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Abstract. Motivated by the representation of biometric and multimedia
objects, we consider the problem of hiding noisy point-sets using a secure
sketch. A point-set X consists of s points from a d-dimensional discrete
domain [0, N−1]d. Under permissible noises, for every point 〈x1, .., xd〉 ∈
X, each xi may be perturbed by a value of at most δ. In addition,
at most t points in X may be replaced by other points in [0, N − 1]d.
Given an original X, we want to compute a secure sketch P . A known
method constructs the sketch by adding a set of random points R, and
the description of (X ∪ R) serves as part of the sketch. However, the
dependencies among the random points are difficult to analyze, and there
is no known non-trivial bound on the entropy loss. In this paper, we first
give a general method to generate R and show that the entropy loss
of (X ∪ R) is at most s(d log ∆ + d + 0.443), where ∆ = 2δ + 1. We
next give improved schemes for d = 1, and special cases for d = 2. Such
improvements are achieved by pre-rounding, and careful partition of the
domains into cells. It is possible to make our sketch short, and avoid
using randomness during construction. We also give a method in d = 1
to demonstrate that, using the size of R as the security measure would
be misleading.

1 Introduction

Many biometric data are noisy in the sense that small noises are introduced dur-
ing acquisition and processing. Hence, two biometric samples that are different
but close to each other, are considered to belong to the same identity. This poses
technical challenges in applying classical cryptographic operations on them. Re-
cently, new generic techniques such as fuzzy commitment [10], helper data [15]
and secure sketch [7] are introduced to handle noisy data. These techniques at-
tempt to remove the noise with the aid of some additional public data P . Here
we follow Dodis et al. [7] and call such P a sketch. During registration, given orig-
inal data X , a sketch P is constructed and made public. During reconstruction,
given some other data Y and the sketch P , the original X can be reconstructed
if Y is close1 to X . In other words, the sketch aids in removing noise from noisy

? The author is currently with Department of Computer and Information Science,
Polytechnic University.

1 The formal definition of “closeness” will be given in Section 3.



data Y . It is important that such sketch P should be secure in the sense that
it reveals only limited information about the original X , so that the privacy of
the original data can be sufficiently maintained. In other words, it is desirable
to bound the entropy loss of X given P (Section 3 gives the definitions).

Not surprisingly, the design of a secure sketch is very much dependent on
the definition of “closeness”. Secure sketch for the following two main types
of data have been proposed: (1) The data are from a vector space, and two
sequences are close to each other if their distance (e.g., Hamming distance) is
less than a threshold. (2) The data X and Y are subsets of a universe U , where
|X | = |Y | = s, and they are close with respect to a threshold t, if the set
difference s − |X ∩ Y | ≤ t.

We observe that in many applications, a combination of the above is required.
For example, a fingerprint template is typically represented as a set of minutiae
points in a discrete 2-dimensional space, or even 3-dimensional if the less reliable
orientation attribute is included [6]. Under noise, each points may be slightly
perturbed, and a small number of points may be replaced.

We study secure sketch schemes for such point-sets. A point-set X is a set of s
points from a discrete d-dimensional domain [0, N −1]d. Under permissible white
noise, for every point 〈x1, .., xd〉 ∈ X , each xi, 1 ≤ i ≤ d, may be perturbed by
at most δ. In addition, under replacement noise, at most t points in X may be
replaced by randomly selected points. Hence, two point-sets X and Y are close
to each other if we can find a subset X ′ ⊂ X , |X ′| ≥ s − t, such that for each
x ∈ X ′, there is a unique y ∈ Y that satisfies ‖x − y‖∞ ≤ δ, where ‖ · ‖∞ is the
infinity norm. We assume that a point-set X is always well-separated, that is,
for any x, x′ ∈ X , the distant ‖x− x′‖∞ ≥ 3δ. This assumption is reasonable in
practice. For example, in a fingerprint template, two minutiae points cannot be
too close to each other, otherwise they will be considered as false minutiae and
should be corrected [11].

Clancy et al. [5] give the following construction of a two-part sketch for a
point-set. The first part of the sketch is a codebook C, which is a collection of
points that are well-separated. We call each point in C a codeword, and we assume
that all codewords are properly indexed in a pre-defined manner. The codebook
C is the union of the original data X and a set of random chaff points R, i.e.,
C = (X ∪ R). Consider another point-set Y that is a version of X corrupted
only by white noise. For each point y ∈ Y , the codeword in C that is closest
to y must be the corresponding x ∈ X . Thus, with C, the white noise can be
corrected. Hence we call C the white noise sketch. The second part of the sketch
is constructed from the indices of the points in X , where the index of a point
x ∈ X is its location in the codebook C = (X ∪ R). By using existing schemes
for set difference, replacement of at most t points can be corrected. Hence we
call it the replacement sketch. In this paper, we will focus on the construction
of the white noise sketch. That is, we study how to hide the original points X
amidst some chaff points R.

Clancy et al. propose the following method to generate R: The points in R
are iteratively selected. During each iteration, a chaff point is chosen uniformly



at random. If it is too close to any previously selected points or a point in X , then
it is discarded. Otherwise it is selected. The iteration is repeated until sufficient
points are selected or it is impossible to add more points. The above process of
selecting a set of random points is essentially the online parking process which
has intrinsic statistical properties [14, 13, 8].

Due to the dependencies among the selected points, the analysis of online
parking process is difficult. This is especially so in higher dimensions. Many
fundamental questions remain open, for example, the Palasti’s Conjecture [13]. In
our context of secure sketch, there is no known non-trivial bound of the entropy
loss by revealing (X ∪ R). Furthermore, although the points generated seem
to be “random”, due to the dependencies, the original X may be statistically
distinguishable from R. Indeed, an empirical study suggests a method to find X
among (X ∪ R) [4].

Therefore, we propose another method of generating the points. First, many
points are generated independently. Next, some points are removed so that
among the remaining points, no two points are near to each other. In this way,
we can eliminate the dependencies among the chaff points and give an upper
bound LH on the information revealed (i.e., the entropy loss) by the codebook
C = (X ∪ R). There are many ways to generate the points independently. The
challenging issue now is to find a method whereby the randomness invested dur-
ing generation is not much less than the number of bits required to represent
the codebook.

For the second part of the sketch that corrects the replacement noise, we
employ known techniques for set difference. Let LSD(s, t, n) be the entropy loss
of the sketch for set difference, where n = |C| is the size of codebook. There are
sketch schemes such that LSD(s, t, n) is in O(t log n) (e.g., those proposed by
Juels and Wattenberg [9], Dodis et al. [7], and Chang et al. [3]).

In this paper, we propose a generic method to generate the white noise sketch
and show that the upper bound of the entropy loss LH < s(d log ∆+d+log(e/2)),
where ∆ = 2δ + 1, e is the base of natural logarithm and log(e/2) ≈ 0.443. The
overall entropy loss is at most LH +LSD(s, t, Nd/(4δ +1)d). The bound is quite
tight in the sense that there is a distribution of X such that the entropy loss of
C is at least LH − ε where ε is a positive constant that is at most 3. When t = 0
(i.e., no replacement noise), a lower bound of the entropy loss is sd log ∆. Hence,
the gap between our construction and the optimal is at most s(d+log(e/2)). By
pre-rounding and carefully partitioning the domain [0, N − 1] into cells, we can
improve the entropy loss in d = 1 to at most s(1+log(∆−1))+LSD(s, t, N/(3δ)).
We further apply the technique of partitioning to some special cases in two
dimensions (d = 2) and obtain some improvements. Such technique probably can
be extended to d = 2 in general, and to higher dimensions. In addition, we give
two methods to reduce the size of the sketch. In one of them, we can avoid using
randomness during sketch construction, thus some limited form of reusability can
be achieved [2]. We also give another method in one dimension to demonstrate
that, using the size of R as the security measure would be misleading.



2 Related Works

Recently, a few new cryptographic primitives for noisy data are proposed. Fuzzy
commitment scheme [10] is one of the earliest formal approaches to error tol-
erance. The fuzzy commitment scheme uses an error correcting code to handle
Hamming distance. The notions of secure sketch and fuzzy extractor are intro-
duced by Dodis et al. [7], which gives constructions for Hamming distance, set
difference, and edit distance. Under their framework, a reliable key is extracted
from noisy data by reconstructing the original data with a given sketch, and then
applying a normal extractor (such as pair-wise independent hash functions) on
the data.

An important requirement of a secure sketch scheme is that the amount of
information about X revealed by publishing the sketch P should be limited.
Dodis et al. [7] propose a notion of entropy loss to measure the security of the
sketch. They also provide a convenient way to bound the entropy loss for any
distribution of X . Such worst case analysis is important in practice because
typically, the actual distribution of the biometric data is not known.

The issue of reusability of sketches is addressed by Boyen [2]. It is shown
that a sketch scheme that is provably secure may be insecure when multiple
sketches of the same biometric data are obtained. It is also shown by Boyen that
a sketch that can be constructed deterministically can achieve some limited form
of reusability [2].

The set difference metric was first considered by Juels and Wattenberg [9],
who gave a fuzzy vault scheme. Later, Dodis et al. [7] proposed three construc-
tions. The entropy loss by all these schemes are roughly the same. They differ
in the sizes of the sketches, decoding efficiency and also the degree of ease in
practical implementation. The BCH-based scheme [7] has small sketches and
achieves “sublinear” (with respect to the size of the universe) decoding by care-
ful reworking of the standard BCH decoding algorithm. Chang et al. [3] gave a
scheme for multi-sets, using the idea in set reconciliation [12].

A fuzzy fingerprint vault scheme is proposed by Clancy et al. [5], which is to
be used in secure fingerprint verification using a smart card. The security of the
scheme is analyzed by considering force attackers. Yang and Verbauwhede [16]
employed similar approaches with different fingerprint representation.

3 Preliminaries

Entropy and entropy loss. We follow the definitions of entropy by Dodis et al.
[7]. They propose to examine the average min-entropy of X given P , which gives
the minimum length of an almost uniform secret key that can be extracted even
if the sketch P is made public.

Let H∞(A) be the min-entropy of the random variable A, i.e., H∞(A) =
− log(maxa Pr[A = a]). For two random variables A and B, the average min-

entropy of A given B is defined as H̃∞(A | B) = − log(Eb←B [2−H∞(A|B=b)]).



The entropy loss of X given sketch P is defined as L = H∞(X)− H̃∞(X |P ).
When it is clear in the context, we simply call L the entropy loss of sketch P .
This definition is useful in the analysis of entropy loss, since for any `-bit string
B, we have H̃∞(A | B) ≥ H∞(A) − `. For any secure sketch scheme, let R be
the randomness invested in constructing the sketch, it can be shown that when
R can be recovered from X and P , then

L = H∞(X) − H̃∞(X | P ) ≤ |P | − H∞(R). (1)

Inequality (1) implies that the entropy loss can be bounded from above by the
difference between the size of the sketch and the randomness we invested during
construction. This gives a general method to find an upper bound of L that is
independent of X , and hence it applies to any distribution of X . Therefore, L is
an upper bound of entropy loss in the “worst-case”.

Secure sketch. Let M be a set with a closeness relation C ⊆ M×M. When
(X, Y ) ∈ C, we say the Y is close to X , or (X, Y ) is a close pair. Similar to Dodis
et al. [7], define

Definition 1 A sketch scheme is a tuple (M, C, Enc, Dec), where Enc : M →
{0, 1}∗ is an encoder and Dec : M×{0, 1}∗ → M is a decoder such that for all
X, Y ∈ M, Dec(Y, Enc(X)) = X if (X, Y ) ∈ C. The string P = Enc(X) is to be
made public and we call it the sketch. We say that the sketch scheme is L-secure
if for all random variable X over M, the entropy loss of P is at most L. That
is, H∞(X) − H̃∞(X | Enc(X)) ≤ L.

Closeness relations. For any two points x and y from the d-dimensional space
[0, N − 1]d, we define the closeness Cδ, where (x, y) ∈ Cδ if ‖x − y‖∞ ≤ δ. We
further define the closeness PSδ,s,t for two point-sets.

Definition 2 For any two sets of s points X = {x1, . . . , xs} and Y = {y1, . . . , ys},
we say that (X, Y ) ∈ PSδ,s,t if there exists a 1-1 correspondence f on {1, . . . , s}
such that |{i | (xf(i), yi) ∈ Cδ}| ≥ s − t.

A lower bound of the entropy loss. Here we give a lower bound L0 of the
entropy loss. We say that L0 is a lower bound if, for any sketch scheme (P([0, N−
1]d), PSδ,s,t, Enc, Dec), there exists a distribution of X such that the entropy loss
of P = Enc(X) is at least L0.

For any distribution of X , let Xb to be the set of all possible original point-sets
given sketch P = b. We observe that

max
a

Pr[X = a | P = b] ≥
1

|Xb|
.

Substitute it into the definition, we have

H̃∞(X |P ) ≤ max
b,Pr[P=b] 6=0

log |Xb|. (2)



Now, by considering X that is uniformly distributed over all well-separated sets
of size s in [0, N − 1]d, using (2), we can show that (details omitted) when

s < ( N
2∆)d and t < ( N

2∆ )
d

2 , L0 is in

sd log ∆ + Ω(td log
N

2∆
). (3)

Recall that ∆ = 2δ + 1. An intuitive interpretation of the bound is that, it is
the minimum number of bits needed to describe the noise. The first term in (3)
is for the white noise, and the second term is for the replacement noise. When
t = 0 (i.e., there is no replacement noise), the bound becomes sd log ∆.

4 The Basic Construction

Recall that our sketch consists of two parts PHPS , where PH is the white noise
sketch that removes the white noise. During encoding, a large number of points R
is generated to form the codebook C = (X∪R), and PH is its description. During
decoding, the points in Y are matched with the nearest codewords in C, so that
white noise can be removed. The sketch PS for set difference is constructed using
known schemes on C to correct the replacement noise. We also assume that X
is well-separated.

Here we focus on the construction of PH . We will first give our basic con-
struction in one dimension (d = 1), and then show that it can be extended to
higher dimensions.

The main idea of our construction is to first independently generate many
points, but avoiding regions near the original X . We can also view the generation
of these points as a two dimensional Poisson process. Next, remove some points
so that among the remaining points, no two points are near to each other. The
retained points form the codebook C. Since the points are generated indepen-
dently, it is easier to bound the entropy loss. To minimize the entropy loss, we
need to find a way so that the size of the sketch is not much larger than the
randomness we invested during the construction.

4.1 Construction of PH in One Dimension (d = 1)

For any point x ∈ [0, N − 1], call the set S1(x) = {x + 1, x + 2, . . . , x + 2δ} the
half-sphere of x.

Given X = {x1, . . . , xs}, the white noise PH is constructed as below. We first
construct a sequence 〈h0, h1, . . . , hN−1〉, where each hi ∈ [0, p1 − 1], and p1 is a
parameter that is chosen to be p1 = |S1(x)|+1 = 2δ+1 for optimal performance.

1. For each x ∈ X , set hx = 0, and for each a ∈ S1(x), ha is uniformly chosen
at random from {1, . . . , p1 − 1}.

2. For each hi that has not been set in step 1, uniformly choose its value from
{0, . . . , p1 − 1}.



For each w ∈ [0, N − 1], we select it to be in the codebook if and only if
hw = 0 and ha 6= 0 for all a ∈ S1(w). Hence, if w is a codeword, there would
be no other codeword in the half-sphere S1(w). The sequence 〈h0, . . . , hN−1〉 is
published as the white noise sketch PH . Note that in practice, we can simply
publish a description of the codebook C as the sketch. However, we choose to
publish the entire sequence 〈h0, . . . , hN−1〉 for the ease of analysis.

From the codebook C, we can construct PS , the second part of the sketch,
using known schemes for set difference.

During decoding, given Y , each point y ∈ Y is matched with its nearest
codeword in C. Suppose y is a noisy version of an x ∈ X , i.e. |y − x| ≤ δ,
it is easy to verify that x is its closest point in C. Hence, PH can correct the
white noise. Lemma 3 gives the entropy loss, and Lemma 4 shows that the
bound is quite tight. Note that Lemma 3 and 4 still hold if we choose to publish
a shorter description of the codebook instead of the entire sequence. In other
words, publishing the entire sequence might seem to reveal more information
about X , the “worst-case” entropy loss would not be much different.

Lemma 3 The entropy loss of X given PH is at most

s

(
log ∆ + (∆ − 1) log(1 +

1

∆ − 1
)

)

which is less than s (log ∆ + log e), where e is the base of natural logarithm.

Proof: Since the randomness invested in constructing PH can be recovered
from X and PH , we can apply (1) in Section 3. In particular, we look at the dif-
ference between the size of the sketch PH , which is N log p1, and the randomness
invested in constructing PH . For any hi in PH , if it is not set in Step 1 of the
above construction, then |hi| = log p1, which equals to the invested randomness,
and hence it does not contribute to the difference. For each hx such that x ∈ X ,
it is set to 0, which contributes log p1 to the difference. For each ha such that
a ∈ S1(x) for some x ∈ X , we use log(p1 − 1) bits of randomness, hence the
difference introduced is log p1

p1−1 .

Therefore, the total difference (hence the entropy loss) is no greater than

s

(
log p1 + 2δ log

p1

p1 − 1

)
.

When p1 = 2δ + 1, and substituting ∆ = 2δ + 1, we have

LH ≤ s

(
log ∆ + (∆ − 1) log(1 +

1

∆ − 1
)

)
.

Since (1 + 1
∆−1 )∆−1 approaches e from below when ∆ approaches infinity, we

have the above claimed bound.

Lemma 4 There exists a distribution of X, where the entropy loss of X given
PH is at least s(log ∆ + (∆ − 1) log(1 + 1

∆−1 )) − ε for some positive constant ε.



Proof: Consider the distribution X = {x1, x1 + 2∆, · · · , x1 + 2(s − 1)∆},
where x1 is uniformly chosen from a set A = {a1, · · · , aλ} of λ points. Hence,
H∞(X) = log λ. Recall that, given PH , a point w is a codeword if and only if
hw = 0 and hb 6= 0 for all b ∈ S1(w). Certainly, each point xi in X itself must
be a codeword. Hence, each point ai ∈ A is a possible candidate of the original
point x1 if and only if all the points in {ai, ai + 2∆, . . . , ai + 2(s − 1)∆} are
codewords in C.

For any ai 6= x1, the probability that ai is a possible candidate of x1 is at
most 1

∆s (1− 1
∆)(∆−1)s. Let C be the number of candidates of x1 for a given PH ,

then we have

E[C] ≤ 1 +
λ − 1

∆s
(1 −

1

∆
)(∆−1)s ≤ 1 +

λ

∆s
(1 −

1

∆
)(∆−1)s.

Now by choosing

λ = 2s(log ∆+(∆−1) log(1+ 1

∆−1
))

we have E[C] ≤ 2. By Markov’s Inequality, we have

Pr[C ≤ 4] ≥ 1 − E[C]/4 ≥ 1/2.

We note that

Eb←PH

[
2−H∞(X|PH=b)

]

=Eb←PH

[
max

a
Pr[X = a|PH = b]

]

≥
1

4
Pr[C ≤ 4] ≥

1

8
.

Therefore, the left-over entropy H̃∞(X |P ) ≤ − log 1
8 = 3. Considering that

H∞(X) = log λ = s
(
log ∆ + (∆ − 1) log(1 + 1

∆−1 )
)
, and let ε = 3, we have the

claimed bound.

4.2 Extension to Higher Dimensions

The construction in one dimension can be easily extended to higher dimensions
by giving an appropriate notion of half-sphere. Let us first define a total order
for the points in [0, N − 1]d. Define 〈x1, x2, . . . , xd〉 � 〈x′1, x

′
2, . . . , x

′
d〉 if and only

if there exists an i such that xi > x′i and xj = x′j for all 1 ≤ j < i. We define the
half-sphere of x in d-dimensions Sd(x) = {y | 0 < ‖y − x‖∞ ≤ 2δ and y � x}.

The sketch PH is a set of Nd symbols. For each hy ∈ PH , we have y ∈
[0, N − 1]d and hy ∈ {0, . . . , pd − 1} for some parameter pd that is to be chosen
later. We construct PH as below.

1. For each x ∈ X , set hx = 0. For every a ∈ Sd(x), uniformly choose ha at
random from {1, . . . , pd − 1}.



2. For each hy that is not set in step 1, choose its value uniformly at random
from {0, . . . , pd − 1}.

From PH we can determine the codebook C as follows. A point x ∈ [0, N−1]d

is in C if and only if hx = 0 and for every a ∈ Sd(x), we have ha 6= 0. We can
then construct the second part PS of the sketch for set difference. Suppose y is
a noisy version of an x ∈ X , that is, ‖y − x‖∞ ≤ δ, it is not difficult to verify
that its closest point in C is x.

In fact, this construction is essentially the same as the construction for d = 1,
except that Sd(x) is larger when d > 1. By simple counting we have

|Sd(x)| =
(4δ + 1)d − 1

2
.

Similar to the one-dimensional case, we choose pd = |Sd(x)|+1. By substituting
∆ = 2δ + 1, we have

Theorem 5 The entropy loss of X given sketch PH is at most

s

(
log pd + (pd − 1) log(1 +

1

pd − 1
)

)
≤ s

(
d log ∆ + d + log

e

2

)

in d-dimensions, where pd = (4δ+1)d+1
2 , and e is the base of natural logarithm.

Similarly to the one-dimensional case, the above bound is tight. That is, there
is a distribution of X such that the entropy loss is at least

s

(
log pd + (pd − 1) log(1 +

1

pd − 1
)

)
− ε

for some positive constant ε. Taking into consideration the entropy loss of sketch
for set difference, we have

Corollary 6 In d-dimensions, the entropy loss of X given sketch PHPS is at

most s
(
d log ∆ + d + log e

2

)
+ LSD

(
s, t, Nd

(2δ+1)d

)
.

5 Improved Schemes

The generic construction in Section 4.2 can indeed be further improved in terms
of entropy loss. We employ two techniques. The first is pre-rounding. That is,
each point in X and Y is rounded prior to both encoding and decoding. We
observe that, the effect of the white noise is reduced on the rounded points. The
second technique is partitioning, where we carefully partition the domain into
cells. Instead of selecting points independently from the space, in the improved
scheme, at most one point is selected in each cell. Both techniques are useful in
reducing the randomness required in constructing PH .



5.1 Improvement in One Dimension (d = 1)

First, we give an improvement for δ = 1 using partitioning, and we observe that
this scheme can be extended to any δ > 1 by pre-rounding.

We partition the domain [0, N − 1] into cells of size 3, such that the i-th cell
contains the 3 consecutive points {3i, 3i + 1, 3i + 2}. There are n′ = dN/3e cells
in total. We want to assign one bit hi to the i-th cell for all 0 ≤ i ≤ n′ − 1, and
construct PH as the binary sequence 〈h0, h1, . . . hn′−1〉.

Our main idea is to use this binary sequence to describe the codewords in
the cells. At the first glance, it seems impossible since each cell would have three
different possible codewords, which cannot be described by one bit. However,
since two codewords cannot be too close to each other, we can eliminate certain
cases by considering each two consecutive cells together. In this way, we can use
only two bits to describe the codewords in two consecutive cells.

Here is how the values in the binary sequence are determined: For each x ∈ X ,
it is in the i = bx/3c-th cell, and r = x mod 3 indicates the location of x in
the i-th cell. We set two values hi and hi+1 in PH according to Table 1(a).
Since there are s points in X , the above process sets the values for 2s bits in
〈h1, h2, . . . hn′−1〉. For each hi that is not set, we randomly assign a value from
{0, 1} to it.

Now, from 〈h0, h1, . . . hn′−1〉, we determine a set of “potential codewords”.
For each i-th cell, the potential codeword in the cell is determined by hi and
hi+1 using Table 1(b). Next, for a potential codewords x, if there is another
potential codeword x′ such that x′ ∈ S1(x), then x is removed. The retained
points form the codebook C. By the design of Table 1(a) & (b), each x ∈ X will
be a codeword.

hi hi+1

r = 0 0 0

r = 1 0 1

r = 2 1 1

hi+1 = 0 hi+1 = 1

hi = 0 3i 3i + 1

hi = 1 3i + 2 3i + 2

(a) (b)

Table 1. Improved Scheme for d = 1.

Similar to the basic construction, in practice, we can publish a description
of C as the sketch. However, for the ease of analysis, we choose to publish
〈h0, h1, . . . , hn′−1〉. During decoding, each y is simply matched to the nearest
codeword in C.

Since we invested n′−2s bits of randomness, and the size of sketch is 2s, the
entropy loss is at most 2s.

Extension to any δ. To extend this scheme to any δ, we employ rounding. The
rounding is essentially a many-to-one mapping. For each point w ∈ [0, N − 1],



we map it to ŵ = bw/δc. Note that under white noise, the perturbed point w′

can only be mapped to ŵ − 1, ŵ or ŵ + 1. In other words, under the mapping,
the white noise (that appears to be on ŵ) is reduced to −1, 0, or +1, which
corresponds to white noise with unit strength. Since the mapping is many-to-
one, for each x ∈ X , we keep the rounding error x − δ(bx/δc) and publish it as
part of the sketch. Hence, the additional entropy loss due to the rounding is at
most log δ for each x ∈ X . In total, we have

Theorem 7 The entropy loss for the above scheme is at most (2 + log δ)s +
LSD (s, t, N/(3δ)) .

5.2 Improvement for d = 2 and δ = 1

For δ = 1 in two dimensions, with a parameter α ∈ [0, 4], we partition the space
such that every 5 points of the form {(w, 5k + α), (w, 5k + α + 1), (w, 5k + α +
2), (w, 5k +α +3), (w, 5k +α +4)} for some non-negative integer k, are grouped
into a cell (Fig. 1). Each cell will be assigned a number q ∈ [0, p2 − 1] where p2

is a constant to be decided later. If the assigned value q is less than or equal to
4, then we select the point (w, 5k + q) to be a codeword in the cell, otherwise no
codeword is selected in this cell.

d1 d3

d4

d5

d6
d2

(a) (b)

Fig. 1. Cells of size 5. For each scenario, the black point is a data point, the white
points cannot be in the codebook.

There are five possible scenarios for a point x ∈ X , corresponding to the five
different possible locations it occupies in a cell. Two of the five possible scenarios
are illustrated in Fig. 1. Now we count the entropy loss for the scenario in Fig.
1(a). Same as in the basic construction, for any x ∈ X , all the points in the
half-sphere S2(x) cannot be codewords. Therefore, all the white points in the
figure cannot be codewords. Hence, for cell labeled d1, there is only 1 choice for
the value of the corresponding q, for d3 and d5, there are p2 − 3 choices, and for
d2, d4, and d6, there are p2 − 2 choices. Hence the entropy loss for this point is
log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)).



Now we choose p2 = 14, and the entropy loss for all five scenarios are as
shown in Table 2.

(a) log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)) < 5.1704

(b) log p2 + 2 log(p2/(p2 − 4)) + 3 log(p2/(p2 − 1)) < 5.0990

(c) log p2 + 2 log(p2/(p2 − 5)) < 5.0823

(d) log p2 + 2 log(p2/(p2 − 4)) + 2 log(p2/(p2 − 1)) < 4.9921

(e) log p2 + 2 log(p2/(p2 − 3)) + 2 log(p2/(p2 − 2)) < 4.9480

Table 2. Entropy loss of the five scenarios.

Next, we choose a value for α, such that scenario (e) happens most often.
By this choice of α, we can show that LH ≤ 5.0750s, whereas in the basic
construction in Section 4.2, the bound is at least 5.0861s for δ = 1.

Although the improvement is small, this construction suggests that the basic
construction can be further improved by partitioning. There are many ways to
partition the 2-d domain, and it is interesting to find the optimal partition in
terms of entropy loss.

6 Short Description of PH

In the basic constructions (Section 4.2), we can view the sketch PH as a random
sequence of length Nd log pd with two types of constraints: Type 0 constraint is
of the form (k, 0), which requires that hk = 0, and type 1 constraint is of the form
(k, 1) which requires that hk 6= 0. The main idea is as follows: Find the seed of
some pseudo-random generator, such that the generated sequence satisfies all the
type 0 and 1 constraints, and use the seed as the sketch. In this section, we give
two methods. The first method has efficient decoding and encoding algorithms,
but still requires randomness. The second method eliminates all randomness but
there is no known efficient encoder.

Using a high degree polynomial: Let n = Nd, and assign each x ∈ [0, N − 1]d a
unique index ind(x) in [0, n−1]. Given a constraint set S = {(k1, r1), . . . , (km, rm)},
we construct a polynomial f(x) of degree at most m− 1 in Zn as the following.

1. Uniformly choose d1, . . . , dm ∈ Zn at random such that for 1 ≤ i ≤ m, if
ri = 0, then di ≡ 0 mod pd, otherwise di 6≡ 0 mod pd.

2. Find the polynomial f of degree at most m − 1 such that f(ind(ki)) ≡ di

mod n for 1 ≤ i ≤ m.

The m coefficients of f is published as the sketch. During decoding, each hk in
PH can be recovered by computing hk = (f(ind(k)) mod n) mod pd. Since for
each point x we can have at most |Sd(x)|+ 1 constraints, The polynomial f can

be represented using ds((4δ+1)d+1)
2 log N bits.



When pd divides n, the entropy loss of this sketch is the same as the basic
construction.

Using almost k-wise independence [1]. A sample space of n bits is almost k-wise
independent if the probability distribution, induced on every k bit locations in a
randomly chosen string from the sample space, is statistically close to uniform.
The number of bits required to describe one sample is (2+o(1))(log log n+3k/2+
log k). The sample space is pre-computed and made public.

We observe that this construction can be employed to make the sketch
shorter. For instance, for d = 1 and δ = 1 in our basic construction, we can
construct such a sample space with k = 3s and n = N . Given an original X ,
which in turn gives a set of constraints, we find the first sample that satisfies
the constraints. The description of the sample is the sketch, whose size is in
o(s + log log N), which is also an upper bound for the entropy loss. In general,
the size of the sketch would be in o

(
s∆d + log log(Nd)

)
in d-dimensional space.

However, we are not aware of a better bound on the entropy loss other than the
size of the sketch.

7 Entropy Loss of a Random Placement Method

Intuitively, it seems that it is better to have the codebook C = (X ∪R) as large
as possible, since then a brute-force attacker will need to try more guesses to
get X . In this section we give a seemingly natural random placement method to
construct PH with a large R in one dimension, and we show that the entropy
loss is high for certain distributions of X .

The secure sketch PH is a description of the sequence
〈
r0, r1, . . . , rdN/∆e

〉
.

Each ri describes the gap between two consecutive codewords in C (except for r0,
which can be considered as the description of an “imaginary” starting codeword).
Hence, instead of generating the codewords directly, we randomly choose the
gaps between the codewords.

The sequence PH is generated incrementally, starting from r1. Most of the
times the value of each gap can be chosen from ∆ different values, but when a
codeword w is close to a point x ∈ X , then the gap between w and the next
codeword will be selected from a smaller interval (Steps 2 and 3).

1. Let r0 = −δ, i = 1.
2. If there is an x ∈ X s.t. x − ri−1 ∈ [2δ, 4δ] then let ri = x − ri−1.
3. If there is an x ∈ X s.t. x − ri−1 ∈ [4δ + 1, 6δ], uniformly choose ri from

[∆ − 1, x − ri−1 − ∆]. Otherwise, uniformly choose ri from [∆ − 1, 2∆ − 2].
4. Increase i by 1, and repeat from Step 2 until i = dN/∆e + 1.
5. Output PH =

〈
r1, . . . , rdN/∆e

〉
.

The codewords can be recovered from PH . In particular, the k-th codeword is∑k
i=0 ri, for 1 ≤ k ≤ dN/∆e. If a codeword recovered in this process is greater

than N − 1, it is removed. It is not necessary for PH to have exactly dN/∆e
elements, and the extra padding is only for the ease of analysis.



Consider X = {x1, x1 + 2∆, . . . , x1 + 2(s − 1)∆}, where x1 is uniformly
distributed. It can be shown that the entropy loss of X given PH is at least
2s log∆− ε for some small positive constant ε. Comparing with other construc-
tions in this paper, this method reveals the most information, even though it
produces the largest number of codewords.

8 Conclusions and Discussions

In this paper, we investigate the technique of hiding a set of secret points by
adding chaff points. Instead of considering brute force attackers as in known
previous works, we give rigorous treatment under the secure sketch framework.
We propose a construction of secure sketch for such point-sets, which can be
extended to any dimension, and also some improvements for certain specific
parameters. We give tight bounds of the entropy loss of our schemes.

Although we used infinity norm as the measure of closeness between any
pair of points in the space, it is not difficult to extend our basic construction to
any other closeness relations (e.g., using `2 norm). It seems that this is always
possible as long as a total order can be defined on the points, so that the half-
sphere of any given point is uniquely defined and is bounded.

On the other hand, the improvements in Section 5 are “ad-hoc” in the sense
that they are specially designed for particular values of δ and d. We can also
obtain improved schemes for another case where the white noise either leaves a
coordinate unchanged or increased by one (we call this the 0-1 noise). An inter-
esting question now is whether there is a generic method to find the “optimal”
way of partitioning the space.

The proposed sketches are not suitable for large universe size Nd. The meth-
ods in Section 6 can reduce the sketch size, but the encoding and decoding
algorithms can still be inefficient for large universe.
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