
W 2+3τ implies a successful (heuristic) attack. As a consequence, many known
attacks on RSA are special cases of our general framework.

As could be seen in Fig. 1, and 3, one MSB attack and one LSB attacks for
small d coincide with the bound d < N 0.284 from [1]. This result can also be found
using our method by noticing that fBD(x, y, z) = ex−Ny+yz−1 with the root



(x0, y0, z0) = (d, k, p+q−1) has the same monomials as fMSB1. Therefore, we can

substitute X,Y = Nβ , Z = 3N
1
2 and W = max{eX,NY, Y Z} ≥ NY = N 1+β

in X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ , which leads to β ≤ 7
6 − 1

3

√
7 ≈ 0.284. To

get the improved Boneh-Durfee bound one has to use sublattices. We leave this
for further research.

Fig. 1 also shows that the graph of our (asymptotic) attack of Section 4.1.2
goes up to β−δ

β
= 1, for the parameter choice β = 1. This links our result to

a recent result of May [9], who proves that if one knows all the bits of d and
ed ≤ N2, then one can factor in deterministic polynomial time.

Moreover, the result on RSA with small prime difference from de Weger [11]
and one of the results for unbalanced RSA with small CRT-exponent by May [8]
are also special cases of our method, as is an interesting situation not analyzed
in the literature before, namely when both some MSBs and some LSBs of the
private exponent are known. We will comment on these other applications of our
general method in Appendix C.

5 Experiments

We state some experimental results to give an idea of the performance of our
methods. In all the cases, N ≈ 21024. The experiments are performed on a server
containing two Pentium III processors of 1000 Mhz, and all the lattice basis
reductions are done using Shoup’s NTL [10].

For our MSB1 attack on small d, a typical case is β = 0.3, δ = 0.21 (e.g. 70%
of d is unknown). An attack using m = 2, t = 1 involved a 10 minute reduction
of the 30-dimensional lattice.

For the MSB2 attack on small d, a typical case is β = 0.6, δ = 0.13 (e.g. 22%
of d is unknown). The attack using m = 2, t = 2 has a 50-dimensional lattice,
that took 3 1

4 hours to reduce.

We performed the MSB2 attack on small e for α = 0.7, δ = 0.08 (e.g. 8% of
d is unknown), using m = 2, t = 2. The reduction of the 50-dimensional lattice
took 2 3

4 hours.

All typical cases are examples of our attacks where the bound on δ that
we obtain in practice (for the low value m = 2) already exceeds the asymp-
totic bounds of other known attacks. More experimental results are included in
Appendix D, where we also comment on how Assumption 1 holds in practice.

Last of all, we want to note that one could also apply the original method
of Coppersmith described in [4] instead of Coron’s reformulation [5]. In that
case, the formulation of the method is a bit more technical, and the method
produces essentially the same asymptotic bounds, but it has the advantage that
the dimension of the lattice to reduce drops from a cubic to a quadratic function
in m, which could significantly reduce the time necessary for LLL reduction.
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A The bound X1+3τY 2+3τZ1+3τ+3τ2

≤ W 1+3τ

In this appendix, we show how to obtain the bound X1+3τY 2+3τZ1+3τ+3τ2 ≤
W 1+3τ for the attack using fMSB1 (Section 4.1.1).

In Section 4.1.1, we described how to construct the lattice. The matrix con-
taining the basis vectors is triangular and has the following diagonal entries
(corresponding to the polynomials g, h, g′ and h′, respectively):

XmY mZm+t for i = 0, . . . ,m; j = 0, . . . ,m − i; k = 0, . . . , j
XmY mZm+t for i = 0, . . . ,m; j = 0, . . . ,m − i; k = j + 1, . . . , j + t

Xm+iY m+jZm+t+kW for i = 0, . . . ,m + 1; j = m + 1 − i; k = 0, . . . , j
Xm+iY m+jZm+t+kW for i = 0, . . . ,m + 1; j = m + 1 − i; k = j + 1, . . . , j + t

Since we have to optimize t in terms of m, we put t = τm. Elementary compu-
tations show that the dimension of L is

ω =
1

6
(m3(1 + 3τ) + m2(9 + 15τ)) + o(m2),



and that

det(L)= X
1
6 (m4(1+3τ)+m3(10+18τ)+o(m3)) · Y 1

6 (m4(1+3τ)+m3(11+18τ)+o(m3))

·Z 1
6 (m4(1+4τ+3τ2)+m3(10+27τ+18τ2)+o(m3)) · W 1

6 (m2(3+6τ)+o(m2)).

When we apply LLL-reduction to our lattice, the polynomials f1(x, y, z) and
f2(x, y, z) corresponding to the shortest two vectors in the reduced basis sat-
isfy f1(x0, y0, z0) ≡ 0 mod n and f2(x0, y0, z0) ≡ 0 mod n. In order to apply
Howgrave-Graham’s lemma, we explained in Section 3 that

det(L) ≤ (2
−ω
4

1√
ω

)ω−1nω−1.

must hold.
Ignoring terms that do not depend on n = XmY mZm+tW , and ignoring

terms of order o(m3) (we let these terms contribute to ε), we obtain that if

Xm4(1+3τ)+m3(10+18τ)Y m4(1+3τ)+m3(11+18τ)Zm4(1+4τ+3τ2)+m3(10+27τ+18τ2) ≤
(XY Z1+τ )m4(1+3τ)+m3(9+15τ)Wm3(1+3τ)

the polynomials f1(x, y, z) and f2(x, y, z) satisfy the Howgrave-Graham bound.
The condition above simplifies into

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ .

B The bound X2+3τY 3+6τ+3τ2

Z3+3τ ≤ W 2+3τ

In this appendix, we show how to obtain the bound X2+3τY 3+6τ+3τ2

Z3+3τ ≤
W 2+3τ for the attack using fMSB2 (Section 4.1.2).

In Section 4.1.2, we described how to construct the lattice. The matrix con-
taining the basis vectors is triangular and has the following diagonal entries
(corresponding to g, h, g′, and h′):

XmY m+tZm for i = 0, . . . ,m; j = 0, . . . ,m − i; k = 0, . . . ,m − i

XmY m+tZm for i = 0, . . . ,m; j = m − i + 1, . . . ,m − i + t;
k = 0, . . . ,m − i

Xm+iY m+t+jZm+kW for i = 0, . . . ,m + 1; j = 0, . . . ,m + t + 1 − i;
k = m + 1 − i

Xm+iY m+t+jZm+kW for i = 0, . . . ,m; j = m + t + 1 − i; k = 0, . . . ,m − i

One can check that

dim(L) = ω =
1

6
(m3(2 + 3τ) + m2(15 + 15τ)) + o(m2),

and the determinant of L is equal to

X
1
6 (m4(2+3τ)+m3(17+18τ)+o(m3)) · Y 1

6 (m4(2+5τ+3τ2)+m3(18+36τ+18τ2)+o(m3))

·Z 1
6 (m4(2+3τ)+m3(18+18τ)+o(m3)) · W 1

6 (m2(6+6τ)+o(m2)).



When we apply LLL-reduction to our lattice, the polynomials f1(x, y, z) and
f2(x, y, z) corresponding to the shortest two vectors in the reduced basis sat-
isfy f1(x0, y0, z0) ≡ 0 mod n and f2(x0, y0, z0) ≡ 0 mod n. In order to apply
Howgrave-Graham’s Lemma, it must hold that

det(L) ≤ (2
−ω
4

1√
ω

)ω−1nω−1.

Ignoring terms that do not depend on n = XmY m+tZmW , and ignoring
terms of order o(m3) (we let these terms contribute to ε), we obtain that if

Xm4(2+3τ)+m3(17+18τ)Y m4(2+5τ+3τ2)+m3(18+36τ+18τ2)Zm4(2+3τ)+m3(18+18τ) ≤
(XY 1+τZ)m4(2+3τ)+m3(15+15τ)Wm3(2+3τ)

the polynomials f1(x, y, z) and f2(x, y, z) satisfy Howgrave-Graham’s bound.
The condition above simplifies into

X2+3τY 3+6τ+3τ2

Z3+3τ ≤ W 2+3τ .

C Other Special Cases of our Method

In this appendix, we show that results from [11] and [8] are also special cases of
our method, as is the case where both MSBs and LSBs of d are known.

In the case of RSA with small prime difference, described by de Weger in
[11], we have p − q ≤ Nβ , k ≤ d ≤ N δ and p + q − 2

√
N ≤ N2β− 1

2 . The
function fdW (x, y, z) = ex − y(N − 2

√
N − z) − 1 has the same monomials as

fMSB1. When we substitute X,Y = N δ, Z = N2β− 1
2 , we find that for β < 3

4 ,

we have W = N1+δ. Using X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ , we get δ ≤ 1
6 (4β +

5) − 1
3

√

(4β + 5)(4β − 1). To obtain de Weger’s second bound, sublattices are
needed.

Also, a bound for unbalanced RSA with small CRT-exponent by May [8] can
be derived from our inequality belonging to fMSB1. The setting is edp − k(p −
1) − 1 = 0, where dp ≤ N δ, p ≥ N1−β , and k ≤ Nβ+δ. Multiplication with q

yields edpq − (k − 1)(N − q) − N = 0. This gives us the polynomial fMa1 =
ex − y(N − z) − N . The upper bounds for the root (x0, y0, z0) = (dpq, k − 1, q)
are X,Y = Nβ+δ and Z = Nβ . Additionally, we have W = N 1+β+δ. Plugging
these values in our inequality, we find the bound δ ≤ 1 − 2

3 (β +
√

3β + β2).
The last special case we describe in this appendix is the the situation where

both MSBs and LSBs of an exponent d are known. Let dL be a known LSB part
of size Nκ of the key d, followed by an unknown middle part x of size N δ, which
itself is followed by a known MSB part dM , of size Nβ−κ−δ. Hence, we can write
d as d = dL + M1(x + M2dM ), where M1 ≥ Nκ, and M2 ≤ N δ. Note that κ = 0
describes the case where only MSBs are known, whereas κ = β − δ corresponds
to the LSB scenario.

When we omit partial knowledge of k, the function fMSB+LSB1(x, y, z) =
eM1x − Ny + yz + R, with R = edL + eM1M2dM − 1, has the small root
(x0, y0, z0) = (x, k, p + q − 1), with X = N δ, Y = Nβ , and Z = 3N

1
2 .



As the function has the same monomials as fMSB1, one can use the same
inequality to conclude that the attack works for δ < 5

6 − 1
3

√
1 + 6β. Hence, the

result is exactly the same as when only MSBs or only LSBs are known and
knowledge of k is not used. Apparently, as long as the unknown part of d is
connected, its place does not make a difference, only its length.

When we use the partial knowledge of k provided by the approximation k̃,
we obtain the function fMSB+LSB2(x, y, z) = eM1x − Ny + yz + k̃z + R, with
R = edL + eM1M2dM − k̃N − 1.

Analysis similar to the fMSB2 case shows that if γ = max{δ + κ, β − 1
2} =

δ + κ, we obtain the bound δ ≤ 3−4κ−4κ2

16+16κ
, valid for β ≤ 11+4κ−4κ2

16+16κ
. In the case

γ = β− 1
2 , we find that the attack works whenever δ ≤ 1

3 + 1
3β− 1

3

√

4β2 + 2β − 2,

valid for β ≥ 11+4κ−4κ2

16+16κ
.

Naturally, equivalent bounds can be derived when d is full size and e is not.

D More Experimental Results

In addition to Section 5, we now show more experimental results. The experi-
ments we did for this appendix are only for m = 1 and m = 2, which means
the lattices are relatively small and the lattice reduction can be performed in a
matter of seconds or minutes. In the full version of this paper, experiments for
larger parameters will be included.

As in Section 5, the experiments are performed on a server containing two
Pentium III processors of 1000 Mhz, and all the lattice basis reductions are done
using Shoup’s NTL [10]. In contrast to the experimental results mentioned in
Section 5, we assume here that we have a 256 bit modulus. So one has to keep in
mind that for N ≈ 21024, the running time of the LLL-procedure will be longer.

As the bounds on δ stated in Theorem 1 and 2 are asymptotic bounds, the
goal of the tables in this appendix is to provide some intuition of what bounds
on δ our attacks can achieve in practice. For example, the table in Fig. 5 shows
that for β = 0.3, the asymptotic bound of the attack using fMSB1 from Section
4.1.1 is δ < 0.28 − ε. When we use the parameters m = 2, t = 1, our attack
works for δ < 0.21. The attack involves a lattice of dimension 30, which takes
approximately 25 seconds to reduce.

This example is one of the three so-called ’typical cases’ of Section 5. These
are examples where the bound on δ that we obtain in practice exceeds the
asymptotic bounds of other known attacks. In the tables in this appendix, the
typical cases are written in bold.

For the choice of t, recall from Section 4.1.1 that t = τm, and that we use
τ = 1

2 − δ to obtain the asymptotic result of our attack using fMSB1. This
explains that for m = 1 in Fig. 5, a value of t larger than 1 gives no significant
improvement, but for m = 2, t = 2 may give a better result when the bound on

δ is ’low’. For the attacks using fMSB2 (Section 4.1.2 and 4.2), τ =
1
2−δ−γ

2γ
. This

explains for example, that when e = Nα with α close to 1
2 , using a larger t gives

a better bound on δ in the experiments (as can be seen in Fig. 7).



β δ m = 1 m = 2
asympt. t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

0.30 0.28 0.19 0.19 0.19 0.19 0.21 0.21

0.35 0.25 0.13 0.14 0.14 0.14 0.16 0.16

0.40 0.22 0.09 0.11 0.11 0.09 0.14 0.15

0.45 0.19 0.04 0.10 0.10 0.05 0.12 0.12

0.50 0.17 0 0.08 0.09 0 0.10 0.11

0.55 0.14 0 0.08 0.08 0 0.09 0.11

0.60 0.12 0 0.04 0.04 0 0.06 0.10

0.65 0.10 0 0 0 0 0 0.06

0.70 0.07 0 0 0 0 0 0.01

0.75 0.05 0 0 0 0 0 0

0.80 0.03 0 0 0 0 0 0

0.85 0.01 0 0 0 0 0 0

Dimension: 10 16 22 20 30 40

LLL (sec): 1 2 8 3 25 100

Fig. 5. Experiments fMSB1 for small d

β δ m = 1 m = 2
asympt. t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.30 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.19

0.35 0.19 0.15 0.16 0.16 0.16 0.16 0.16 0.16

0.40 0.19 0.12 0.12 0.12 0.12 0.14 0.15 0.15

0.45 0.19 0.10 0.11 0.12 0.12 0.12 0.13 0.13

0.50 0.19 0.08 0.11 0.12 0.12 0.12 0.13 0.13

0.55 0.19 0.08 0.11 0.12 0.12 0.11 0.13 0.13

0.60 0.19 0.05 0.11 0.11 0.11 0.11 0.12 0.13

0.65 0.19 0 0.05 0.06 0.06 0.05 0.08 0.10

0.70 0.18 0 0 0 0 0 0.04 0.05

0.75 0.14 0 0 0 0 0 0 0

0.80 0.11 0 0 0 0 0 0 0

0.85 0.08 0 0 0 0 0 0 0

0.90 0.05 0 0 0 0 0 0 0

0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50

LLL (sec): 1 7 17 40 26 180 480

Fig. 6. Experiments fMSB2 for small d

α δ m = 1 m = 2
asymptotic t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.50 0.50 0.25 0.33 0.38 0.40 0.32 0.37 0.41

0.55 0.33 0.17 0.21 0.23 0.25 0.21 0.23 0.24

0.60 0.27 0.09 0.14 0.17 0.18 0.13 0.16 0.19

0.65 0.22 0.02 0.07 0.10 0.10 0.07 0.11 0.13

0.70 0.18 0 0.02 0.03 0.04 0.02 0.04 0.08

0.75 0.14 0 0 0 0 0 0.01 0.02

0.80 0.11 0 0 0 0 0 0 0

0.85 0.08 0 0 0 0 0 0 0

0.90 0.05 0 0 0 0 0 0 0

0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50

LLL (sec): 1 5 13 40 33 180 520

Fig. 7. Experiments fMSB2 for small e

Having done some experiments, we can now comment on Assumption 1. Let
g(x, y, z) and h(x, y, z) be polynomials that correspond to LLL-reduced vectors
in our method, for which Howgrave-Graham’s bound is satisfied. If g(x0, y0, z0) =
h(x0, y0, z0) = 0, but the resultant computations with g and h yield the zero-
polynomial, then Assumption 1 does not hold. Therefore, we performed some
tests to see how often this occurs. We found that for approximately 0.1% of pairs
(g, h) the heuristic failed. This does not mean that the method will always fail in
these cases. Usually, there are several vectors that satisfy Howgrave-Graham’s
bound, hence if one pair fails, other pairs can yield the solution.

Experiments also show that the theoretical bound under which our methods

works, det(L) ≤ (2
−ω
4

1√
ω
)ω−1nω−1, is far too strict. It would imply that for

m ∈ {1, 2}, the method will never work, which clearly contradicts the practice.

This is both due to the term (2
−ω
4

1√
ω
)ω−1, when it is known that LLL-reduction

achieves much better bounds in practice, and to the fact that we use the LLL-
bound for the second smallest reduced vector. In practice, we experienced that
our method works until we come close to det(L) ≤ nω (the bound for the first
reduced vector to be small enough, omitting the constant term).


