
Public Traceability in Traitor Tracing Schemes

Hervé Chabanne1, Duong Hieu Phan2, and David Pointcheval2

1 SAGEM, Eragny, France
2 CNRS/ENS, Computer Science Department, Paris, France

http://www.di.ens.fr/users/{phan,pointche}

Abstract. Traitor tracing schemes are of major importance for secure
distribution of digital content. They indeed aim at protecting content
providers from colluding users to build pirate decoders. If such a collu-
sion happens, at least one member of the latter collusion will be detected.
Several solutions have already been proposed in the literature, but the
most important problem to solve remains having a very good cipher-
text/plaintext rate. At Eurocrypt ’02, Kiayias and Yung proposed the
first scheme with such a constant rate, but still not optimal. In this
paper, granted bilinear maps, we manage to improve it, and get an “al-
most” optimal scheme, since this rate is asymptotically 1. Furthermore,
we introduce a new feature, the “public traceability”, which means that
the center can delegate the tracing capability to any “untrusted” person.
This is not the first use of bilinear maps for traitor tracing applications,
but among the previous proposals, only one has remained unbroken:
we present an attack by producing an anonymous pirate decoder. We
furthermore explain the flaw in their security analysis. For our scheme,
we provide a complete proof, based on new computational assumptions,
related to the bilinear Diffie-Hellman ones, in the standard model.

1 Introduction

The secure distribution of digital content to a set of subscribers is an impor-
tant application of global networking (e.g. pay-per-view television.) There are
two main types of schemes in the literature to deal with this topic: broadcast
encryption schemes, which enable a center to prevent a set of users from recov-
ering the broadcasted information; and traitor tracing schemes, which enable
the center to trace users who collude to produce pirate decoders. Both types
of schemes can be trivially combined by XOR’ing the results as shown in [7, 8].
There are also several works considering efficient combinations of the two at-
tributes of broadcast capability and traceability [9, 10, 19, 17]. This paper focuses
on the traceability property. As mentioned in the seminal paper on traitor tracing
of Chor et .al [7, 8], a c-traitor tracing scheme should guarantee that:

1. either the cleartext information itself is continuously transmitted to the en-
emy by a traitor;

2. or any captured pirate decoder will correctly identify a traitor and will pro-
tect the innocent even if up to c traitors collude.



There is indeed no technical way to prevent a pirate from decoding and for-
warding the stream to a user. But this would be rather expensive and commer-
cially unattractive. Therefore, traitor tracing schemes deal with the traceability
of pirate decoders only.

1.1 Transmission Rates

A direct solution to the traitor tracing problem is to give to each subscriber
an individual key and encrypt the data separately under each key. But this is
extremely inefficient because this means that the total size of the broadcast
ciphertext is at least n times the size of the plaintext, where n is the number
of authorized users: the ciphertext/plaintext rate is thus greater than n. The
transmission rate [14] has a quite important practical impact. It actually collects
three parameters: ciphertext rate, encryption-key rate and user-key rate, which
are respectively the ratio of the size of ciphertext, encryption-key and user-key
over the size of the plaintext (in an asymptotic way.) We thus have two main
categories for traitor tracing schemes:

1. Schemes with constant transmission rate [14]. They are well-suited to en-
crypt large messages. Another interesting advantage of these schemes is the
efficient black-box traceability. This means that the tracing procedure does
not have to open the pirate decoder, but just to interact with it. On the
other hand, the constant transmission rate is asymptotically achieved, and
thus for large plaintexts only (this is due to the use of collision-secure codes.)

2. Schemes with no constant transmission rate [4, 2, 15]. The main advantage
of these schemes is about their relatively small size of admissible plaintexts.
However, the transmission rate is often linear w.r.t the maximal number
of colluders. Furthermore, in these schemes, there is no efficient black-box
traitor tracing. It is possible to do black-box traitor tracing [2], but it is
shown that the algorithm is non-realistic because of the complexity which is
larger than the binomial of n and c, where n is the number of users and c is
the maximal number of colluders.

According to the context, one may use a scheme from the first category or
a scheme from the second one: if one wants to distribute large messages, the
first category is much more suitable, however if one simply wants to exchange
a session key, which size is relatively small, the second category may be better
from efficiency point of view, but the actual security can be discussed because of
the inefficient black-box tracing procedure. In this paper, we further improve the
transmission rate of the unique above constant transmission rate scheme [14].

1.2 Traceability

In all known traitor tracing schemes, only the center, owning some crucial private
information, can execute the tracing procedure: delegation is not possible, unless
the center discloses private information allowing to trace, but also to create new
anonymous decoders, which is not reasonable.



However, such a delegation could be a quite interesting feature: if the center
is the only server able to run the tracing procedure, a bottleneck may appear
because of a possibly large number of pirate decoders.

This paper thus introduces a new property, called public traceability : the trac-
ing procedure can be publicly done, by simply providing the tracing information,
which just helps to trace, but nothing else.

1.3 Bilinear Maps

Let us now turn to the tool recently introduced in cryptographic protocols by
Joux [13]: the use of some specific bilinear maps, such as the modified Weil pair-
ing or the Tate pairing. They have already been widely used to achieve new
features, such as identity-based cryptosystems [3], or to improve the efficiency
of some schemes [1]. However, such particular properties could be used by ad-
versaries too, in order to break underlying schemes such as the attacks from [20]
on the traitor tracing scheme proposed in [16].

In this paper, we show these two sides of the use of bilinear maps. On the
one hand, we show how the pairings can be used for improving a traitor tracing
scheme, in two directions. It indeed helps to get a more efficient scheme as well
as the new feature of public traceability. On the other hand, we show that the
adversaries can also take advantage of them in some schemes: we present an
attack against the only unbroken traitor tracing scheme based on pairings [20].

1.4 Contribution

At Eurocrypt ’02, Kiayias and Yung [14] proposed a new traitor tracing scheme
(named KY in the following) with constant transmission rates: the ciphertext
rate is 3, the encryption-key rate is 4 and the user-key rate is 2.

In this paper we propose a scheme which further improves them: the cipher-
text rate is reduced to 1 (asymptotically), which is optimal; the encryption-key
rate is reduced to 1; and the user-key rate is kept unchanged. As already no-
ticed, these transmission rates are considered in the multi-user setting, when the
number of users is large, and when the size of the plaintext is large too. Above
improvements are achieved, while still keeping the two extremely desirable prop-
erties, as in the KY scheme:

– public-key traitor tracing, where any third party is able to send secure mes-
sages to the set of subscribers;

– efficient black-box traitor tracing in which the tracing procedure can be ac-
complished without opening the pirate decoder.

We furthermore introduce a new quite interesting functionality: the public
traceability. In all previous traitor tracing schemes, only the center, owning some
crucial private information, could execute the tracing procedure. In our scheme,
the center can publish some information in such a way that every one can do
the tracing procedure, at least the interactive part with the pirate decoder.



As already said, pairings are of great help to achieve this goal. But care
is required. To the best of our knowledge, only one such a scheme based on
pairings has remained unbroken: the scheme proposed by To, Safavi-Naini and
Zhang [20] (named TSZ in the following). In this paper we show an attack on
the TSZ scheme: we exhibit a way to produce an anonymous pirate decoder,
while they provided a security proof. We thereafter explain where is the flaw in
their tracing algorithm.

2 TSZ: the To, Safavi-Naini and Zhang’s Scheme

Mitsunari, Sakai and Kasahara [16] proposed the first traitor tracing scheme us-
ing the bilinear maps. One year later, To, Safavi-Naini and Zhang [20] presented
an attack and tried to repair it. Unfortunately, this modification is not correct
either. Let us first review it, then we present an attack. This scheme and the
attack will help to understand later our new construction which is a combination
of the TSZ scheme and the KY scheme, taking advantage of the best of each.

2.1 Description of the Scheme

The TSZ scheme uses a bilinear map ê : G1 × G1 → G2, where G1,G2 are groups
of prime order q (see section 3 for a brief review.)

Initialization: two arbitrary random generators P, Q ∈ G1 and a unitary poly-
nomial with coefficients in Zq of degree 2k − 1:

f(x) = a0 + a1x + . . . + a2k−2x
2k−2 + x2k−1.

Let Q0 = a0Q, Q1 = a1Q, . . . , Q2k−2 = a2k−2Q and g = ê(P, Q) ∈ G2.
Private key of the center: the generator P , and the polynomial f .
Encryption key: the tuple (g, Q, Q0, Q1, . . . , Q2k−2).
User key (for user u): Ku = f(u)

−1
P .

Encryption Algorithm: one generates a random r ∈ Zq , then the session key
s ∈ G2 is encrypted into: c = (sgr, rQ, rQ0, . . . , rQ2k−2).

Decryption Algorithm: user u first computes gr, granted Ku, and then recov-
ers s. Indeed, gr = ê(Ku, rQ0)× . . .× ê(u2k−2Ku, rQ2k−2)× ê(u2k−1Ku, rQ).

2.2 Attack

In [20], authors showed that nobody can build an anonymous decoder, even a
collusion of registered users. Here, we explain how a unique user can build such
an anonymous decoder: user u chooses random elements z0, z1, . . . , z2k−2 in Zq

and produces the following decoder:

– Xi = uiKu + ziQ, for i from 0 to 2k − 2.
– X2k−1 is determined by the relation:

X2k−1 = u2k−1Ku − (z0Q0 + z1Q1 + . . . + z2k−2Q2k−2). (1)

User u can then publish X0, X1, . . . , X2k−1, which provides everyone with the
ability of recovering gr = ê(X0, rQ0)× . . .× ê(X2k−2, rQ2k−2)× ê(X2k−1, rQ).



2.3 Flaw in the Security Analysis

While authors provided a tracing procedure, we now show that our above de-
coder, which only uses X0, . . . , X2k−2, X2k−1, cannot trace back user u. First,
X0, . . . , X2k−2, X2k−1 satisfy the following relation:

2k−1
∑

0

aiXi =

(

2k−2
∑

0

aiu
i

)

Ku +

(

2k−2
∑

0

aizi

)

Q + u2k−1Ku −

(

2k−2
∑

0

ziai

)

Q

= f(u)Ku = P. (2)

Remark also that for each user, and all i (i = 0, . . . , 2k − 2), the application,
from Zq to G1, which maps zi to Xi, is a bijection. Therefore, instead of choosing
z0, z1, . . . , z2k−2, one can randomly choose X0, . . . , X2k−2 in G1, which uniquely
defines the tuple (z0, z1, . . . , z2k−2). Thereafter, X2k−1 is also uniquely deter-
mined by the relation (1). It also satisfies the relation (2). Hence, one can for-
mally define it from the latter relation: it thus clearly does not depend on u.

As a consequence, one easily sees that all the users would produce the
same set of pirate decoders, with parameters (X0, X1, . . . , X2k−2, X2k−1), so that
X0, X1, . . . , X2k−2 are randomly chosen in G2k−1

1 , while X2k−1 is defined accord-
ing to the relation (2).

Note that this attack is quite different from the one in [20]. Our pirate de-
coder indeed combines informations of the user-key, together with the public
information of the system. The latter part points out the flaw in the trac-
ing algorithm from [20], which works as follows: for a suspect set of users
A = {u1, . . . , ut} (whose size is up to k), they construct another polynomial
f ′(x) = f(x) + α× (x− u1) × . . .× (x − ut). For any user in the set A, his key
in the scheme using f (named Scheme(f)) and the one in the scheme using f ′

(named Scheme(f ′)) are identical. For this reason, they claimed that if the col-
luders are in the set A, then any pirate decoder produced by them in Scheme(f)
is also a pirate decoder in Scheme(f ′). Accordingly, this decoder will decrypt a
ciphertext in Scheme(f ′) as it would be in Scheme(f). Therefore, by sending a
decryption query to the decoder, the center can easily detect whether the set of
colluders is included in A or not.

Unfortunately, their argument is not correct. If the construction of the pirate
decoder depends only on the user-keys of the colluders, their tracing algorithm
works well. But if the construction depends on the public information too (which
are of course available to the colluders), the tracing procedure fails, as shown
above.

3 Bilinear Maps and Computational Assumptions

3.1 Bilinear Maps

Let G1 and G2 be two groups of order q, for some large prime q. We use in
our system a bilinear map ê : G1 × G1 → G2, which must satisfy the following
properties:



Bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and all a, b ∈ Zq ;
Non-degenerated: The map does not send all pairs in G1 × G1 to the unit in
G2;

Computable: There is an efficient algorithm to compute ê(P, Q) for any ele-
ments P, Q ∈ G1.

A bilinear map satisfying the three above properties is said to be an admissible
bilinear map. Throughout the paper we view G1 as an additive group and G2 as
a multiplicative group. Remark that since G1,G2 are groups of prime order and
ê is non-degenerated, if P is a generator of G1 then ê(P, P ) is a generator of G2.

Example: The modified Weil pairing or the Tate pairing can be used to construct
an admissible bilinear map that satisfies the three above properties.

3.2 Computational Assumptions

In this section, we review some well-known problems such as the computational
bilinear Diffie-Hellman problems. We also propose new problems, we believe
to be hard to solve. Relations claimed in propositions are provided in the full
version [6]. They will be used in the next sections, in the security analysis of our
scheme.

Classical Assumptions and Variants. We first review the most classical
problems in G1.

CDH – the computational Diffie-Hellman problem in G1:
Given (P, aP, bP ) for some a, b ∈ Z

?
q , output abP .

CBDH1 – the computational bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

?
q , output abcP .

DBDH1 – the decisional bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP, U) for some a, b, c ∈ Z

?
q and U ∈ G1, output yes if

U = abcP and no otherwise.

We now introduce modified versions of the two above Bilinear Diffie-Hellman
problems. They are actually particular cases, where b = c. We then provide some
relations between them and the usual CDH problem.

CBDH1
-M – the modified computational bilinear Diffie-Hellman problem in G1:

Given (P, aP, bP ) for some a, b ∈ Z
?
q , output ab2P .

DBDH1
-M – the modified decisional bilinear Diffie-Hellman problem in G1:

Given(P, aP, bP, U) for some a, b ∈ Z
?
q and U ∈ G1, output yes if U = ab2P

and no otherwise.

Proposition 1. The CBDH1
-M problem is at least as hard as the CBDH1 prob-

lem, which is at least as hard as the usual CDH problem:

(SuccCBDH1
-M

G1
(t))2 ≤ SuccCBDH1

G1
(t) ≤ SuccCDH

G1
(t).



Pairing-Based Problems. We now review the bilinear Diffie-Hellman prob-
lems, all in G1 and G2, with the admissible map ê (we thus omit them in the
notation.)

CBDH2 – the computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

?
q , output gabc, where g = ê(P, P ).

DBDH2 – the decisional bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, Z) for some a, b, c ∈ Z

?
q and U ∈ G2, output yes if

Z = gabc and no otherwise, where g = ê(P, P ).
CBDH2

-E – the extended computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, ab2P ) for some a, b, c ∈ Z

?
q , output gcb2 , where g =

ê(P, P ).

DBDH2
-E – the extended decisional bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, ab2P, Z) for some a, b, c ∈ Z
?
q and U ∈ G2, output yes if

Z = gcb2 and no otherwise, where g = ê(P, P ).

We furthermore introduce a slight variant of the CBDH2, in order to get more
confidence in the above CBDH2-E problem:

CBDH2
-V – a variation of the computational bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, a(a2 − b2)P, b(a2 − b2)P ) for some a, b, c ∈ Z
?
q , output

gabc, where g = ê(P, P ).

Proposition 2. The CBDH2
-E problem is at least as hard as the CBDH2

-V prob-
lem:

(SuccCBDH2
-E

ê,G1,G2
(t))2 ≤ SuccCBDH2

-V
ê,G1,G2

(t).

Mixed Problems. Let us now introduce new problems which involve elements
from G1 and G2, still with the admissible map ê (we thus omit them in the
notation.)

MCDH – the mixed computational Diffie-Hellman problem:
Given (P, aP, a2P, gb) for some a, b ∈ Z

?
q , where g = ê(P, P ), output gba2

.
MDDH – the mixed decisional Diffie-Hellman problem:

Given (P, aP, a2P, gb, Z) for some a, b ∈ Z
?
q and Z ∈ G2, where g = ê(P, P ),

output yes if Z = gba2

and no otherwise.

4 The Basic Building Block: The Two-User Case

4.1 The Assumptions for our Scheme

We have introduced several new problems, which will simplify the security anal-
ysis of our proposal. Let us sum up which assumptions will be really needed,
according to the security level.



Traitor Tracing. Let us first consider the semantic security of the encryption
scheme. In the random-oracle model, the security will hold under the MCDH

assumption. In the standard model, the security relies on the stronger MDDH

assumption. We believe these are reasonable assumptions.
About the traitor-tracing functionality, the non-incrimination relies on the

CDH assumption, while the traceability of colluders is guaranteed under the
DBDH1-M assumption.

As a consequence, our scheme will achieve the classical security notions of
traitor-tracing under the MDDH and DBDH1-M assumptions.

Public Traceability. Our scheme will provide the new and interesting prop-
erty of public traceability. It however requires stronger assumptions, since more
information is available to the adversary (since the tracing capability can be
provided to a bad guy.)

About the semantic security of the encryption scheme encryption, in the
random-oracle model, the CBDH2-E assumption is required. The latter is in fact
a quite minor extension of the classical CBDH2 assumption (see proposition 2.)
In the standard model, the security relies on the DBDH2-E assumption. Again,
we believe this is a reasonable assumption.

Considering the properties of traitor-tracing, the non-incrimination is cap-
tured by the tracing of colluders, which is again proven under the DBDH1-M

assumption.

Conclusion. Finally, our scheme, with public traceability, will essentially re-
quire the three new assumptions MDDH for the security of encryption, DBDH1-M

for the traitor-tracing property, and the DBDH2-E for the public traceability.

4.2 Kiayias-Yung’s Scheme

Our construction of 2-user traitor tracing scheme is based on the Kiayias and
Yung’s scheme [14], which can be seen as a special case of the Boneh and
Franklin’s scheme [2]. Let us thus first review the KY scheme.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q and a group G of order q. Choose an

arbitrary generator g ∈ G.
Step 2: Pick random elements a, z ∈ Z

?
q , and set Q = ga, Z = gz.

Private key of the center: the pair (a, z).
Encryption key: the tuple pk = (g, Q, Z).
User key: user ub (for b ∈ {0, 1}, since we focus on the two-user case) is as-

sociated to a “representation” kb = (αb, βb) of gz with respect to the basis
(g, ga), i.e, the authority selects two vectors (α0, β0) and (α1, β1) in Z

2
q so

that αb + aβb = z mod q for both b ∈ {0, 1}. The two vectors are chosen so
that they are linearly independent. The set of all possible keys is

Kpk = {(α, β)|α + aβ = z mod q}.



Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq

and outputs a ciphertext (c1, c2, d) into G3: on a plaintext m, assumed to be
in the group G, the center computes C = (c1 = gk, c2 = Qk, d = m × Zk).
We say that a triple (c1, c2, d) ∈ G3 is a valid ciphertext if there exits k ∈ Zq

such that c1 = gk and c2 = Qk. Otherwise, the ciphertext is invalid.
Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes:

Zk = cα
1 × cβ

2 and m = d/Zk.

4.3 Our Construction

We now show how we can use bilinear maps in order to improve this scheme.
More precisely, we introduce the notion of public-key traitor tracing with proxy
quantity. Contrarily to usual public-key traitor tracing schemes, the authority
generates for each user a key along with a corresponding proxy quantity. The
authority keeps in his hands the user’s key and gives only to the user the proxy
quantity which is enough for decryption. The user’s key will be later used for
tracing.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map ê : G1×G1 → G2. Choose an arbitrary generator
P ∈ G1 and set g = ê(P, P ) which is a generator of group G2.

Step 2: Pick random elements a, z ∈ Z
?
q , and set Q = aP , Z = gz.

Step 3: Choose a function H : G1 → M. The security analysis will view
H as either a random oracle or a function in a universal hash function
family (using the leftover-hash-lemma [11, 12]).

The message space isM = {0, 1}κ. The ciphertext space is G?
1×G

?
1×{0, 1}κ.

The system parameters are params = (q,G1,G2, ê, P, H).
Private key of the center: the pair (a, z).
Encryption key: the tuple pk = (g, Q, Z).
User key: user ub (for b ∈ {0, 1}) is associated to a “representation” kb =

(αb, βb) of gz with respect to the base (g, ga). The set of all possible keys is

Kpk = {(α, β)|α + aβ = z mod q}.

Remark that the authority generates these keys for each user but does not
give them to the users. Each user is just given a proxy quantity, as described
below.

Proxy Quantity: user ub (for b ∈ {0, 1}) receives a proxy quantity Π(kb) =
(αb, πb = βbP ). The set of all possible proxy quantities is

Πpk = {(α, π = βP )|(α, β) ∈ Kpk}.

Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq

and outputs a ciphertext (c1, c2, d) into G1×G1×M: on a plaintext m ∈M,

the center computes C = (c1 = kP, c2 = k2Q, d = m⊕H(Zk2

)). We say that
(c1, c2, d) ∈ G1×G1×M is a valid ciphertext if there exits k ∈ Zq such that
c1 = kP and c2 = k2Q. Otherwise, the ciphertext is invalid.



Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes, granted
his proxy quantity Π(kb) = (αb, πb),

Zk2

= ê(αbc1, c1) · ê(πb, c2) and m = d⊕H(Zk2

).

4.4 Rationale

First, one can wonder why we do not encrypt the message by c1 = kP , c2 = kQ
and d = m ⊕ H(Zk), while each user would receive the key kb = (αb, βb) (so
that αb + aβb = z mod q). Such scheme would thus be a simple and natural
variation of the KY scheme using bilinear maps. However, as in our above attack
against the TSZ scheme, the adversary could take advantage of the bilinear
property to combine the secret key and the public information. Actually, any
adversary, although it could not produce a new key, could produce and distribute
an anonymous decoder (X = αP − uQ, Y = βP + uP ), in which u could be
randomly chosen in Zq . Then, everyone could recover Zk = ê(X, c1) · ê(Y, c2).
Because of the random choice of u, the authority cannot trace back the traitor.

In our scheme, we prove that such an adversary cannot exist: users do not
have keys of the form (α, β), but proxy quantities only, of the form (α, βP ). As
a consequence, even if two users collude to produce another key (by a linear
combination of their keys), they cannot learn the secret key (a, z). We will see
that this is crucial to improve the result in the multi-user case.

4.5 Security of the Encryption Scheme

Before considering security properties specific to the traitor tracing functionality,
let us first study the encryption scheme. Actually, if we consider the function H
as a random oracle, the semantic security of the encryption can be proved under
the MCDH problem. If we consider that the function H is randomly chosen in a
universal hash function family [11, 12], the semantic security of the encryption
is proved under the MDDH problem. The proofs of the following theorems can
be found in the full version [6].

Theorem 3. Let H be seen as a random oracle. The above scheme is semanti-
cally secure under the MCDH problem.

Theorem 4. Let H be a function randomly chosen in a universal hash function
family. The above scheme is semantically secure under the MDDH problem.

4.6 Non-Incrimination

The main goal of a traitor tracing scheme is to be able to trace a pirate. But a
pirate could try to incriminate another user. E.g., using his private information,
a pirate could try to produce another proxy quantity and distribute it. We show
that this scenario cannot happen. The proof can be found in the appendix.

Theorem 5. Given the encryption key and a proxy quantity (α, π) ∈ Πpk, it is
computationally infeasible to construct another proxy quantity in Πpk under the
CDH problem.



4.7 Black-Box Traitor Tracing

For practical reasons, it is important not to have to open the pirate decoder
in order to trace back the pirate. We thus show that our scheme is black-box
traitor tracing against a collusion of the 2 users under the DBDH1-M problem,
by constructing a tracing algorithm. For this security result, we assume that
the hash function H is a function randomly chosen in a universal hash function
family. The proof can be found in the full version [6], since it is a simpler case
than the proof of the Theorem 9 (provided in the appendix.)

Theorem 6. Let us assume that, given the encryption key pk and a proxy quan-
tity (α, π = βP ) ∈ Πpk, the adversary A produces a decryption simulator S
that decrypts valid ciphertexts, but when given a “randomized” ciphertext of the

form (kP, ak′2P, d) with k, k′ R
← Zq , d

R
← M, it outputs a value different from

d⊕H(gαk2
+aβk′2

) with probability ε. Then the DBDH1
-M problem can be solved

with an advantage ε/2.

Intuitively, the above theorem shows that a “randomized” and thus invalid
ciphertext cannot be distinguished from a regular and valid ciphertext. There-
fore, given a black-box access to a decryption simulator S constructed by one of
two users, one can always decide which one of them has built it: one randomly

chooses k, k′ R
← Z

?
q (we suppose that k 6= k′), and sets u0 = α0k

2 + aβ0k
′2 and

u1 = α1k
2 +aβ1k

′2. With high probability (greater than 1− 2/q), u0 is different
from u1, which is thus assumed in the following. One then submits the random-
ized invalid ciphertext (kP, ak′2P, d). If the output of S is d/gu0 then one claims
that u0 is the traitor. If the output is d/gu1 , then u1 is blamed. If the output is
none of these two values, one concludes that the two users colluded. Hence the
following corollary.

Corollary 7. The above scheme is black-box traitor tracing against active ad-
versaries.

4.8 Public Traceability

Let us now turn to the additional and quite interesting property: in order to
execute the black-box traitor tracing procedure, the two user-keys (α0, β0) and
(α1, β1) are used. However, the proxy quantities would be enough, and even less:

(α0P, β0P ) and (α1P, β1P ) are sufficient. From k, k′ R
← Z

?
q , one does not really

need u0, u1, but just gu0 and gu1 :

gu0 = ê(α0P, k2P )× ê(Q, k′2(β0P ));

gu1 = ê(α1P, k2P )× ê(Q, k′2(β1P )).

This is a quite new and interesting property: one can split the roles of the center.
Moreover, the tracing capability can be delegated to several servers in order to
speed up the tracing. This delegation does not require any trust in these servers,
since the given information does not leak the private key (a, z), nor even any



information to build a decoder (under an additional computational assumption).
Furthermore, one can thereafter check whether the incriminated people are the
pirates or not.

We now formally state the above security properties in the following theorems
whose proofs can be found in the appendix.

Theorem 8. Let us assume that the tracing information is public, then the en-
cryption scheme is semantically secure: in the random-oracle model, the secu-
rity relies on the CBDH2

-E assumption, while the standard model requires the
DBDH2

-E assumption.

Theorem 9. Let us assume that A is an algorithm which, given the encryp-
tion key pk, one proxy quantity (α, π = βP ) (among the two (α0, π0 = β0P )
and (α1, π1 = β1P ) provided by the center), and the public tracing information
(α0P, β0P, α1P, β1P ), can produce a decryption simulator S that decrypts valid
ciphertexts, but when given a “randomized” ciphertext of the form (kP, ak ′2P, d)

with k, k′ R
← Zq, d

R
←M, S outputs a value different than d ⊕H(gα0k2

+aβ0k′2

)
with probability ε. Then the DBDH1

-M problem can be solved with advantage ε/2.

5 The Multi-User Case

5.1 Description

Let C = {ω1, . . . , ωN} be an (N, c, `, ε)-collusion-secure code over the alphabet
{0, 1} with `-long codewords, that allows collusions of up to c users and has a
tracing algorithm that succeeds with probability 1− ε (see [4] for more details).
The multi-user case (`-key system) is simply `-instantiations of the 2-user public-
key 1-traitor tracing scheme with proxy quantities. We indeed build such an `-key
system using an (N, c, `, ε)-collusion-secure code C as a combination of ` 2-user
systems S1, S2, . . . , S`:

Setup: Given the security parameters k, c and ε:

Step 1: Generate a k-bit prime q, two groups G1, G2 of order q, and an
admissible bilinear map ê : G1×G1 → G2. Choose an arbitrary generator
P ∈ G1.

Step 2: Generate an (N, c, `, ε)-collusion-secure code C = {ω1, .., ωN}.

Step 3: Pick random elements a, zj ∈ Z
?
q , and set Q = aP , Zj = gzj , for

j = 1, . . . , `.

Step 4: Choose a function H : G1 →M.

The system parameters are params = (q,G1,G2, ê, P, H). These parameters
are common for all 2-user systems S1, S2, . . . , S`.

Private key of the center: the element a, and the tuple (zj)j=1,...,`.

Encryption key: this is the combination of the encryption keys from the `
2-user schemes: pk = (g, Q, {Zj = gzj}j=1,...,`).



User key: user ui (for i ∈ ZN ) is associated to a codeword ωi in C and the cor-
responding “representation” (αωi,j ,j , βωi,j ,j) of gzj with respect to the basis
(g, ga), where ωi,j is the j-th bit of the codeword ωi. Recall that (αb,j , βb,j)
is a “representation”of gzj with respect to the base (g, ga). Again, this user
key is not given to the user, but only the proxy quantity.

Proxy Quantity: user ui (for i ∈ ZN ) is given the proxy quantity Πi =
(Πωi,1,1, . . . , Πωi,l,`). More precisely, for j = 1, . . . , `,

Πωi,j ,j = (αωi,j ,j , πωi,j ,j = βωi,j ,jP ).

Encryption algorithm: The plaintext space of the `-key system is M`. On
input (m1, . . . , m`), the encryption algorithm uses a random k ∈ Zq and
outputs the ciphertext (c1, c2, d1, . . . , d`) into G1×G1×G

`
2, where: c1 = k×P ,

c2 = k2 × aP and dj = mj ⊕H(Zk2

j ).
Decryption Algorithm: On the ciphertext (c1, c2, d1, . . . , d`), user ui com-

putes, granted his proxy quantity, Zk2

j = ê(αωi,j ,jc1, c1) × ê(πωi,j ,j , c2) and

then mj = dj ⊕H(Zk2

j ).

For the security analysis, one could use the following assumption, from [14]:
the threshold assumption says that a pirate-decoder that just returns correctly a
fraction p of a plaintext of length λ where 1−p is a non-negligible function in λ,
is useless. However, as already mentioned in [14], by employing an all-or-nothing
transform [18, 5], this assumption is not necessary.

Proposition 10. The collusion of the users in the (` − 1) 2-user systems of `
2-user systems does not affect the security of the remained 2-user system.

This proposition which proof can be found in the full version [6], combined with
the fact that C is an (N, c, `, ε)-collusion-secure code, leads to following corollary:

Corollary 11. The above scheme is a N -user, c-traitor tracing scheme.

About the public traceability, with the public information, anybody can recover
the codeword associated to the pirate decoder, the interactive and thus costly
phasis. However, classical collusion-secure codes do not allow to publicly trace
back to a guilty, but this is an off-line prodecure, which still must be performed
by a trusted authority.

5.2 Comparison with the Kiayias-Yung’s Scheme

In the KY scheme, the ciphertext rate is 3, while ours is asymptotically 1. One
could wonder why we could use the above construction, while they could not.

The reason is that in our 2-user scheme, even the collusion of the 2 users does
not leak any information about a. In the KY 2-user scheme, such a collusion
immediately reveals a: in the multi-user case, if one uses the same a for the `
2-user schemes, the collusion of two users could leak this value a and then all
the values zi, which would easily lead to an anonymous pirate decoder. As a
consequence, they have to use distinct a’s in each 2-user scheme instance, while
in our scheme, a common a is possible.



6 Conclusion

We thus proposed a scheme which improves the Kiayias and Yung’s scheme in
various ways: first, the transmission rates are reduced near optimality; and we
introduce the quite interesting functionality of public traceability. The full feature
of public traceability in the multi-user case, which would lead to a guilty, is
however an open problem.

Acknowledgement

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. D. Boneh and X. Boyen. Short signatures without random oracles. In Adv. in
Cryptology – Proceedings of Eurocrypt 2004, volume LNCS 3152, pages 56–73.
Springer-Verlag, 2004.

2. D. Boneh and M. Franklin. An efficient public key traitor tracing scheme. In
M.Wiener, editor, Adv. in Cryptology – Proceedings of Crypto 1999, volume LNCS
1666, pages 338–353. Springer-Verlag, 1999.

3. D. Boneh and M. Franklin. Identity-based Encryption from the Weil Pairing. In
J. Kilian, editor, Adv. in Cryptology – Proceedings of Crypto ’01, LNCS 2139, pages
213–229. Springer-Verlag, Berlin, 2001.

4. D. Boneh and J. Shaw. Collusion secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

5. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient
Functions and All-Or-Nothing Transforms. In Eurocrypt ’00, LNCS 1807, pages
453–469. Springer-Verlag, Berlin, 2000.

6. H. Chabanne, D. H. Phan, and D. Pointcheval. Public Traceability in Traitor
Tracing Schemes. In Eurocrypt ’05, LNCS. Springer-Verlag, Berlin, 2005. Full
version available from http://www.di.ens.fr/users/pointche.

7. B. Chor, A. Fiat and M. Naor. Tracing traitor. In Y. Desmedt, editor, Adv.
in Cryptology – Proceedings of Crypto 1994, volume LNCS 839, pages 257–270.
Springer-Verlag, 1994.

8. B. Chor, A. Fiat, M. Naor and B. Pinkas. Tracing traitor. IEEE Transactions on
Information Theory, 46(3): 893–910, 2000.

9. Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against adap-
tive chosen ciphertext attack. In Y.G.Desmedt, editor, Proceedings of PKC 2003,
volume LNCS 2567, pages 100–115. Springer-Verlag, 2003.

10. E. Gagni, J. Staddon, and Y.L. Yin. Efficient methods for integrating traceability
and broadcast encryption. In M.Wiener, editor, Adv. in Cryptology – Proceedings
of Crypto 1999, volume LNCS 1666, pages 372–387. Springer-Verlag, 1999.

11. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
from any One-Way Function. SIAM Journal of Computing, 28(4):1364–1396, 1999.

12. I. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation from One-Way
Functions. In Proc. of the 21st STOC, pages 12–24. ACM Press, New York, 1989.



13. A. Joux. A One-Round Protocol for Tripartite Diffie-Hellman. In Algorithmic
Number Theory Symposium (ANTS IV), LNCS 1838, pages 385–394. Springer-
Verlag, Berlin, 2000.

14. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In
L. Knudsen, editor, Adv. in Cryptology – Proceedings of Eurocrypt 2002, volume
LNCS 2332, pages 450–465. Springer-Verlag, 2002.

15. A. Kiayias and M. Yung. Breaking and repairing asymmetric public-key traitor
tracing. In J. Feigenbaum, editor, ACM Workshop in Digital Rights Management
– DRM 2002, volume LNCS 2696, pages 32–50. Springer, 2003.

16. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing scheme. IEICE
Trans. Fundamentals, E85-A(2), 2002.

17. M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In Proc. of Financial
Crypto ’2000, volume LNCS 1692, pages 1–20. Springer-Verlag, 2000.

18. R. Rivest. All-or-Nothing Encryption and the Package Transform. In Proc. of the
4th FSE, LNCS 1267. Springer-Verlag, Berlin, 1997.

19. V.D. To and R. Safavi-Naini. Linear code implies public-key traitor tracing with
revocation. In H. Wang, editor, Proceedings of ACISP 2003, volume LNCS 3108,
pages 24–35. Springer-Verlag, 2003.

20. V.D. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear
map. In Proceedings of the 2003 ACM Workshop on Digital Rights Management,
pages 67–76, 2003.

A Proof for the Non-Incrimination and Traitor-Tracing

A.1 Proof of the Theorem 5

Let us assume that, given a proxy quantity (α, π) ∈ Πpk, A can construct another
proxy quantity. We then construct an algorithm B that solves the inverse Diffie-
Hellman problem, which is well-know to be equivalent to the CDH problem.
Algorithm B is given as input a random instance (P, A = aP ) of the inverse
Diffie-Hellman problem. Let B = a−1P be the solution, that B finds as follows:

Setup: B randomly chooses α
R
← Z

?
q and π

R
← G1), and then computes Z =

ê(P, αP )ê(A, π). Finally, B sets the public key pk = (g, A, Z). It then sends
pk to A as well as a proxy quantity (α, π).

Attack: A outputs another proxy (α̃, π̃).
Break: B computes c = α̃− α and outputs B = (c−1 mod q)(π − π̃).

We see that, since (α̃, π̃) is a new proxy, for any ciphertext (c1, c2, d),

ê(αc1, c1)× ê(π, c2) = ê(α̃c1, c1)× ê(π̃, c2)

⇐⇒ ê(αkP, kP ) × ê(π, ak2P ) = ê(α̃kP, kP )× ê(π̃, ak2P )

⇐⇒ ê(αP, P ) × ê(π, aP ) = ê(α̃P, P )× ê(π̃, aP )

⇐⇒ ê((α̃ − α)P, P ) = ê(π − π̃, aP ).

From the fact that (α, π), (α̃, π̃) ∈ Πpk, we get that π and π̃ are in the group G1

generated by P . Therefore, π− π̃ = bP for some b. We then have c = α̃−α = ab
and thus:

B = (c−1 mod q)(π − π̃) = (ab)−1 × bP = a−1P.

ut



B Proofs for the Public Traceability

B.1 Proof of the Theorem 8

We focus on the case where the function H is randomly chosen in a universal
hash function family. The case where H is a random oracle is similar to the proof
of the Theorem 3.

Let us assume that the scheme is not semantically secure against passive
adversaries. Then there is an IND-CPA adversary A that, given the public key
pk and the tracing information (α0P, β0P, α1P, β1P ), can break the scheme with
advantage ε. We can then construct an algorithm B that solves the DBDH2-E

problem. Algorithm B is given as input a random DBDH2-E instance (P, A =
aP, B = kP, C = zP, D = ak2P, U) from either the distribution in which U is
the CBDH2-E solution, or the distribution in which U is a random element in
G2. The algorithm B runs as follows:

Setup: B sets the public key pk = (g, Q = A, Z = gz = ê(C, P )). B randomly
chooses β0, β1 and computes:

α0P = zP − β0Q α1P = zP − β1Q.

It sends pk, along with (α0P, β0P, α1P, β1P ) to A.
Challenger: A outputs two message m0, m1 on which it wishes to be chal-

lenged. B picks a random element b ∈ {0, 1} and gives (A, D, d = mb⊕H(U))
as the challenge to A.

Guess: Algorithm A outputs a guess b′ ∈ {0, 1}. At this point, B returns 1 if
b = b′ and 0 otherwise.

Observe that if U is the CBDH2-E solution, then the challenge ciphertext is
an encryption of mb. Otherwise, since H is randomly chosen from a universal
hash function family, the challenge is the ciphertext of a random message, hence
b = b′ holds with probability 1/2. By a standard argument, the adversary B has
an advantage of ε/2 in deciding DBDH2-E. ut

B.2 Proof of the Theorem 9

From such an adversary A, we build an algorithm B that breaks the DBDH1-M

problem: Algorithm B is given as input the DBDH1-M parameters (G1,G2, ê)

together with a random instance (P, A = aP, B = kP, X) (for a, k
R
← Z

?
q , X

R
←

G1). Algorithm B decides whether X = ak2P by interacting with A

Setup: B randomly chooses α0, β0, β1

R
← Z

?
q and computes:

zP = α0P + β0A α1P = zP − β1A π0 = β0P Z = ê(P, zP ).

B sets Q = A, pk = (g, Q, Z) and a proxy (α0, π0), as well as the public trac-
ing information (α0P, β0P, α1P, β1P ). The proxy (α0, π0) can be considered
as randomly chosen in the set Πpk. Finally, B gives pk, the proxy (α0, π0)
and the public tracing information (α0P, β0P, α1P, β1P ) to A.



Ciphertext: B randomly chooses d ∈ M and builds a ciphertext (c1 = B, c2 =
X, d). B sends it to A. Because of the random choice of (B, X, d) and the
random choice of the hash function H in a universal hash function family,
the challenge (c1, c2, d) is a random ciphertext.

Break: If algorithm A returns d⊕H(ê(α0c1, c1) · ê(π0, X)), B outputs randomly
yes or no. Otherwise B output no (X is certainly not ak2P ).

Note that when X = ak2P , the ciphertext (kP, X, d) is a random valid ciphertext
and the algorithm A outputs correctly the plaintext m = d ⊕ H(ê(α0c1, c1) ·
ê(π0, X)). In this case, the algorithm B outputs randomly yes or no and the
probability that B gives a correct guess is 1/2.

When X 6= ak2P , the ciphertext (kP, X, d) is a random invalid ciphertext.
Since the decoder behaves differently for invalid ciphertext with probability ε,
A outputs differently than the expected plaintext with probability ε. In such a
case, B answers correctly that X is not equal to ak2P . In the case A outputs the
expected plaintext (which happens with probability less than 1− ε), B answers
randomly yes or no. Therefore, when X 6= ak2P , the probability that B gives a
correct guess is ε + (1− ε)× 1/2 = 1/2 + ε/2.

Combining the two above cases, we easily see that B can solve the DBDH1-M

problem with advantage ε/2. ut


