
Universally Composable Password-Based

Key Exchange

Ran Canetti1?, Shai Halevi1, Jonathan Katz2??, Yehuda Lindell3? ? ?, and Phil
MacKenzie4†

1 IBM T.J. Watson Research Center, Hawthorne, NY, USA.
canetti@watson.ibm.com, shaih@alum.mit.edu

2 Dept. of Computer Science, University of Maryland, MD, USA.
jkatz@cs.umd.edu

3 Department of Computer Science, Bar-Ilan University, Israel.
lindell@cs.biu.ac.il

4 Bell Labs, Lucent Technologies, Murray Hill, NJ, USA.

Abstract. We propose and realize a definition of security for password-
based key exchange within the framework of universally composable
(UC) security, thus providing security guarantees under arbitrary com-
position with other protocols. In addition, our definition captures some
aspects of the problem that were not adequately addressed by most prior
notions. For instance, it does not assume any underlying probability
distribution on passwords, nor does it assume independence between
passwords chosen by different parties. We also formulate a definition
of password-based secure channels, and show that such a definition is
achievable given password-based key exchange.

Our protocol realizing the new definition of password-based key exchange
is in the common reference string model and relies on standard number-
theoretic assumptions. The components of our protocol can be instanti-
ated to give a relatively efficient solution which is conceivably usable in
practice. We also show that it is impossible to satisfy our definition in
the “plain” model (e.g., without a common reference string).

1 Introduction

Protocols for password-based key exchange have received much attention in re-
cent years. In short, the problem is how to enable authenticated generation of a
“high-quality” secret key between two parties whose only a priori shared, secret
information consists of a low-entropy password. In this setting, an attacker can
always correctly determine the correct password via an on-line dictionary attack
in which the adversary exhaustively enumerates the password space and tries
to impersonate one of the parties using each possible shared secret. Since such
an attack is unavoidable, work in this area focuses on preventing off-line dictio-
nary attacks. Roughly, this guarantees that the exhaustive, on-line attack is the
? Supported by NSF CyberTrust Grant 0430450.

?? Supported by NSF CAREER award 0447075 and Trusted Computing grant 0310751.
? ? ? Some of this work was carried out while the author was at IBM T.J. Watson.

† Current addr.: DoCoMo USA Labs, San Jose, CA. (philmac@docomolabs-usa.com)

“best” possible one. That is, the attacker must interact with a legitimate player
in order to verify each password guess, and the interaction leaks no information
other than whether or not the attacker’s guess is correct. Besides their prac-
tical importance, password-based protocols are also interesting from a purely
theoretical point of view: they provide a rare case where bootstrapping “strong
security” from “weak security” has to be modeled, obtained, and argued.

The problem of resistance to off-line password-guessing attacks was first
raised by Gong, et al. [21] in the asymmetric “PKI model” (where, in addi-
tion to a password, the user has the public key of the server). Formal definitions
and proofs of security in this setting were later given by Halevi and Krawczyk
[22]. A more difficult setting for this problem is one where the parties share
only a password (and in particular, neither party knows the other’s public-key).
This setting was first considered by Bellovin and Merritt [5], and their work
was followed by much additional research developing protocols with heuristic
justifications for their security (see [6] for a survey). Formal definitions for this
setting, together with protocols analyzed in the random-oracle/ideal-cipher mod-
els, were given by Bellare, et al. [3] (who proposed an indistinguishability-based
definition) and Boyko, et al. [7] (who proposed a simulation-based definition).
Goldreich and Lindell [19] introduced a third security definition and also gave
the first provably-secure solution to this problem in the standard model, based
on general assumptions; their protocol was recently simplified (at the expense
of achieving a weaker security guarantee) by Nguyen and Vadhan [26]. Another
setting that has been considered for this problem is one where, in addition to
shared low-entropy passwords, all parties share a common reference string. In
this setting, a practical and provably-secure protocol was first developed by
Katz, et al. [24] based on the decisional Diffie-Hellman assumption. This pro-
tocol was subsequently generalized and abstracted by Gennaro and Lindell [18]
who, among other things, obtain protocols that rely on the quadratic residuosity
and N th-residuosity assumptions.

The many definitions that have already been introduced [3, 7, 19, 26] indicate
that finding a “good” definition of security for password-based authentication
has been difficult and remains a challenging problem. Furthermore, it is not
clear that any of the above definitions adequately address all aspects of the
problem. For example, none of the above definitions relate to the (realistic)
setting where the password-based protocol is used as a component within a
larger protocol. (Rather, it is assumed that the entire network activity consists of
many executions of the password protocol.) Since the problem at hand involves
non-negligible probabilities of “success” by the adversary, providing security-
preserving composition (with reasonable error propagation) is even more delicate
than usual. Some of the above definitions have not been proven sufficient for
implementing (any form of) secure channels — a natural goal of key-exchange
protocols (see [9] for motivation). Finally, existing (explicit) definitions assume
that passwords are chosen from some pre-determined, known distribution, and
(with the exception of [7]) assume also that passwords shared between different
parties are independent. (However, it is claimed in [24] that their proof extends
to the case of dependent passwords.) These assumptions rarely hold in practice.

A new definition. In this work, we propose and realize a new definition of se-
curity for password-based key-exchange protocols within the universally com-
posable (UC) security framework [8]. That is, we propose an ideal functionality
for “password-based key exchange” that captures the security requirements of
the problem. (Such an ideal functionality can be thought of as the code for a
“centralized trusted service”, were one actually available to the parties.) Work-
ing in the UC framework allows us to benefit from the universal composition
theorem. Loosely speaking, the theorem states that a protocol secure in this
framework remains secure even when run in an arbitrary network, where many
different protocols (secure or not) may run concurrently. In addition to address-
ing composability, the definition in this work also addresses the other concerns
mentioned above. In particular, security is preserved even in the case of arbitrary
and unknown password distributions, and even if related passwords are used. The
important feature here is that the probability of the adversary succeeding in its
attack is negligibly close to the probability of its guessing the password outright,
even when this guess is based on information about the password that the ad-
versary obtains from the arbitrary network or from related passwords that it has
(either partially or completely) learned. Finally, we show how protocols satisfy-
ing our definition may be used to construct (password-based) secure channels.
Such channels enable private and authenticated communication, which in most
cases is the goal of running the protocol in the first place.

As one might expect, formulating an ideal functionality that captures all the
requirements of password-based key exchange involves a number of non-trivial
definitional choices. Our formulation builds on the known UC formulation of
(standard) key-exchange [8, 9], where security is guaranteed except with negligi-
ble probability. However, unlike standard key-exchange, some mechanism must
be introduced that allows the adversary to “break” the protocols with some non-
negligible probability by guessing the correct password. A natural way of doing
this is to have the functionality choose the passwords for the parties. Then, if
the adversary correctly guesses the password (where this guess is given to the
functionality), it is allowed to choose the session-key that the parties obtain.
Although this formulation is quite intuitive, it is somewhat limited in that it
assumes some pre-determined dictionary or distribution on passwords and that
passwords are chosen independently from each other. It also fails to model pos-
sible leakage of a portion of the password to the adversary (this is due to the
fact that only the functionality knows the password).

We therefore take a different approach and allow the calling protocol (or the
environment) to provide the password as part of the input. While this formula-
tion may seem somewhat counter-intuitive at first, we show that it results in a
definition of security that is at least as strong as that given by the first formu-
lation.1 Furthermore, it does not make any assumptions as to how the password
is chosen and it imposes no pre-determined probabilities of failure.

1
The alternative formulation in which the functionality chooses the passwords was omitted for
lack of space. It may be obtained from the authors, along with a proof that it is implied by the
definition presented here.

Realizing the definition. We construct a protocol that realizes our definition.
The protocol is an extension of the protocols of [24, 18], and as such is in the
common reference string model and may be based on some standard number-
theoretic assumptions (namely the decisional Diffie-Hellman, quadratic residu-
osity, or N th-residuosity assumptions). Our protocol uses building blocks that
have efficient instantiations under these assumptions. As a result, our protocol
is reasonably efficient and is realizable in practice (it has 6 rounds and at most
30 modular exponentiations per party). Some of the efficiency improvements we
use in our protocol are applicable also to the protocol of [24] (and seemingly
[18]); see [23]. Applied there, these improvements yield the most efficient known
password-based protocol meeting the definition of [3] without random oracles.

On the necessity of set-up assumptions. Our protocol is constructed in the com-
mon reference string model, and so requires a trusted setup phase. In fact, we
show that our UC-based definition of password-based key-exchange cannot be
securely realized by any protocol in the plain model (i.e., in a model with no
trusted setup whatsoever). Beyond providing some justification for our use of a
common reference string, this result stands in sharp contrast with the fact that
standard UC-secure key exchange can be realized in the plain model [9]. It also
shows that our definition is strictly stronger than the definition used by [19,
26], which can be realized in the plain model. (We stress that in contrast to
our definition, the definitions of [19, 26] do not guarantee security even under
concurrent composition of the same protocol with the same password.)

Password-based secure channels. Perhaps the most important application of key-
exchange protocols is for establishing secure communication sessions between
pairs of parties. To advocate the adequacy of our proposed definition we formu-
late a UC notion of password-based secure channels, and show how to realize it
given our notion of password-based key exchange. It is of course impossible to
obtain standard secure channels using short passwords, since the adversary may
guess the password with non-negligible probability. Consequently, our notion of
password-based secure channels relaxes the standard notion in a way similar to
which our notion of password-based key exchange relaxes the standard notion
of key exchange. We then show that the standard protocols for realizing secure
channels based on standard key exchange (see, e.g., [9]), suffice also for realizing
password-based secure channels from password-based key exchange.

Organization. Due to lack of space in this abstract, the main text focuses on our
definition and a high-level description of our protocol, along with motivation as
to its security. The full description of the protocol and its proof of security is
provided in the full version. Other results (namely, the impossibility of realizing
our definition in the plain model and the fact that secure channels are implied)
are described briefly in Section 4 and can be found in the full version.

2 Definitions of Security

In this section, we motivate and present our formulation of an ideal functionality
for password-based key exchange in the UC framework. We stress that from here

on, when we say that a protocol securely realizes some functionality, we mean
that it securely realizes it according to the definitions of the UC framework. Our
presentation assumes familiarity the UC framework; see [8] for a full description.

2.1 High-Level Approach

The starting point for our approach is the definition for universally composable
“standard” key-exchange [9] (cf. Figure 1). Our aim is to define a functionality
that achieves the same effect as standard key-exchange (where the parties have
high-entropy keys), except that we also incorporate the inherent “security defect”
due to the use of low-entropy passwords. Two ways of introducing this “security
defect” come to mind:

1. One option is to consider the same functionality FKE as in Figure 1, but
to relax the requirement of indistinguishability between the real and ideal
worlds. I.e., when passwords are assumed to be chosen uniformly from a
dictionary D, one would define a secure protocol as one whose real-world
execution is distinguishable from an interaction with the ideal functionality
with probability at most, say, 1/|D| plus a negligible amount.

2. A second possibility is to incorporate the “defect” directly into the function-
ality, e.g., by allowing the adversary to make explicit password guesses and
to “break” the protocol following a successful guess. Here, the adversary
“breaks” the protocol with noticeable probability even in the ideal world,
and thus the standard notion of realizing an ideal functionality can be used.

Among previous works that used simulation-based definitions of security for
password protocols, the first approach was taken by [19, 26], while the second
was taken by [7]. (Other definitions are not simulation-based and so do not fit
into either approach.) In this work we adopt the second option, for two reasons.
First, this allows us to use the UC composition theorem and thus guarantee
security of password-based key-exchange protocols even when run in arbitrary
protocol environments. Second, this approach easily extends to handle addi-
tional complexities such as multiple users with different distributions on their
passwords, or dependencies among various passwords. These aspects seem hard
(if not impossible) to handle using the first approach.

Before proceeding to our definition, we describe the standard key-exchange
functionality of [9]. (We note that the formulation of FKE in Figure 1 is somewhat
different from the one in [9]; however, the differences are inconsequential for
the purpose of this work.) The main idea behind the FKE functionality is as
follows: If both participating parties are not corrupted, then they receive the
same uniformly distributed session-key, and the adversary learns nothing of the
key except that it was generated. However, if one of the parties is corrupted, then
the adversary is given the power to fully determine the session-key. The rationale
for this is that the aim of key-exchange is to enable honest parties to generate a
key that is unknown to an external adversary. If one of the participating parties
is corrupted, then the adversary will learn the generated key (because it is one

of the participants), and so the security requirement is meaningless. In such a
case, there is nothing lost by allowing the adversary to determine the key. We
remark that the “role” variable in the NewSession message is included in order
to let a party know if it is playing the initiator or responder role in the protocol.
This has no effect on the security, but is needed for correct executions.

Functionality FKE

FKE is parameterized by a security parameter k. It interacts with an adversary S

and a set of (dummy) parties via the following queries.

Upon receiving a query (NewSession, sid, Pi, Pj , role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi), then record (Pi, Pj).

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:

If there is a record (Pi, Pj), and this is the first NewKey query for Pi, then:
• If either Pi or Pj is corrupted, then output (sid, sk) to player Pi.
• If there is also a record (Pj , Pi), and a key sk′ was sent to Pj , output
(sid, sk′) to Pi.
• In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Fig. 1. The authenticated key-exchange functionality FKE

We now proceed to our definition of the password-based key-exchange func-
tionality FpwKE. Similarly to FKE, if one of the participating parties is corrupted
the adversary is given the power to fully determine the resulting session-key.
However, this power is also given to the adversary in case it succeeds in guess-
ing the parties’ shared password. An additional property of our definition is
that failed adversarial attempts at guessing a key are detected by the partici-
pating parties. Specifically, if the adversary makes a wrong password guess in
a given session, then the session is marked interrupted and the parties are pro-
vided independently-chosen session-keys. (Giving the parties error messages in
this case would correspond to requiring explicit mutual authentication; see ad-
ditional discussion below.)

In the functionality, a session is marked compromised if the adversary makes
a successful password guess (as discussed above, in this case the adversary is
allowed to determine the session-key). If a session is marked fresh, this means
that it is neither interrupted nor compromised. Such sessions (between honest
parties) conclude with both parties receiving the same, uniformly distributed
session-key. See Figure 2 for the full definition of the functionality.

In the definition of FpwKE, the password is chosen by the environment who
then hands it to the parties as input.2 Since we quantify over all (polynomial-
time) environments, this implies that security is preserved for all efficient pass-

2
This is in contrast to an alternative approach described in the Introduction where the functionality
chooses the password according to some predetermined distribution, and this password is hidden
even from the environment. As we have mentioned, security under our definition implies security
under that alternative approach.

word distributions, as well as when arbitrarily related passwords are used in
different session. Furthermore, since the passwords are provided by the “envi-
ronment in which the protocol is run”, security is preserved even when passwords
are used for other, unintended purposes by that same environment. (When we
say that security is preserved here, we mean that the probability that an ad-
versary can break the password-based key-exchange protocol is the same as its
probability of guessing the password outright, given the potential misuse men-
tioned above.) We also remark that our definition guarantees security even in
the case where two honest players execute the protocol with different passwords.
(In fact, this is quite a realistic scenario which occurs every time a user mistypes
a password; previous definitions did not guarantee anything in such a case.)

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts
with an adversary S and a set of parties via the following queries.

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, then mark the record compromised and reply to S with “correct
guess”. If pw 6= pw′, then mark the record interrupted and reply with
“wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey

query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output
(sid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw,
and a key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then
output (sid, sk′) to Pi.
• In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Fig. 2. The password-based key-exchange functionality, FpwKE

As additional justification of our definition, we show that it implies password-
based secure channels (arguably the most common application of such protocols).
In addition, we show that our definition implies the “expected” notion of security
against a passive eavesdropper (even one who happens to know the password be-
ing used). Finally, we show that a protocol that securely realizes our functionality
is secure also with respect to the definition of Bellare, et al. [3] (modulo unim-
portant differences regarding the formalization of session identifiers).3 These last
two results can be seen as “sanity checks” of our definition.

3
In our formalization, a unique session identifier sid is assumed to be part of the input to the
functionality. In the two-party setting, such a session identifier can be obtained by having the
parties exchange random strings and then set sid to be the concatenation of these strings.

Additional discussion. The definition of FpwKE could be strengthened to require
explicit mutual authentication by insisting that after a “wrong guess” of the
password, the session would fail (instead of producing a random and independent
key). Similarly, a session with mismatching passwords would also fail. We chose
not to include these requirements because (a) we want to keep the exposition
simple; (b) mutual authentication is not needed for secure channels; and (c)
it is well known that any secure key-exchange protocol (including ours) can be
augmented to provide mutual authentication by adding two “key confirmation”
flows at the end (and refreshing the session key). The definition could also be
weakened by notifying the simulator whether or not the passwords match in the
two NewSession queries. Roughly, the difference is that the current formulation
requires that an eavesdropper be unable to detect whether the session succeeded
(i.e., both parties got the same key) or failed (i.e., they got different keys).
Although we are not aware of any application where this is needed, it makes the
definition simpler to describe and our protocol anyway satisfies this requirement.

3 A Protocol Securely Realizing FpwKE

In this section, we present our protocol for securely realizing the functionality
FpwKE, in the common reference string model.4 Due to lack of space in this
extended abstract, many details of the protocol and its proof of security are
omitted. We remark that our protocol is proven secure in the model of static
corruptions (where the adversary may corrupt some of the participants, but only
prior to the beginning of the protocol executions) and unauthenticated channels
(where the adversary has full control over the communication channels and can
insert, modify and delete all messages sent by the honest parties). We also note
that although we consider static corruptions, the “weak-corruption model” of [3]
is implied by our definition (and achieved by our protocol); see the full version.
In the weak-corruption model, the adversary may obtain passwords adaptively
throughout the execution. This essentially models leakage of passwords, rather
than adaptive corruption of parties.

3.1 Preliminaries

The protocol uses a number of primitives: one-time signatures, CPA-secure and
CCA-secure public-key encryption, simulation-sound zero-knowledge proofs, and
smooth projective hashing. We provide only a brief description of the last two
primitives here.

Simulation-sound zero-knowledge (SSZK) proofs. Informally speaking, a zero-
knowledge proof system is said to be (unbounded) simulation-sound if it has
the property that an adversary cannot provide a convincing proof for a false

4
Our protocol actually realizes the multi-session extension F̂pwKE of this functionality (see [11]).
This is important for ensuring that the same common reference string can be used in all executions;
see the full version for more details. For the sake of clarity, in this extended abstract we refer
only to the original functionality FpwKE.

statement, even if it has seen simulated proofs. Such simulated proofs may actu-
ally prove false statements, and so the adversary can copy these proofs but do
nothing more. More formally, the adversary is given oracle access to the zero-
knowledge simulator and can request simulated proofs of any statement (true
or false) that it wishes. The adversary is then said to succeed if it generates
a convincing proof of a false statement, and this proof was not received from
the oracle. This concept was first introduced by Sahai [28] and De Santis, et al.
[14] in the context of non-interactive zero-knowledge. For the case of interac-
tive protocols, the notion was formally defined by Garay, et al. [17].5 Efficient
methods for transforming three-round honest-verifier zero-knowledge protocols
(also called Σ-protocols [12]) into simulation-sound zero-knowledge protocols in
the common reference string model have been shown in [17] and [25]. We note
that, according to the definition of [17], simulation-sound zero knowledge pro-
tocols also achieve concurrent zero knowledge; i.e., the zero knowledge property
holds for an unbounded number of asynchronous executions of an honest prover.
Finally, we note that simulation-sound zero knowledge is a weaker requirement
than universally-composable zero-knowledge, and more efficient constructions
for it are known.

Smooth projective hashing [13]. On a very high level, a projective hash family
is a family of hash functions that can be computed using one of two keys: the
(secret) hashing key can be used to compute the function on every point in its
domain, whereas the (public) projected key can only be used to compute the
function on a specified subset of the domain. Such a family is called “smooth” if
the value of the function on a value outside of the specified subset is uniformly
distributed, even given the projected key. More formally (but still far from being
exact), let X be a set and let L ⊂ X . We say that a hash function Hhk that maps
X to some set is projective if there exists a projection function α(·) that maps
hash keys hk into their projections hp = α(hk), such that for every x ∈ L it
holds that the value of Hhk(x) is uniquely determined by hp and x. (In contrast,
for x 6∈ L the value of Hhk(x) need not be determined from hp and x.) A
smooth projective hash function has the additional property that for x /∈ L, hp
actually says nothing about the value of Hhk(x). More specifically, given x and
hp = α(hk), the value Hhk(x) is (statistically close to) a uniformly distributed
element in the range of Hhk.

We already mentioned that for x ∈ L the projected key hp fully defines the
value Hhk(x), but so far we said nothing about whether or not this value can be
efficiently computed. An important property of smooth projective hash functions
is that if the subset L is an NP-language, then for x ∈ L it is possible to compute
Hhk(x) using the projected key hp = α(hk) and a witness of the fact that x ∈ L.
Thus, for x ∈ L there are two alternative ways of computing Hhk(x):

1. Given the hashing key hk, compute Hhk(x) directly.
2. Given the projected key hp and a witness w for x ∈ L, compute the hash

value hhp(x; w) = Hhk(x).
5

When we say a proof is simulation sound, we will also mean that it is uniquely applicable [28];
that is, a proof is valid for at most one statement.

Following [18], the set X that we consider in this work is the set {(c, m)} of
all ciphertext/plaintext pairs under a given public-key pke. Furthermore, the
language L is taken to be {(c, m) | c = Epke(m)}; that is, L is the set of all
ciphertext/plaintext pairs (c, m) where c is an encryption of m under the public-
key pke. We note this language is indeed an NP language, with the witness being
the randomness that was used in the encryption of m.

We also comment that the semantic security of the encryption implies that
L is hard on the average (i.e., it is hard to distinguish a random element in X
from a random element in L). For such languages, it was proven in [18] that
given a random x ∈ L and hp = α(hk), the value Hhk(x) is computationally
indistinguishable from a random value in the range of Hhk. (This holds even
though for any x ∈ L, the value Hhk(x) is uniquely determined by x and hp.)

In the description below we denote choosing a hashing key from the family
by hk ← H, and denote the projection of this key by hp = α(hk). We also denote
computing the hash value using the hashing key hk by Hhk(x), and computing
the hash value using the projected key hp and witness w by hhp(x; w). (Note
that the statements x below are actually pairs (c, m), and the witness is the
randomness r, so we write Hhk(c, m) and hhp(c, m; r).)

3.2 The KOY/GL Protocol

The starting point of our protocol is the password-based key-exchange protocol
of Katz, Ostrovsky, and Yung [24], as generalized and abstracted by Gennaro
and Lindell [18]. The “core” of this protocol is sketched in Figure 3 (in this figure
we suppress various details). At a high level, the parties in the KOY/GL protocol
exchange CCA-secure encryptions6 of the password, encrypted with the public-
key found in the common reference string, and then compute the session key by
combining (smooth projective) hashes of the two ciphertext/password pairs. In
order to do this, each party chooses a hashing key for a smooth projective hash
function and sends the “projected key” to the other party.

Ignoring for the moment the signature keys from Figure 3, let c2, hk and
c1, hk′ be the encryptions and hashing keys generated by parties Pi and Pj ,
respectively. Party Pi can compute Hhk(c1, pw) since it knows the actual hash-
ing key hk. Furthermore, since it generated the ciphertext c2, it can compute
hhp′(c2, pw; r2) = Hhk′(c2, pw) using its knowledge of the randomness r2 that
was used in generating c2 = Epke(pw; r2). (This relies on the two alternative
ways of computing Hhk(x) described above.) Symmetrically, Pj computes the
same session key using hk′, hp, and its knowledge of r1.

The basic idea behind the security of the protocol can be described as follows.
Denote the shared password of a client and server by pw. If the client receives
an encryption c of the wrong password pw′, then (by the definition of smooth
projective hashing) the hash she computes will be random and independent of
all her communication. (This holds because the statement (c, pw) is not in the

6
It is shown in [18] that non-malleable commitments can be used in place of CCA-secure encryption.
However, for our extension of the protocol to the UC framework we will need to use encryption,
and so we describe it in this way.

Pi (server) Pj (client)

CRS: public key pke

(sk, vk)← sigKey($)
c1 ← Epke(pw; r1)c1, vk

�

c2 ← Epke(pw; r2)
hk ←H
hp← α(hk) c2, hp

-

hk′ ←H
hp′ ← α(hk′)
σ ← Signsk(c2, hp, hp′)hp′, σ

�

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key← Hhk(c1, pw) session-key← hhp(c1, pw; r1)

+ hhp′ (c2, pw; r2) +Hhk′(c2, pw)

Fig. 3. The core of the KOY/GL protocol.

language, so Hhk(c, pw) is close to uniform even given the projected key hp.) A
similar argument holds for the server. Thus, for an adversary to distinguish a
session key from random, it must send one of the parties an encryption of the
correct password pw.

The adversary can get an encryption of the right password by copying a ci-
phertext from another execution of the protocol, but then it does not know
the randomness that was used to generate this ciphertext. By the property
that we discussed above (regarding hard-on-the-average languages), the value
Hhk(c, pw) is computationally indistinguishable from uniform, even given hp.
Moreover, since the encryption scheme is CCA-secure, and thus non-malleable,
the adversary cannot generate a new encryption of pw with probability any bet-
ter than it would achieve by simply guessing passwords from the dictionary and
encrypting them.

Finally, the adversary may try to gain information by copying ciphertexts
from a current session faithfully but not copying other values (such as the hash
projected keys). This type of man-in-the-middle attack is prevented using the
one-time signature. We conclude that the adversary succeeds in its attack if and
only if it generates an encryption of the correct password. In other words, the
adversary succeeds if it guesses the secret password, as required.

3.3 Extending the Protocol to Realize FpwKE

The protocol of Figure 3 serves as a good starting point, but it does not seem to
achieve the security that we require. The main issue that arises here is that an
ideal-model simulator must be able to extract the adversary’s password guess.7

7
This need to extract is not a mere technicality, but is rather quite central to our definition.
In particular, this enables us to argue that the level of security achieved is equivalent to the

At first glance, it may seem that this is not a problem because in the ideal model
the simulator has control over the common reference string and so can include
a public-key pke for which it knows the corresponding secret key ske. Then,
when the adversary generates an encryption of the password c = Epke(pw), the
simulator can decrypt using ske and obtain the password guess pw. However, as
we will now show, this seems not to suffice.

In order to see where the difficulty arises, consider an ideal-model adver-
sary/simulator S that has access to the functionality FpwKE and needs to simu-
late the KOY/GL protocol for a real-life adversary A. Informally, simulating the
server when the adversary impersonates a client can be carried out as follows:
The simulator decrypts the ciphertext c1 generated by the adversary and re-
covers the adversary’s “password guess” pw (this decryption can be carried out
because S chooses the common reference string so that it has the corresponding
secret key). The simulator then sends pw to FpwKE as its own guess. If the guess
is incorrect, then as described above, the smoothness of the hash function causes
the honest parties to output independent random keys (as required in the ideal
model with an interrupted session). In contrast, if the guess is correct then the
simulator has learned the correct password and can continue the remainder of
the execution exactly as an honest party would when using that password. How-
ever, consider what happens when the adversary impersonates a server. Here,
the simulator must send some c1 (presumably an encryption of some password
pw′) before the adversary replies with c2. As before, the simulator can decrypt
c2, recover the password pw in it, and submit this guess to FpwKE. However, if it
turns out that pw is a correct guess, the simulator is stuck with a ciphertext c1

that in all likelihood is an encryption of the wrong password. Not knowing the
hashing key hk that A holds, the simulator cannot predict the value Hhk(c1, pw)
that A will compute (since (c1, pw) /∈ L). Thus, the simulator seems to have no
way of ensuring that the secret key that A computes is the same as the one that
the environment gets from the functionality (via the client).8

To overcome this problem, we modify the protocol by having the server send
a “pre-flow” c0 which also contains an encryption of the password; i.e., c0 =
E(pw; r0). Then, when the server later sends c2, it proves in zero knowledge
that c0 and c2 are encryptions of the same value. We stress that the session-key
is still computed using only c1 and c2 and so it is important that consistency hold
between these two only (where by consistency, we mean that they are both an
encryption of the same password). The modified protocol is sketched in Figure 4.
(Note that we switch the “client” and “server” roles so that the client is still the
one who sends the first message.)

We now describe the high-level simulation strategy for the modified protocol
(and thus why this modification solves the above-described problem):

probability of successfully guessing the password, even in the case that related and partially-
leaked passwords are used.

8
This problem does not arise in the proofs of KOY/GL, since the “simulator” there can just halt
and the adversary is declared successful. Our simulator, on the other hand, must continue to
simulate both when the adversary fails and when it succeeds.

Pi (client) Pj (server)

CRS: pke, pke′

c0 ← E′
pke′ (pw; r0) c0

-

(sk, vk)← sigKey($)
c1 ← Epke(pw; r1)c1,vk

�

c2 ← E′
pke′ (pw, r2)

hk ←H
hp← α(hk; c1) c2,hp

-

ZKP(c0≈c2)
-

hk′ ←H′

hp′ ← α′(hk′; c2)
σ ← Signsk(c2, hp, hp′)hp′,σ

�

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key← Hhk(c1, pw) session-key← hhp(c1, pw; r1)

+ h′
hp′ (c2, pw; r2) +H ′

hk′(c2, pw)

Fig. 4. The core of the universally-composable protocol.

1. Case 1 — the adversary A impersonates the client: The simulator S obtains
the ciphertext c0, decrypts it to obtain pw and sends pw to FpwKE as the
password guess. If this guess is correct, then S continues the simulation using
the same pw and consistency is achieved. Note that the zero-knowledge proof
ensures that the ciphertext c2 later sent by A is also an encryption of pw
(therefore in this case, consistency between c0 and c1 implies consistency
between c1 and c2, as required).

2. Case 2 — the adversary A impersonates the server: In this case, the simula-
tor S generates the pre-flow ciphertext c0 as an encryption of some default
value (which actually will not be any password). Then, upon receiving c1

from A, the simulator S decrypts it to obtain pw and sends pw to FpwKE as
the password guess. If the guess is correct, then S generates c2 to also be
an encryption of pw. Notice that c1 and c2 are now consistent in that they
both encrypt the correct password pw. The only problem remaining in the
simulation is that S is supposed to prove that c0 and c2 are indeed consistent
(which in this case they are not). It does this by using the zero-knowledge
simulator for the zero-knowledge proof of consistency. By the zero-knowledge
property, this proof is indistinguishable from a real one (and this holds even
though the statement in this case is false). We therefore conclude that in
the case of a correct password guess, consistency is achieved and in addition,
the adversary cannot distinguish its view in the simulation from its view in
a real execution.

We stress that Figure 4 is only a sketch of the protocol and does not contain
all the details. For example, the full protocol uses labeled encryption [29] in order
to bind certain protocol information to the ciphertexts (such as the session-id
and the verification key of the signature scheme) and in order to prevent other
types of man-in-the-middle attacks. (Labels were used implicitly for the same
purpose in [24, 18].) A detailed description of the protocol and its proof can be
found in the full version, where we also provide a formal statement and proof of
the following result:

Theorem 1 (main theorem – informally stated): Assume the existence of CCA-
secure encryption schemes with smooth projective hash functions, and simulation-
sound zero-knowledge proofs. Then there exists a protocol in the common refer-
ence string model that securely realizes the FpwKE functionality in the presence
of static-corruption adversaries.

We remark that all the building blocks of our protocol can be built under
the DDH, quadratic residuosity, or N th-residuosity assumptions, so UC-secure
password-based key exchange is possible under any of these assumptions. For
the most efficient instantiation, we would use encryption and smooth projective
hash proofs based on DDH, a collision-resistant hash function for the one-time
signature, and a simulation-sound zero-knowledge proof system [17, 25] based on
strong RSA. Hence, the end result would rely on all of these assumptions for its
security.

Efficiency notes. Considering the protocol as depicted in Figure 4, we emphasize
that it suffices to use a (simulation sound) zero-knowledge proof of membership,
rather than a proof of knowledge. This allows for efficient solutions; see [17].
Furthermore, it suffices to generate c0 and c2 using an encryption scheme that
is only CPA-secure, rather than CCA-secure.9 Thus, the encryption scheme E
in Figure 4 (that is used to generate c1) is CCA-secure, but the encryption
scheme E′ (that is used to generate c0 and c2) is only CPA-secure. Using a CPA-
secure scheme for E′ provides efficiency improvements in the encryption itself,
the projective hashing, and the proof of consistency. In [18] a highly efficient and
simple construction of smooth projective hashing was demonstrated for the El
Gamal encryption scheme (which is CPA-secure under the DDH assumption).
Furthermore, proving consistency of El Gamal encryptions is more efficient than
proving consistency of, e.g., CCA-secure Cramer-Shoup encryptions.

4 Additional Results

We describe some additional results that appear in the full version of the paper.

9
In fact, the second encryption in the KOY/GL protocols can be generated using a CPA-secure
scheme (e.g., El Gamal) as well; see [23]. This yields the most efficient known password-based
key-exchange protocol in the standard model (i.e., without random oracles), albeit under a weaker
definition than the one considered here.

Functionality FpwSC

The functionality FpwSC is parameterized by a security parameter k. It interacts
with an adversary S and a set of parties via the following queries.

Upon receiving a (NewSession, sid, Pi, Pj , pw, role) query from party Pi:

Send (NewSession, sid, Pi, Pj , role), to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark it fresh.

Upon receiving a (TestPwd, sid, Pi, pw′) query from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, then mark the record compromised and reply to S with “correct
guess”. If pw 6= pw′, then mark it interrupted and reply with “wrong guess”.

Upon receiving a (Send, sid, m) query from Pi:

If there is a record of the form (Pi, Pj , pw) then:
• If this record is compromised, or Pi is corrupted, then send (sid, Pi, m)
to the adversary.
• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw

that is also fresh, then send (Received, sid, m) to Pj and (sid, Pi, |m|) to
the adversary.
• In any other case, send (sid, Pi, |m|) to the adversary.

Upon receiving an (ExpireSession, sid) query from Pi:

If there is a record of the form (Pi, Pj , pw), it marks the record as expired.

Fig. 5. The password-based secure channels functionality, FpwSC

Password-based secure channels. Arguably, the typical use of a key-exchange
protocol is the establishment of secure channels that enable the parties to com-
municate privately and reliably. The case of password-based key-exchange is no
exception. In Figure 5, we describe the password-based secure channels function-
ality FpwSC. In the full version, we show that our definition of password-based
key-exchange suffices for securely realizing this functionality, thus providing ad-
ditional “justification” for our definition of FpwKE. The definition of FpwSC is
analogous to the password-based key-exchange functionality. Notice that if two
parties have sent NewSession queries with the same identifiers and passwords,
and the adversary has not guessed this password or interrupted the session, then
the functionality faithfully passes messages from the first party to the second.
Furthermore, the adversary learns only the length of the message sent. Thus,
the functionality provides reliable and private communication, as desired. (The
functionality only deals with unidirectional communication from Pi to Pj ; it can
be repeated in order to obtain bidirectional communication.)

Impossibility of realizing FpwKE in the plain model. Our protocol is cast in the
common reference string model which assumes some (albeit, rather minimal)
trusted setup phase. An important question to ask is whether or not this is
necessary for obtaining security. In the full version of this paper, we prove that
the FpwKE functionality cannot be securely realized in the “plain” model (i.e.,

without using a common reference string or some other augmentation to the
basic model). Our proof is similar to the proofs of impossibility in [10]. The
basic idea is as follows. Consider an environment that internally runs the code
of one of the honest parties. The ideal-model simulator for such an environment
must succeed while interacting with it in the same way that real parties interact.
(This holds by the definition of the UC framework which requires a black-box
simulator which cannot rewind.) Now, if simulation can be carried out in such
a scenario, then it can also be carried out while interacting with a real honest
party (because the specific environment we have chosen behaves like an honest
party). This means that anything the ideal-model simulator/adversary can do
with respect to the environment, a real-model adversary can do with respect to
an honest party. In particular, in order for the simulation to succeed, the ideal-
model simulator must be able to set the output session-key to be the same as the
key output by the ideal functionality. Thus, a real-model adversary can also do
this, in contradiction to the security requirements of the key-exchange protocol.

References

1. B. Barak, Y. Lindell, and T. Rabin, Protocol Initialization for the Framework of
Universal Composability. Manuscript. Available from the ePrint archive, report
2004/006 from http://eprint.iacr.org.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes. Advances in Cryptology – Crypto
1998, LNCS vol. 1462, Springer-Verlag, pp. 26–45, 1998

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. Advances in Cryptology – Eurocrypt 2000, LNCS vol.
1807, Springer-Verlag, pp. 139–155, 2000.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances
in Cryptology – Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232–249, 1993.

5. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Proto-
cols Secure Against Dictionary Attacks. Proc. IEEE Security and Privacy, IEEE,
pp. 72–84, 1992.

6. V. Boyko. On All-or-Nothing Transforms and Password-Authenticated Key Ex-
change. PhD thesis, MIT, EECS department, 2000.

7. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authentication
and Key Exchange Using Diffie-Hellman. Advances in Cryptology – Eurocrypt 2000,
LNCS vol. 1807, Springer-Verlag, pp. 156–171, 2000.

8. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
IEEE, pp. 136–145, 2001.

9. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. Advances in Cryptology – Eurocrypt 2002, LNCS vol. 2332,
Springer-Verlag, pp. 337–351, 2002.

10. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Com-
posable Two-Party Computation Without Set-Up Assumptions. In EUROCRYPT
2003, Springer-Verlag (LNCS 2656), pages 68–86, 2003.

11. R. Canetti and T. Rabin. Universal Composition with Joint State. Advances in
Cryptology – Crypto 2003, LNCS vol. 2729, Springer-Verlag, pp. 265–281, 2003.

12. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. Advances in Cryptology – Crypto
1994, LNCS vol. 839, Springer-Verlag, pp. 174–187, 1994.

13. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. Advances in Cryptology – Eu-
rocrypt 2002, LNCS vol. 2332, Springer-Verlag, pp. 45–64, 2002.

14. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
Non-Interactive Zero-Knowledge. Advances in Cryptology – Crypto 2001, LNCS
vol. 2139, Springer-Verlag, pp. 566–598, 2001.

15. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM J. Com-
puting 30(2): 391–437, 2000.

16. S. Even, O. Goldreich, and S. Micali. On-Line/Off-Line Digital Signatures. J. Cryp-
tology 9(1):35-67, 1996.

17. J. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols
Using Signatures. Advances in Cryptology – Eurocrypt 2003, LNCS vol. 2656,
Springer-Verlag, pp. 177–194, 2003.

18. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. Advances in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-
Verlag, pp. 524–543, 2003.

19. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only. Advances in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag,
pp. 408–432, 2001.

20. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences 28:270–299, 1984.

21. L. Gong, M. Lomas, R. Needham, and J. Saltzer. Protecting Poorly Chosen Secrets
from Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5):
648–656, 1993.

22. Shai Halevi and Hugo Krawczyk. Public-Key Cryptography and Password Proto-
cols. ACM Trans. on Information and Systems Security, 2(3):230–268, 1999.

23. J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-Server Password-Only Au-
thenticated Key Exchange. Manuscript, Jan. 2005.

24. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change Using Human-Memorable Passwords. Advances in Cryptology – Eurocrypt
2001, LNCS vol. 2045, Springer-Verlag, pp. 475–494, 2001.

25. P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments.
Advances in Cryptology – Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag,
pp. 382–400, 2004. Available from the ePrint archive, report 2003/252 from
http://eprint.iacr.org.

26. M.H. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random
Passwords. Proceedings of the 1st Theory of Cryptography Conference (TCC’04),
LNCS vol. 2951, Springer-Verlag, pp. 442–445, 2004.

27. C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. Advances in Cryptology – Crypto 1991, LNCS vol.
576, Springer-Verlag, pp. 433–444, 1991.

28. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. 40th IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, pp. 543–553, 1999.

29. V. Shoup. A Proposal for an ISO Standard for Public Key Encryption (version
2.1). December, 2001. Available from the ePrint archive, report 2001/112 from
http://eprint.iacr.org.

