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Abstract. We expand a previous result of Dean [Dea99] to provide a
second preimage attack on all n-bit iterated hash functions with Damg̊ard-
Merkle strengthening and n-bit intermediate states, allowing a second
preimage to be found for a 2k-message-block message with about k ×

2n/2+1+2n−k+1 work. Using RIPEMD-160 as an example, our attack can
find a second preimage for a 260 byte message in about 2106 work, rather
than the previously expected 2160 work. We also provide slightly cheaper
ways to find multicollisions than the method of Joux [Jou04]. Both of
these results are based on expandable messages–patterns for producing
messages of varying length, which all collide on the intermediate hash re-
sult immediately after processing the message. We provide an algorithm
for finding expandable messages for any n-bit hash function built using
the Damg̊ard-Merkle construction, which requires only a small multiple
of the work done to find a single collision in the hash function.

1 Introduction

The security goal for an n-bit hash function is that collisions require about
2n/2 work, while preimages and second preimages require about 2n work. In
[Dea99], Dean demonstrated that this goal could not be accomplished by hash
functions whose compression functions allowed the easy finding of fixed points,
such as MD5 [Riv92] and SHA1 [SHA02]. In this paper, we use the multicollision-
finding result of [Jou04] to demonstrate that the standard way of constructing
iterated hash functions (the Damg̊ard-Merkle construction) cannot meet this
goal, regardless of the compression function used. Thus, hash functions such
as RIPEMD-160 [DBP96] and Whirlpool [BR00] (when used with a full 512-
bit result) provide less than the previously-expected amount of resistance to
second-preimage attacks, just as do hash functions like SHA1.

For a message of 2k message blocks, we provide a second preimage attack
requiring about k × 2n/2+1 + 2n−k+1 work. Like Dean’s attack, ours is made
possible by the notion of expandable messages–patterns of messages of different
lengths which all yield the same intermediate hash value after processing them.
These expandable messages do not directly yield collisions on the whole hash
function because of the length padding done at the end of modern hash func-
tions, and in any event are no easier to find than collisions. However, they allow
second preimages and multicollisions to be found much more cheaply than had



previously been expected. This result may be compared with an earlier generic
preimage attack by Merkle: the attacker is given 2k distinct n-bit hash outputs,
and expects to find a preimage for one of the outputs with about 2n−k work,
but has no ability to choose which of the outputs is to be matched. (Note that
Merkle’s attack is truly generic, in that it applies to any hash fuction with an
n-bit output, even a random oracle.)

Our attack, like the earlier attack of Dean, probably has no practical impact
on the security of any system currently relying upon a hash function such as
SHA1, Whirlpool, or RIPEMD-160. This is true because the attack is always
at least as expensive as collision search on the hash function, and because the
difficulty of the attack grows quickly as the message gets shorter. For example,
a 160-bit hash function like SHA1 or RIPEMD-160 requires about 2128 work to
find a second preimage for a 238-byte message, and a target message of only one
megabyte (220 bytes) requires about 2146 work to find a second preimage. Also,
the attack only recovers second preimages–it doesn’t allow an attacker to invert
the hash function.

The significance of our result is in demonstrating another important way
in which the behavior of the hash functions we know how to construct differs
from both the commonly claimed security bounds of these functions, and from
the random oracles with which we often model them. When combined with the
recent results of Joux [Jou04], our results raise questions about the usefulness of
the widely-used Damg̊ard-Merkle construction for hash functions where attackers
can do more than 2n/2 work.

The remainder of the paper is organized as follows: First, we discuss basic
hash function constructions and security requirements. Next, we demonstrate a
generic way to find expandable messages, and review the method of Dean. We
then demonstrate how these expandable messages can be used to violate the
second preimage resistance of nearly all currently specified cryptographic hash
functions with less than 2n work. Finally, we demonstrate an even more efficient
(albeit much less elegant) way to find multicollisions than the method of Joux,
using Dean’s fixed-point-based expandable messages. We end with a discussion
of how this affects our understanding of iterated hash function security.

2 Hash Function Basics

In 1989, Merkle and Damg̊ard [Mer89,Dam89] independently provided security
proofs for the basic construction used for almost all modern cryptographic hash
functions3. Here, we describe this construction4, and its normal security claims.

3 These functions date back to Rabin, and were widely used by hash function designers
throughout the 1980s [Pre05,MvOV96].

4 Damg̊ard proposed two methods for constructing hash functions. This paper ad-
dresses only the more commonly used one, which was independently invented by
Merkle.



A hash function with an n-bit output is expected to have three minimal
security properties. (In practice, a number of other properties are expected, as
well.)

1. Collision-resistance: An attacker should not be able to find a pair of messages
M 6= M ′ such that hash(M) = hash(M ′) with less than about 2n/2 work.

2. Preimage-resistance: An attacker given an output value Y in the range of
hash should not be able to find an input X from its domain so that Y =
hash(X) with less than about 2n work.

3. Second preimage-resistance: An attacker given one message M should not
be able to find a second message, M ′ to satisfy hash(M) = hash(M ′) with
less than about 2n work.

A collision attack on an n-bit hash function with less than 2n/2 work, or a
preimage or second preimage attack with less than 2n work, is formally a break
of the hash function. Whether the break poses a practical threat to systems
using the hash function depends on specifics of the attack.

Following the Damg̊ard-Merkle construction, an iterated hash function is
built from a fixed-length component called a compression function, which takes
an n-bit input chaining value and an m-bit message block, and derives a new
n-bit output chaining value. In this paper, F (H, M) is used to represent the ap-
plication of this compression function on hash chaining variable H and message
block M .

In order to hash a full message, the following steps are carried out:

1. The input string is padded to ensure that it is an integer multiple of m bits
in length, and that the length of the original, unpadded message appears in
the last block of the padded message.

2. The hash chaining value h[i] is started at some fixed IV, h[−1], for the hash
function, and updated for each successive message block M [i] as

h[i] = F (h[i − 1], M [i])

3. The value of h[i] after processing the last block of the padded message is the
hash output value.

This construction gives a reduction proof: If an attacker can find a collision
in the whole hash, then he can likewise find one in the compression function. The
inclusion of the length at the end of the message is important for this reduction
proof, and is also important for preventing a number of attacks, including long-
message attacks [MvOV96].

Besides the claimed security bounds, there are two concepts from this brief
discussion that are important for the rest of this paper:

1. A message made up of many blocks, M [0, 1, 2, ..., 2k−1], has a corresponding
sequence of intermediate hash values, h[0, 1, 2, ..., 2k − 1].

2. The padding of the final block includes the length, and thus prevents colli-
sions between messages of different lengths in the intermediate hash states
from yielding collisions in the full hash function.



3 Finding Expandable Messages

An expandable message is a kind of multicollision, in which the colliding messages
have different lengths, and the message hashes collide in the input to the last
compression function computation, before the length of the message is processed.
Consider a starting hash value h[−1]. Then an “expandable message” from h[−1]
is a pattern for generating messages of different lengths, all of which yield the
same intermediate hash value when they are processed by the hash, starting from
h[−1], without the final padding block with the message length being included. In
the remainder of the paper, an expandable message that can take on any length
between a and b message blocks, inclusive, will be called an (a, b)-expandable
message.

3.1 Dean’s Fixed-Point Expandable Messages

In [Dea99], there appears a technique for building expandable messages when
fixed points can easily be found in the compression function5. For a compression
function h[i] = F (h[i− 1], M [i]), a fixed point is a pair (h[i− 1], M [i]) such that
h[i − 1] = F (h[i − 1], M [i]). Compression functions based on the Davies-Meyer
construction [MvOV96], such as the SHA family [SHA02], MD4, MD5 [Riv92],
and Tiger [AB96], have easily found fixed points. Similarly, Snefru [Mer90] has
easily found fixed points. Techniques for finding these fixed points for com-
pression functions based on the Davies-Meyer construction appear in [MOI91],
and are briefly discussed in an appendix to this paper, along with techniques
for finding fixed points in Snefru. Note that these techniques produce a pair
(h[i − 1], M [i]), but allow no control over the value of h[i − 1].

We can construct an expandable message using fixed points for about twice
as much work as is required to find a collision in the hash function. This is done
by first finding about 2n/2 randomly-selected fixed points for the compression
function, and then trying first message blocks until one leads from the initial
hash value to one of the fixed points.

ALGORITHM: MakeFixedPointExpandableMessage(h[in])
Make an expandable message from initial hash value h[in], using a fixed point

finding algorithm.

Variables:

1. h[in] = initial chaining value for the expandable messages.
2. FindRandomFixedPoint() = an algorithm returning a pair (h[i], M [i])

such that h[i] = F (h[i], M [i]).
3. A, C = two lists of hash values.
4. B, D = two lists of message blocks.
5. i, j = integers.

5 We were made aware of Dean’s work by a comment from one of the anonymous
referees.



6. M(i) = a function that produces a unique message block for each integer
i less than 2n.

7. n = width of hash function chaining value and output.

Steps:

1. Construct a list of 2n/2 fixed points:

– For i = 0 to 2n/2 − 1:

• h, m = FindRandomFixedPoint()
• A[i] = h
• B[i] = m

2. Construct a list of 2n/2 hash values we can reach from h[−1]:

– For i = 0 to 2n/2 − 1:

• h = F (h[in], M(i))
• C[i] = h
• D[i] = M(i)

3. Find a match between lists A and C; let i, j satisfy A[i] = C[j].

4. Return expandable message (D[j], B[i]).

Work: About 2n/2+1 compression function computations, assuming 2n/2+1

memory.

If an n-bit hash function has a maximum of 2k blocks in its messages, then
this technique takes about 2n/2+1 work to discover (1, 2k)-expandable messages.
Producing a message of the desired length is trivial, consisting of one copy of
the starting message block, and as many copies of the fixed-point message block
as necessary to get a full message of the desired length.

ALGORITHM: ProduceMessageFP(R, X, Y )

Produce a message of desired length from the fixed-point expandable mes-

sages.

Variables:

1. R = the desired length in message blocks; must be at least one and no
more than the maximum number of message blocks supported by the
hash.

2. X = the first message block in the expandable message.

3. Y = the second (repeatable) block in the expandable message.

Steps:

1. M = X .

2. For i = 0 to R − 2:

– M = M ||Y

3. Return M .

Work: Negligible work, about R steps.



3.2 A Generic Technique: Multicollisions of Different Lengths

Finding an expandable message for any compression function with n-bit inter-
mediate hash values takes only a little more work than finding a collision in
the hash function. This technique is closely related to the technique for finding
k-collisions in iterated hash functions from Joux.

In Joux’s technique, a sequence of single-message-block collisions is found,
and then pasted together to provide a large number of different messages of equal
length that lead to the same hash value. In our technique, a sequence of collisions
between messages of different lengths is found, and pasted together to provide
a set of messages that can take on a wide range of different lengths without
changing the resulting intermediate hash value—an expandable message.

Finding a Collision on Two Messages of Different Lengths. Finding
an expandable message requires the ability to find many pairs of messages of
different specified lengths that have the same resulting intermediate hash value.
Finding such a pair is not fundamentally different than finding a pair of equal-
length messages that collide: The attacker who wants a collision between a one-
block message and an α-block message constructs about 2n/2 messages of length
1, and about the same number of length α, and looks for a collision. For efficiency,
the attacker chooses a set of α-block messages whose hashes can be computed
about as efficiently as the same number of single-block messages.

ALGORITHM: FindCollision(α, hin)
Find a collision pair with lengths 1 and blocks, starting from hin.

Variables:
1. α = desired length of second message.
2. A, B = lists of intermediate hash values.
3. q = a fixed “dummy” message used for getting the desired length.
4. hin = the input hash value for the collision.
5. htmp = intermediate hash value used in the attack.
6. M(i) = the ith distinct message block used in the attack.
7. n = width of hash function chaining value and output in bits.

Steps:
1. Compute the starting hash for the α-block message by processing α − 1

dummy message blocks:
– htmp = hin.
– For i = 0 to α − 2:

• htmp = F (htmp, q)
2. Build lists A and B as follows:

– for i = 0 to 2n/2 − 1:
• A[i] = F (hin, M(i))
• B[i] = F (htmp, M(i))

3. Find i, j such that A[i] = B[j]
4. Return colliding messages (M(i), q||q||...||q||M(j)), and the resulting in-

termediate hash F (hin, M(i)).
Work: α − 1 + 2n/2+1 compression function calls



Building a Full (k, k + 2k
− 1)-expandable message. We can use the

above algorithm to construct expandable messages that cover a huge range of
possible lengths, in a technique derived from the multicollision-finding technique
of [Jou04]. We first find a colliding pair of messages, where one is of one block,
and the other of 2k−1+1 blocks. Next, we find a collision pair of length either 1 or
2k−2 + 1, then 1 or 2k−3 + 1, and so on, until we reach a collision pair of length
1 or length 2. The result is a list of pairs of message components of different
lengths, which lead to the same intermediate hash after processing them. The
first such pair allows a choice of adding 2k−1 blocks to the expanded message,
the second allows a choice of adding 2k−2 blocks, and so on. Thus, expanding
the message is just writing the difference between the desired length and the
number of message components in binary, and using each bit in that binary
string to choose the corresponding short or long message component to include.

ALGORITHM: MakeExpandableMessage(hin, k)
Make a (k, k + 2k − 1)-expandable message.

Variables:
1. htmp = the current intermediate hash value.
2. C = a list of pairs of messages of different lengths; C[i][0] is the first

message of pair i, while C[i][1] is that pair’s second message.
Steps:

1. Let htmp = hin.
2. For i = 0 to k − 1:

– (m0, m1, htmp) = FindCollision(2i + 1, htmp)
– C[k − i − 1][0] = m0

– C[k − i − 1][1] = m1

3. Return the list of message pairs C.
Work: k × 2n/2+1 + 2k ≈ k × 2n/2+1 compression function calls.

At the end of this process, we have an k × 2 array of messages, for which we
have done approximately 2k + k × 2n/2+1 compression function computations,
and with which we can build a message consisting of between k and k + 2k − 1
blocks, inclusive, without changing the result of hashing the message until the
final padding block.

Producing a Message of Desired Length. Finally, there is a simple algo-
rithm for producing a message of desired length from an expanded message. This
amounts to simply including the different-length pieces based on the bit pattern
of the desired length.

ALGORITHM: ProduceMessage(C, k, L)
Produce a message of length L, if possible, from the expandable message

specified by (C, k).

Variables:
1. L = desired message length.



2. k = parameter specifying that C contains a (k, k + 2k − 1)-expandable
message.

3. C = a k × 2 array of message fragments of different lengths.
4. M = the message to be constructed.
5. T = a temporary variable holding the remaining length to be added.
6. S[0..k − 1] = a sequence of bits from T .
7. i = an integer counter.

Steps:
1. Start with an empty message M = ∅.
2. If L > 2k + k − 1 or L < k, return an error condition.
3. Let T = L − k.
4. Let S = the bit sequence of T , from low-order to high-order bits.
5. Concatenate message fragments from the expandable message together

until we get the desired message length. Note that this is very similar to
writing T in binary.
– for i = 0 to k − 1:

• if S[i] = 0 then M = M ||C[i][0]
• else M = M ||C[i][1]

6. Return M .
Work: Negligible (about k table lookups and string copying operations).

The result of this is a message of the desired length, with the same hash
result before the final padding block is processed as all the other messages that
can be produced from this expandable message.

3.3 Variants

The expandable messages found by both of these methods can start at any given
hash chaining value. As a result, we can build expandable messages with many
useful properties:

1. The expandable message can start with any desired prefix.
2. The expandable message can end with any desired suffix.
3. While both algorithms given here for finding expandable messages assume

complete freedom over choice of message block, a variant of the generic
method can be used even if the attacker is restricted to only two possible
values for each message block.

4. The fixed-point method requires about 2n/2 possible values for each message
block, but this is sufficiently flexible that for existing hash functions, it can
typically be used with only ASCII text, legitimate sequences of Pentium
opcodes, etc.

5. The multicollision technique from Joux allows an attacker to discover 2k

messages with the same hash for an n-bit iterated hash function, using only
about k×2n/2 compression functions of work. This technique can be used to
make a set of 2k expandable messages which all yield the same hash output.
The full power of combining these techniques remains to be investigated.



4 Using Expandable Messages to Find Second Preimages

An n-bit hash function is supposed to resist second preimage attacks up to
about 2n work. That is, given one message M , the attacker ought to have to
spend about 2n work to find another message that has the same hash value as
output.

4.1 The Long Message Attack

Here is a general (and previously known) way to violate the second-preimage
resistance of a hash function without Damg̊ard-Merkle strengthening [MvOV96]:
Start with an extremely long message of 2R + 1 blocks. An attacker who wishes
to find another message that hashes to the same value with a 160-bit hash
function can do so by finding a message block Mlink such that, from the IV of
the hash, h[−1], h∗ = F (h[−1], Mlink) yields a value h∗ that matches one of the
intermediate values of the hash function in processing the long message. Since
the message has 2R such intermediate values, the attacker expects to need to try
only about 2160−R message blocks to get a match. That is, when R = 64, the
attacker has 264 available target values, so each message block he tries has about
a 2−96 chance of yielding the same hash output as some intermediate hash value
from the target message. The result is a shorter message, which has the same
hash output up until the final block is processed.

The length padding at the end of the Damg̊ard-Merkle construction foils
this attack. Note that in the above situation, the attacker has a message that is
shorter than the 255-block target message, which leads to the same intermediate
hash value . But now, the last block has a different length field, and so the attack
fails—the attacker can find something that’s almost a second preimage, but the
length block changes, and so the final hash output is different.

4.2 Long-Message Attacks with Expandable Messages

Using expandable messages, we can bypass this defense, and carry out a second-
preimage attack despite the length block at the end. This attack was first discov-
ered by Dean [Dea99]. We start with a long message as our target for a second
preimage, find an expandable message which will provide messages over a wide
range of lengths, and then carry out the long-message attack from the end of
that expandable message. We then expand the expandable message to make up
for all the message blocks that were skipped by the long message attack, yielding
a new message of the same length as the target message, with the same hash
value.

ALGORITHM: LongMessageAttack(Mtarget)
Find the second preimage for a message of 2k + k + 1 blocks.

Variables:
1. Mtarget = the message for which a second preimage is to be found.



2. Mlink = a message block used to link the expandable message to some
point in the target message’s sequence of intermediate hash values.

3. A = a list of intermediate hash values
4. hexp = intermediate chaining value from processing an expandable mes-

sage.
Steps:

1. C = MakeExpandableMessage(k)
2. hexp = the intermediate hash value after processing the expandable mes-

sage in C.
3. Compute the intermediate hash values for Mtarget:

– h[−1] = the IV for the hash function
– m[i] = the ith message block of Mtarget.
– h[i] = F (h[i−1], m[i]), the ith intermediate hash output block. Note

that h will be organized in some searchable structure for the attack,
such as a hash table, and that elements h[0, 1, ..., k] are excluded
from the hash table, since the expandable message cannot be made
short enough to accommodate them in the attack.

4. Find a message block that links the expandable message to one of the
intermediate hash values for the target message after the kth block.
– Try linking messages Mlink until F (hexp, Mlink) = h[j] for some

k + 1 ≤ j ≤ 2k + k + 1.
5. Use the expandable message to produce a message M ∗ that is j−1 blocks

long.
6. Return second preimage M∗||Mlink||m[j + 1]||m[j + 2]...m[2k + k + 1]

(if j = 2k + k + 1, then no original message blocks are included in the
second preimage).

Work: The total work done is the work to find the expandable message plus
the work to find the linking message.
1. For the generic expandable message-finding algorithm, this is k×2n/2+1+

2n−k+1 compression function calls.
2. For the fixed-point expandable message-finding algorithm, this is 3 ×

2n/2+1 + 2n−k+1

The longer the target message, the more efficient the attack relative to a
brute-force preimage search, until the search for the expandable message be-
comes more expensive than the long-message attack. For SHA1 and SHA256,
the maximum allowed message length is 264 − 1 bits, which translates to about
255 512-bit blocks of message. For SHA384 and SHA512, the maximum allowed
message length is 2128 − 1 bits, which translates to about 2118 1024-bit blocks of
message. Let 2R be the maximum number of message blocks allowed by the hash
function. The total work of the generic expandable-message form of the attack
is then R × 2n/2+1 + 2n−R+1 compression function calls.

An Illustration. To illustrate this, consider a second preimage attack on
the RIPEMD-160 hash function [DBP96]. The longest possible message for
RIPEMD-160 is 264 − 1 bits, which translates into just under 255 blocks. For



simplicity, we will assume the target message is 254 + 54 + 1 message blocks
(about 260 bytes) long.

1. Receive the target message and compute and store all the intermediate hash
values.

2. Produce a (1, 54 + 254)-expandable message. This requires about 54 × 281

compression function computations.
3. Starting from the end of the expandable message, we try about 2106 different

message blocks, until we find one whose hash output is the same as one of the
last 54 + 254 intermediate hash values of the target message. This requires
computing about 2106 compression functions on average.

4. Expand the expandable message to compensate for the message blocks of
the target message skipped over, and thus produce a second preimage. This
takes very little time.

Summary of the Attack. The long-message attack can be summarized as
follows: For a target message substantially less than 2n/2 blocks in length, the
work is dominated by the long message attack. Thus, a second preimage attack
on a 2k-block message takes about 2n−k+1 compression function computations,
assuming abundant memory.

4.3 Variations on the Attack

Some straightforward variations of this attack are also possible, drawing from
the variations available to the expandable messages. For example, the algorithms
for producing an expandable message work from any starting hash value, and
are not affected by the message blocks that come after the expanded message.
Thus, this attack can be used to “splice together” two very long messages, with
an expandable part in the middle. Similarly, if it is important that the second
preimage message start with the same first few hundred or thousand message
blocks as the target message, or end with the same last few hundred or thou-
sand blocks, this can easily be accommodated in the attack. Another variation
is available by using Joux’s multicollision-finding trick, or the related ones de-
scribed below: By setting up the expandable message to be a 2u-multicollision, we
can find 2u distinct second preimages for a given long message, without adding
substantial cost to the attack. Additionally, keyed constructions that leave the
attacker with offline collision search abilities are vulnerable to the attack; for
example, the “suffix mac” construction [MvOV96], MACK(X) = Hash(X ||K)
is vulnerable to a second preimage attack, as well as the much more practical,
previously-known collision attack.

Low-Memory and Parallel Versions of the Attack. These methods for
finding expandable messages assume unlimited memory. In the real world, mem-
ory is limited, and bandwidth between processing units and memory units is
likewise limited. This doesn’t raise a difficulty to the attack. For n-bit hash



functions whose maximum input size in message blocks is substantially less than
2n/2, the parallel collision search techniques of [vOW96,vOW99] allow both our
generic attack and the fixed-point attack of Dean to go forward at approximately
the stated cost; the search for a linking message (the long message attack) dom-
inates the work.

4.4 The Attack in Perspective

Our attack allows the finding of a second preimage on a 2k block long target
message with a certainty of success. A previously known attack originally noted
by Merkle is somewhat similar in spirit [MvOV96,Pre05]: an attacker is given 2k

candidate target messages, and finds one preimage with 2n−k work. While that
attack wasn’t able to find a second preimage for a specific desired message, it
makes our result and the earlier result of Dean somewhat less surprising. It is
worth noting that Merkle’s result applies to any n-bit hash function, even one
constructed from random oracles.

Our attack differs from that of Dean only in its universality–Dean’s attack
applies only to hash functions whose compression functions allow easy finding
of second preimages, whereas ours apply to any iterated hash function with an
n-bit intermediate hash value.

5 Expandable Messages and Multicollisions

In [Jou04], Joux demonstrates a beautiful way to produce a large number of
messages that collide for an iterated hash function, with only a little more work
than is needed to find a single pair of messages that collide. Here, we demonstrate
ways to use expandable messages to find multicollisions, and ways to combine
the Joux technique with expandable messages to add flexibility to the structure
of the multicollisions.

We construct a multicollision by concatenating two or more expandable mes-
sages, and then varying the length of each so that the sum of their lengths stays
the same. For example, if we concatenate a (1,1024)-expandable message with
another (1,1024)-expandable message, we get a 1024-collision of 1025 block long
messages. By concatenating a large number of such messages, we can get a much
larger multicollision.

5.1 Multicollisions Using Fixed Points

Using fixed-point expandable messages, multicollisions which are much cheaper
than those found by Joux are available. Recall that for an n-bit hash func-
tion, finding a fixed-point expandable message which is expandable up to the
maximum message length of the hash function costs about 2n/2+1 compression
function computations.

Consider a 160-bit hash function with a maximum of 255 message blocks.
Now, a very simple 255-collision is available for about 282 = 4 × 280 work, as



opposed to 55 × 280 work–this is constructed by concatenating two fixed-point
expandable messages, and always making the sum of their lengths 255 blocks.
Concatenating three such expandable messages produces a 2107-collision, and
so on, following the rule that a multicollision consisting of K expandable mes-
sages in a hash function with a maximum length of R blocks produces

(

R
K−1

)

-

multicollisions with about K × 281 work.

These multicollisions are of unreasonable length, but they’re generally cheaper
than Joux’ multicollisions. At more reasonable lengths, they’re still interesting,
but they become more expensive than Joux’ multicollisions. For example, con-
catenating ten expandable messages together and limiting message length to
1034 blocks total, we get about a 280-multicollision using this technique; for the
same cost, Joux’ technique would give a 21024-multicollision.

5.2 Using Generic Expandable Messages

The cost of finding a single fixed-point expandable message is within a factor of
two of the cost of finding a single collision in Joux’ scheme. The cost of finding
a generic (1, K)-expandable message is about lg(K) × 2n/2. This means that
in general, generic expandable messages cannot be used to make multicollisions
cheaper than those of Joux.

5.3 Combining With Joux

Finally, it is possible to combine Joux multicollisions with expandable-message
multicollisions. This allows multicollisions to be constructed that look quite dif-
ferent from the Joux multicollisions, and are somewhat more flexible in structure.
This may allow Joux attacks to go forward even on cascaded constructions that
attempt to foil his attack.

As an example, a multicollision may be formed by alternating (1, 2)-expandable
messages and individual collisions as sought by Joux’ method, with a final
(10, 1024)-expandable message at the end. This permits the individual colliding
message blocks to appear at different positions in different messages, without
altering the final hash value.

6 Conclusions and Open Questions

In this paper, we have described a generic way to carry out long-message second
preimage attacks, despite the Damg̊ard-Merkle strengthening done on all modern
hash functions.

These attacks are theoretical because 1) they require more work than is nec-
essary to find collisions on the underlying hash functions, and 2) the messages for
which second preimages may be found are generally impractically long. However,
they demonstrate some new lessons about hash function design:



1. An n-bit iterated hash function provides fundamentally different security
properties than a random oracle with an n-bit output. This was demon-
strated in one way by Joux in [Jou04], and by another here.

2. An n-bit iterated hash function begins to show some surprising properties
as soon as an attacker can do the work necessary to find collisions in the
underlying compression function.

3. An n-bit iterated hash function cannot support second-preimage resistance
at the n-bit security level, as previously expected, for long messages.

4. Easily found fixed points in compression functions (such as those based
on the Davies-Meyer construction) allow an even more powerful second-
preimage attack described in [Dea99].

The important lesson here is that the standard construction of iterated
hashes from Merkle and Damg̊ard does not provide all the protection we might
expect against attackers that can do more than 2n/2 compression function com-
putations. In some sense, the hash function is “brittle,” and begins to lose its
claimed security properties very quickly once the attacker can violate its collision
resistance by brute force.

We believe these results, when combined with those of Dean and Joux, re-
quire a rethinking of what security properties are expected of an iterative hash
function with an n-bit intermediate state. We see three sensible directions for
this rethinking to take:

1. A widespread consensus that an n-bit iterated hash function should never
be expected to resist attacks requiring more than 2n/2 operations. This
would invalidate current uses of hash functions in cryptographic random-
number generation, as in [KSF99,DHL02,Bal98], key derivation functions
as described in [AKMZ04,NIST03,X963], and many other applications, and
seems the least palatable outcome.

2. A clear theoretical treatment of the limits that exist for n-bit hash func-
tions, and precisely what attacks more demanding than collision search they
may be expected to resist. (For example, none of these recent results appear
to be applicable when the attacker cannot do offline collision search. Simi-
larly, these attacks do not apply when only a single message block is being
processed. Perhaps these observations can be formalized.)

3. New constructions for hash-function round functions. For example, XORing
in a monotomic counter as part of the round function would resist the attacks
in this paper.

4. New constructions for hash functions in the vein of [Luc04], which maintain
much more than n bits of intermediate state in order to make collision attacks
on intermediate states harder (require 2n work).

We believe that the region between 2n/2 and 2n is a rich area for the crypt-
analysis of iterated hash functions, and expect to see other research results in
the future. Absent a solid theoretical treatment of the security properties of n-
bit iterative hashes along the lines of [PGV93] and [BRS02], expanded to deal
thoroughly with the full hash construction, at this point it is difficult to justify



using them in applications requiring more than n/2 bits of security for messages
longer than one block with any confidence.

We hope this work spurs such a treatment, as well as further cryptanalysis.
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A Finding Fixed Points Efficiently in Many Compression

Functions

Finding fixed points in many hash compression functions is simple.

A.1 Davies-Meyer

Most widely used hash functions have compression functions designed around
very large block-cipher-like constructions, following the general Davies-Meyer
model. For the SHA and MD4/MD5 families, as well as Tiger, if E(K, X) is a
very wide block cipher, with K the key and X the value being encrypted, then
the compression function is:

F (H, M) = E(M, H) + H

for some group operation “+”. For these compression functions, it is possible to
compute the inverse of this block-cipher-like construction, which we can denote
as E−1(K, X). This makes it possible to find fixed points in a simple way, as
discussed in [MOI91] and [PGV93]:

1. Select a message M .
2. Compute H = E−1(M, 0).
3. The result gives a fixed point: F (H, M) = H .



A property of this method for finding fixed points is that the attacker is able
to choose the message, but he has no control whatsoever over the hash value
that is a fixed point for a given message. Also note that for these hash functions,
each message block has exactly one fixed point.

A.2 Snefru

Snefru is derived from a block-cipher-like operation that operates on a much
larger block than the hash output, and which effectively has a fixed “key.” Let
E(X) be this fixed “encryption” of a block. Further, let n be the hash block
size, m be the message block size, lsbn(X) be the least significant n bits of X ,
and msbn(X) be the most significant n bits of X . Note that E(X) operates on
n + m-bit blocks.

The compression function is derived from E(X):

F (H, M) = lsbn(E(H ||M)) + H

where the hash input and output are each n bits wide, and where lsbx(Y ) rep-
resents the least significant x bits of the value Y . We can find fixed points for
Snefru-like compression functions as follows, letting E−1(X) be the inverse of
E(X) once again:

1. Choose any X whose least significant n bits are 0.
2. Compute Y = E−1(X).
3. Let H = msbn(Y ) and M = lsbm(Y ).
4. The result gives a fixed point: F (H, M) = H .

This method gives the attacker no control over the message block. Unlike the
Davies-Meyer construction, there is no guarantee that a given message block has
even one fixed point; we would expect for some message blocks to have many,
and for others to have none.

Note that the Snefru construction could easily be altered to make fixed points
very hard to find, when the size of the message and hash blocks are equal, by
the compression function as:

F (H, M) = lsbn(E(H ||M)) + H + M

or
F (H, M) = lsbn(E(H ||M)) + H + M + msbm(E(H ||M))

Also note that many other compression function constructions, such as the
Miyaguchi-Preneel construction used by Whirlpool and N-Hash and the con-
struction used by RIPEMD and RIPEMD-160, do not appear to permit a generic
method for finding fixed points.


