
The Cramer-Shoup Encryption Scheme is
Plaintext Aware in the Standard Model

Alexander W. Dent

Royal Holloway, University of London
Egham, Surrey, TW20 0EX, U.K.

a.dent@rhul.ac.uk

Abstract. In this paper we examine the notion of plaintext awareness
as it applies to hybrid encryption schemes. We apply this theory to the
Cramer-Shoup hybrid scheme acting on fixed length messages and deduce
that the Cramer-Shoup scheme is plaintext-aware in the standard model.
This answers a previously open conjecture of Bellare and Palacio on the
existence of fully plaintext-aware encryption schemes.

1 Introduction

Plaintext awareness is a simple concept with a difficult explanation. An encryp-
tion scheme is plaintext aware if it is practically impossible for any entity to
produce a ciphertext without knowing the associated message. This effectively
renders a decryption oracle useless to an attacker, as any ciphertext submitted
for decryption must either be invalid or the attacker must already know the
decryption of that ciphertext and so does not gain any information by querying
the oracle. Thus a scheme that is plaintext aware and semantically secure should
be secure against adaptive attacks.

There are two problems with this simplistic approach. Firstly, if we wish to
achieve the IND-CCA2 definition of security for an encryption scheme, then we
have to be careful about how we define plaintext awareness, because, in this
model, the attacker is always given one ciphertext for which he does not know
the corresponding decryption (the challenge ciphertext). It is usually compara-
tively simple to achieve plaintext awareness when you do not have to consider
the attacker as able to get hold of ciphertexts for which he does not know the
corresponding decryption. We will follow the notation of Bellare and Palacio
[4] and term this PA1 plaintext-awareness. A scheme that is IND-CPA and
PA1 plaintext aware is only IND-CCA1 secure [4]. It is a lot harder to prove
plaintext-awareness in full generality, when the attacker has access to an oracle
that will return ciphertexts for which the attacker does not know the corre-
sponding decryption, especially if the attacker has some measure of control over
the probability distribution that the oracle uses to select the messages that it
encrypts. This is termed PA2 plaintext awareness.

The second problem is that it is difficult to formally define plaintext aware-
ness. The obvious way to define it is to say that for every attacker A that outputs

a challenge ciphertext C, there exists a plaintext extractor A∗ for A that outputs
the decryption of C when given C as input. However, any encryption scheme
that satisfies this definition of plaintext awareness in the standard model must
necessarily fail to be IND-CPA secure. Hence, such a definition is not useful.
For a satisfactory definition of plaintext awareness to be proposed, it is impera-
tive that the plaintext extractor A∗ be given some extra information about the
actions that the attacker A took in order to compute the challenge ciphertext.

The original definition of plaintext awareness [2] was only given in the ran-
dom oracle model and the plaintext extractor was given access to the oracle
queries that the attacker made when constructing ciphertexts. This definition
works well, but can only prove the security of a scheme in the random ora-
cle model. Recently, a definition of plaintext awareness has been given in the
standard model [4], where the plaintext extractor is also given access to the
random coins that the attacker used in constructing the challenge ciphertext;
thus the plaintext extractor can examine every action that the attacker took in
its execution. Unfortunately, Bellare and Palacio were unable to prove that any
scheme met their strongest (PA2) definition of plaintext awareness, although
they suggested that the Cramer-Shoup scheme [5] was a very likely candidate.

This paper proves that the Cramer-Shoup scheme is plaintext aware in the
standard model, thus proving the conjecture of Bellare and Palacio. The proof
uses two new techniques: encryption simulation and PA1+ plaintext awareness.
An encryption scheme that is simulatable is necessarily IND-CCA2 secure, and
so the concept has limited use. However, the concept of PA1+ plaintext aware-
ness may have further scope. The proof is obtained under several computational
assumptions, including the controversial Diffie-Hellman Knowledge (DHK) as-
sumption. We also assume the existence of groups on which the DDH problem
is hard and the existence of suitably secure hash functions.

2 Preliminaries

2.1 Asymmetric Encryption Schemes

We briefly recap the notion of an asymmetric cipher and of a KEM-DEM hybrid
cipher [5]. We will assume that the reader is familiar with the general theory of
hybrid ciphers and will concentrate on introducing notation that will be used in
this paper. An asymmetric encryption scheme is a triple of algorithms:

1. A probabilistic polynomial-time key generation algorithm, G, which takes as
input a security parameter 1k and outputs a public/private key pair (pk, sk).
The public key defines the message space M, which is the set of all possi-
ble messages that can be submitted to the encryption algorithm, and the
ciphertext space C, which is the set of all possible ciphertexts that can be
submitted to the decryption algorithm (and may be larger than the range of
the encryption algorithm).

2. A (possibly) probabilistic polynomial-time encryption algorithm, E , which
takes as input a message m ∈M and a public key pk, and outputs a cipher-
text C ∈ C. We will denote this as C = E(pk,m).

3. A deterministic polynomial-time decryption algorithm, D, which takes as
input a ciphertext C ∈ C and a secret key sk, and outputs either a message
m ∈M or the error symbol ⊥. We denote this as m = D(sk, C).

The accepted notion of security for an asymmetric encryption scheme is assessed
via the following game played between a two-stage attacker A = (A1,A2) and a
hypothetical challenger:

1. The challenger generates a valid public/private key pair (pk, sk) by running
G(1k).

2. The attacker runs A1 on the input pk. It terminates by outputting two equal-
length messages m0 and m1, as well as some state information state. During
its execution A1 may query a decryption oracle that, when given C ∈ C will
return D(sk, C) .

3. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes the
challenge ciphertext C∗ = E(pk, mb).

4. The attacker runs A2 on C∗ and state. It terminates by outputting a guess b′

for b. Again, during its execution, A2 may query a decryption oracle, subject
to the restriction that it may not query the oracle on the input C∗.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (1)

Definition 1. If, for all polynomial-time attackers A, the advantage that A has
in winning the above game for an encryption scheme (G, E ,D) is negligible as a
function of the security parameter k, then that encryption scheme is said to be
IND-CCA2 secure.

For more information on the basic security models for an asymmetric encryp-
tion scheme, the reader is referred to [2].

A hybrid cipher is an asymmetric cipher which uses a keyed symmetric algo-
rithm, such as an encryption algorithm or a MAC, as a subroutine. Most hybrid
ciphers can be presented as the combination of an asymmetric key encapsulation
method (KEM) and a symmetric data encapsulation method (DEM). A KEM
is a triple of algorithms consisting of:

1. A probabilistic, polynomial-time key generation algorithm, Gen, which takes
as input a security parameter 1k and outputs a public/private key pair
(pk, sk).

2. A probabilistic, polynomial-time encapsulation algorithm, Encap, which takes
as input a public key pk, and outputs a key K and an encapsulation of that
key C. We denote this as (C, K) = Encap(pk).

3. A deterministic, polynomial-time decapsulation algorithm, Decap, which takes
as inputs the private key sk and an encapsulation C, and outputs a sym-
metric key K or the error symbol ⊥. We denote this as K = Decap(sk, C).

A DEM is a pair of algorithms consisting of:

1. A deterministic, polynomial-time encryption algorithm, Enc, which takes as
input a message m ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length. It outputs an encryption C = EncK(m).

2. A deterministic, polynomial-time decryption algorithm, Dec, which takes
as input an encryption C ∈ {0, 1}∗ and a symmetric key K of some pre-
determined length, and outputs either a message m ∈ {0, 1}∗ or the error
symbol ⊥.

A KEM and a DEM can be composed in the obvious way in create a hybrid
encryption algorithm. The greatest advantage of designing a hybrid encryption
scheme in terms of KEMs and DEMs is that Cramer and Shoup [5] were able to
propose independent security criteria for the KEM and the DEM that guarantee
that a secure KEM and a secure DEM combine to give a secure (IND-CCA2)
encryption scheme. However, since our focus is on plaintext awareness, we will
not need to discuss these security notions here.

2.2 Plaintext Awareness

We use the notions and notations given by Bellare and Palacio [4]. The notion
of plaintext awareness in the standard model states that an encryption scheme
(G, E ,D) is plaintext aware in the standard model if, for all ciphertext creators
(attackers) A, there exists a plaintext extractor A∗ which takes as input the
random coins of A and can answer the decryption queries of A in a manner
that A cannot distinguish from a real decryption oracle. In order that A can
be given access to ciphertexts for which it does not know the corresponding
decryption, A will be allowed to query a plaintext creation oracle P with some
query information aux . The plaintext creation oracle will pick a message at
random (possibly from a distribution partially defined by aux) and returns the
encryption of that message to the attacker1. Note that both A∗ and P retain
their state and their ability to access the same random tape between invocations.

We will assume that all the algorithms described are polynomial-time, prob-
abilistic, state-based Turing machines, and that the random coins of the Turing
machine A are denoted R[A]. Plaintext awareness is formally defined using two
games. First we define the REAL game:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

1 Technically, the plaintext creator will only generate a random message, and it will
be left to the challenge to compute the encryption of that message. However, since
the ciphertext creator and the plaintext extractor receive exactly the same inputs
regardless of whether the challenger or the plaintext creator encrypts the message,
we do not distinguish between the two cases.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns D(sk, C). The attacker may not query the
decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk,R[A],CList). The attacker may
not query the decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

Definition 2 (Plaintext awareness). An asymmetric encryption scheme is
said to be plaintext aware (PA2) if for all ciphertext creators A, there exists a
plaintext extractor A∗ such that for all plaintext creators P and polynomial time
algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (2)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

An asymmetric encryption scheme is said to be PA1 if for all ciphertext cre-
ators A that make no encryption oracle queries, there exists a plaintext extractor
A∗ such that for all polynomial time algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (3)

is negligible as a function of the security parameter.

3 Simulatable Encryption Schemes

The aim of this paper is to show that the Cramer-Shoup scheme is plaintext-
aware. In order to do this we take advantage of a very useful property that
it possess: when instantiated with a suitable DEM, no attacker can distinguish
valid ciphertexts from completely random bit strings. By this we mean that there
exists a function f , which is in some sense invertible, that takes random bits as
input and outputs bit strings that look like ciphertexts to an attacker. These bit
strings are very unlikely to actually be valid ciphertexts (as we believe that the
Cramer-Shoup scheme is plaintext aware) but no attacker can distinguish them
from valid ciphertexts. We call this encryption simulation. For a simulatable

encryption scheme, an attacker’s ability to get hold of new ciphertexts in the
PA2 model is roughly equivalent to an ability to get hold of blocks of random
data. A scheme that remains plaintext-aware even when the attacker can get hold
new fixed-length random strings on demand is said to be PA1+ plaintext aware.
This notion is stronger than PA1, but conceptually weaker than PA2 plaintext
awareness. In this section we will formally define simulation and PA1+ plaintext
awareness, and show that any scheme that is both PA1+ and simulatable is PA2.

3.1 Simulatable Encryption

We will wish to work with encryption schemes that are simulatable, by which
we mean that there exists a Turing machine f which take a string of random
bits as input and produces an output that cannot be distinguished from real
ciphertexts. The difference between f and the real encryption function is that f
must be in some sense invertible. We envisage f taking long strings of random
bits as input and producing a shorter output, and so we insist on the existence
of a Turing machine f−1 which acts as a perfect inverse for f when used on the
right, i.e.

f(f−1(C)) = C for all C ∈ C . (4)

However, since f−1 cannot act as a perfect inverse for f when used on the left,
we merely require that f−1(f(r)) looks like a randomly generated bit string, i.e.
it is computationally infeasible to tell the difference between a random string
r of the appropriate length and f−1(f(r)). Hence, f−1 must be a probabilis-
tic polynomial-time Turing machine; while, for technical reasons, f must be a
deterministic polynomial-time Turing machine.

Definition 3 (Simulatable Encryption Scheme). An asymmetric encryp-
tion scheme (G, E ,D) is simulatable if there exist two polynomial-time Turing
machines (f, f−1) such that:

– f is a deterministic Turing machine that takes the public key pk and an
element r ∈ {0, 1}l as input, and outputs elements of C. For simplicity’s
sake, we shall often represent f as a function from {0, 1}l to C and suppress
the public key input.

– f−1 is a probabilistic Turing machine that takes the public key pk and an
element C ∈ C as input, and outputs elements of {0, 1}l. Again, we will
often represent f−1 as a function from C to {0, 1}l and suppress the public
key input.

– f(f−1(C)) = C for all C ∈ C.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k) and randomly

chooses a bit b ∈ {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k), an empty list

CList, and a bit b chosen randomly from {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to two

oracles:
* An encryption oracle that takes a message m ∈ M as input and

returns an encryption C. If b = 0, then the oracle returns C =
E(pk, m). If b = 1, then the oracle returns C = f(r), for some ran-
domly chosen r ∈ {0, 1}l. In either case C is added to CList.

* A decryption oracle that takes an encryption C ∈ C as input and
returns D(sk, C). The attacker may not query the decryption oracle
on any C ∈ CList.

The attacker terminates by outputting a guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

At this stage, and for technical reasons that will become apparent in the next
section, we will restrict ourselves to encryption schemes that have fixed-length
ciphertext spaces, i.e. the ciphertext space C = {0, 1}n for some n. Normally, the
simplest way of producing a cipher with fixed-length ciphertexts is to restrict
the message space to fixed-length messages.

Theorem 1. If (G, E ,D) is a simulatable encryption scheme then it is IND-
CCA2 secure.

Sketch Proof Let A be an IND-CCA2 attacker for the scheme, and let Game
1 be the game in which A interacts with the IND-CCA2 game properly. Let
Game 2 be similar to Game 1 except that the challenge ciphertext is computed
by applying f to a randomly generated string r ∈ {0, 1}l, rather than using the
proper encryption algorithm. Let Wi be the event that A wins Game i.

Consider the following algorithm B against the simulatability of the encryp-
tion scheme:

1. The challenger generates a key pair (pk, sk) = G(1k), an empty list CList,
and a bit b chosen randomly from {0, 1}.

2. B executes A1 on the input pk. If A1 makes a decryption oracle query, then
this is passed directly to B’s decryption oracle and the result returned to
A1. A1 terminates by outputting two equal-length messages m0 and m1,
and some state information state.

3. B randomly chooses a bit d ∈ {0, 1} and queries its encryption oracle with
the message md. B receives back a ciphertext C∗.

4. B executes A2 on the input (C∗, state). If A2 makes a decryption oracle
query, then this is passed directly to B’s decryption oracle and the result
returned to A2. Note that A2 will never force B to make a decryption or-
acle query on C∗ ∈ CList due to the nature of the IND-CCA2 game. A2

terminates by outputting a guess d′ for d.

5. If d = d′, then B outputs 1. Otherwise B outputs 0.

If b = 0 then B perfectly simulates Game 1 for A. If b = 1 then B perfectly
simulates Game 2 for A. In both cases B outputs 1 if and only if A wins. It is
well known that we may express B’s advantage as:

1
2
|Pr[B outputs 1|b = 0]− Pr[B outputs 1|b = 1]| . (5)

However,

|Pr[B outputs 1|b = 0]− Pr[B outputs 1|b = 1]| = |Pr[W0]− Pr[W1]| . (6)

Hence, |Pr[W1] − Pr[W2]| is negligible, as the encryption algorithm is simulat-
able. In Game 2, though, the challenge ciphertext is completely independent of
the messages supplied by the attacker. Therefore, Pr[W2] = 1/2 and (G, E ,D) is
IND-CCA2 secure. ut

Therefore, in some sense, the notion of encryption simulation is less useful
than one might hope. It should be easier to prove that a scheme is IND-CCA2
secure, than to show that it is simulatable; and if we can show that a scheme
is simulatable, then there is no need to consider whether it is plaintext aware,
as we have already shown that it is IND-CCA2. However, since our goal in this
paper is to show that PA2 schemes can exist, this notion will prove useful.

3.2 PA1+ Plaintext Awareness

For a simulatable encryption algorithm, a ciphertext creator’s ability to get hold
of new, randomly generated ciphertexts C (that are the encryption of messages
drawn from some distribution) is roughly equivalent to being able to get hold of
randomly generated strings r = f−1(C) ∈ {0, 1}l. We define the PA1+ model
as the extension of the PA1 model in which a ciphertext creator has access to
an oracle which provides it with randomly generated bit strings of length l, and
show that, for a simulatable encryption algorithm, this is enough to imply that
the scheme is PA2 plaintext-aware.

We define the PA1+ model using the REAL and FAKE games as before.
For an attacker A the REAL game works as follows:

1. The challenger generates a random key pair (pk, sk) = G(1k).
2. The attacker executes A on pk. The attacker has access to a decryption

oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gen-

erates a random strong r ∈ {0, 1}l, and returns r to the attacker.
– If the attacker queries the decryption oracle with a ciphertext C, then

the decryption oracle returns D(sk, C).
The attacker terminates by outputting a bitstring x.

The FAKE game is defined in the obvious way:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
(empty) list RList of the random blocks that the attacker has been given.

2. The attacker executes A on pk. The attacker has access to a decryption
oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gener-

ates a random strong r ∈ {0, 1}l, adds r to RList and returns r to the
attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

Definition 4 (PA1+ Plaintext Awareness). An asymmetric encryption scheme
is said to be PA1+ plaintext aware if for all polynomial-time ciphertext cre-
ators A, there exists a polynomial-time plaintext extractor A∗ such that for all
polynomial-time distinguishing algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (7)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Intuitively, the difference between PA1 and PA1+ is in the ability for the
ciphertext creator to act in a manner that is unpredictable by the plaintext
extractor after the plaintext extractor has returned a message. For a scheme
that is PA1, the plaintext extractor, when attempting to provide some sort of
decryption of a ciphertext, knows exactly what the ciphertext creator is going
to do with the ciphertext (as it has access to the ciphertext creator’s random
tape). Hence, the plaintext creator can tailor its response to make sure that
that particular execution of the ciphertext creator cannot differentiate between
the plaintext extractor’s response and the response of a real decryption oracle.
However, a PA1+ ciphertext creator has the ability to acquire random bits that
could affect its execution after it has received the plaintext extractor’s response,
and so the plaintext extractor cannot tailor its response in the same way.

Theorem 2. Let (G, E ,D) be a simulatable encryption algorithm. If (G, E ,D) is
PA1+ then it is PA2.

Proof This proof works in several stages. We wish to show that for any PA2
ciphertext creator for the encryption scheme A, there exists a plaintext extractor
A∗. First we show that any PA2 ciphertext creator A for the encryption scheme
can be used to create a PA1+ ciphertext creator Ā. Since the encryption scheme
is PA1+ plaintext aware, there exist a plaintext extractor Ā∗ for Ā. We then
show that we can use the plaintext extractor Ā∗ for Ā to build a plaintext
extractor A∗ for A. We will use this technique liberally throughout this paper.

Let A be any PA2 ciphertext creator and let Ā be the PA1+ ciphertext
creator that runs as follows.

1. Execute A.

– If A makes a decryption oracle query, then Ā passes this query directly
on to its own decryption oracle.

– If A makes an encryption oracle query (with query information aux),
then Ā queries its randomness oracle, receives back an l-bit block of
randomness r, and returns f(r) to A.

2. A terminates by outputting a bitstring x. Output x.

Let W0,Dist be the event that Dist(x) = 1 when A interacts with the PA2 model
and a real decryption oracle. Let W1,Dist be the event that Dist(x) = 1 when
Ā interacts with the PA1+ model and a real decryption oracle. It is clear that
any non-negligible difference between Pr[W0,Dist] and Pr[W1,Dist] can be used
to create an algorithm that can distinguish between ciphertexts and simulated
ciphertexts, contravening Definition 3. Thus,

|Pr[W0,Dist]− Pr[W1,Dist]|

is negligible as a function of the security parameter.
Since Ā is PA1+ ciphertext creator, there exists a plaintext extractor Ā∗ for

Ā. Let W2,Dist be the event that Dist(x) = 1 when Ā interacts with the PA1+
model and Ā∗ is used to simulate the decryption oracle. Since Ā∗ is a successful
plaintext extractor for Ā, we have that

|Pr[W1,Dist]− Pr[W2,Dist]|

is negligible as a function of the security parameter.
We now alter slightly the way that the randomness oracle works. Instead of

randomly generated a block of randomness r and returning this to Ā, consider
an oracle that randomly generates a block of randomness r ∈ {0, 1}l and returns
f−1(f(r)) to the ciphertext creator. Let W3,Dist be the event that Dist(x) = 1
when the randomness oracle behaves in this way. Clearly, any significant differ-
ence between Pr[W2,Dist] and Pr[W3,Dist] can be used to create an algorithm
that can distinguish between random blocks r and f−1(f(r)), thus contravening
the properties of f given in Definition 3. Hence,

|Pr[W2,Dist]− Pr[W3,Dist]|

is negligible as a function of the security parameter.
If we examine the architecture now, we notice that RList contains elements

of the form f−1(f(r)), and A (being run as a subroutine of Ā) is given elements
of the form f(f−1(f(r))) = f(r). Consider now a situation where

– the randomness oracle returns f(r) instead of f−1(f(r))
– to the ciphertext creator A (instead of Ā),
– and decryption queries are answered using a plaintext extractorA∗.A∗ works

by executing Ā∗ on the input (pk, C,R[A],RList), where C is the ciphertext
to be decrypted and RList is the list of l-bit random blocks given by taking
the responses C ′ returned the randomness oracle and computing f−1(C ′).

Let W4,Dist be the event that Dist(x) = 1 in this model. Clearly, the functionality
of this model is identical to the previous model. Hence,

Pr[W3,Dist] = Pr[W4,Dist] .

We may now consider the model in which the randomness oracle reverts
to being an encryption oracle. I.e. instead of returning f(r) for some randomly
chosen l-bit block r, it returns the encryption E(m, pk) for message m = P(aux).
Let W5,Dist(x) be the event that Dist(x) = 1 in this model. As before, if there
is any significant difference between Pr[W4,Dist(x)] and Pr[W5,Dist(x)], then we
may build an algorithm that distinguishes between ciphertexts and simulated
ciphertexts, contravening Definition 3. Therefore,

|Pr[W4,Dist(x)]− Pr[W5,Dist(x)]|
is negligible. However, this means that

|Pr[W0,Dist(x)]− Pr[W5,Dist(x)]|
is negligible as a function of the security parameter, and so that A has a suc-
cessful plaintext extractor A∗. Therefore, (G, E ,D) is PA2 plaintext aware. ut

3.3 PA1+ Plaintext-Aware KEMs

It will be convenient for us to work with the hybrid version of the Cramer-
Shoup encryption scheme. In this section we will show that a KEM-DEM scheme
composed of a PA1+ KEM and an arbitrary DEM is PA1+.

We start by defining what we mean by a PA1+ KEM. The PA1+ model for
a KEM is the obvious extension of the PA1+ model for an encryption scheme.
Formally, we define the REAL game as:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates a
fixed-length random string r ∈ {0, 1}l uniformly at random and returns
r to the attacker.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns Decap(sk, C).

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates
a fixed-length random string r ∈ {0, 1}l uniformly at random, adds r to
RList and returns r to the attacker.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

Definition 5. A KEM is said to be PA1+ if, for all ciphertext creators A, there
exists a plaintext extractor A∗ such that for all polynomial time distinguishers
Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (8)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Theorem 3. A hybrid encryption scheme composed of a PA1+ KEM and an
arbitrary DEM is PA1+.

Proof We show that any ciphertext creator A for the encryption scheme can be
used to create a ciphertext creator Ā for the KEM. Since the KEM is plaintext
aware, there exists a plaintext extractor Ā∗ for Ā. We then use Ā∗ to construct
a plaintext extractor A∗ for A.

Let A be a ciphertext creator for the hybrid encryption scheme. We define
the ciphertext creator Ā for the KEM as the algorithm that executes A. If A
queries the decryption oracle with a ciphertext (C1, C2), then Ā queries the de-
capsulation oracle with encapsulation C1. If the oracle returns ⊥ then Ā returns
⊥ to A. Otherwise the oracle returns a key K and Ā returns DecK(C2) to A.
Any queries that A makes to the randomness oracle are passed directly on to
Ā’s randomness oracle, and the results returned to A.

Since Ā is a valid ciphertext creator for the KEM, there exists a plaintext
extractor Ā∗. We define a plaintext extractor A∗ for A as follows. On the sub-
mission of a ciphertext (C1, C2), A∗ executes Ā∗ on C1. If Ā∗ returns ⊥, then
A∗ returns ⊥ to A. Otherwise Ā∗ returns a key K, and Ā∗ returns DecK(C2).
It is easy to see that the system in which A interacts with its decryption oracle
(in the REAL or FAKE game) is the same as Ā interacting with its decryption
oracle in the same game. Hence, the outputs of A must be indistinguishable
regardless of the game which A is playing. ut

4 The Cramer-Shoup Scheme

In this section we will show that the Cramer-Shoup scheme, when applied to fixed
length messages, is fully plaintext aware (PA2). This will prove a conjecture
of Bellare and Palacio [4] by showing PA2 schemes can exist in the standard
model. For our purposes, the Cramer-Shoup scheme will consist of the Cramer-
Shoup KEM and an Encrypt-then-MAC DEM using a suitably secure encryption
algorithm and MAC algorithm. Note that this is slightly different to the Cramer-
Shoup scheme proven PA1 plaintext aware by Bellare and Palacio [4], but that
similar techniques could have been used to prove that this scheme is PA1. We
will define the Cramer-Shoup KEM as working over an arbitrary group G: this
will make it easier to separate the properties required from the scheme from
those that are required from the group.

Definition 6 (Cramer-Shoup KEM). The Cramer-Shoup KEM is defined
by the following three algorithms:

– The key generation algorithm which runs as follows:
1. Generate a cyclic group G of order q and a generator g for G.
2. Randomly select w ∈ Z∗q and set W = gw.
3. Randomly select elements x, y and z from Zq, and set X = gx, Y = gy,

and Z = gz.
4. The public key consists of (g, q, W,X, Y, Z). The private key consists of

(g, q, w, x, y, z). Note that both the encapsulation and decapsulation al-
gorithms also make use of a hash function Hash : G × G → Zq and a
key derivation function KDF : G × G → {0, 1}n, where n is the (fixed)
length of the required symmetric key.

– The encapsulation algorithm which runs as follows:
1. Randomly select u ∈ Zq and set A = gu, Â = Wu and B = Zu.
2. Set K = KDF (A,B).
3. Set v = Hash(A, Â).
4. Set D = XuY uv.
5. Output the key K and the encapsulation (A, Â, D).

– The decapsulation algorithm which runs as follows:
1. Set v = Hash(A, Â).
2. Check that D = Ax+yv and that Â = Aw. If not, output ⊥ and halt.
3. Otherwise, set B = Az.
4. Output K = KDF (A,B).

4.1 Cramer-Shoup is Simulatable

In order to show that the Cramer-Shoup scheme is PA2, we need to show two
separate things: that it is PA1+ and that it is simulatable. In this section we will
show that the Cramer-Shoup scheme is simulatable. In order to do this we have
to show that we can find Turing machines f and f−1 that satisfy Definition 3. It
is enough to show that there exists Turing machines (Kf ,Kf −1) and (Df ,Df −1)
that simulate the KEM and DEM respectively. The function Df must accurately
simulate the encryption of a fixed-length message by the DEM under a random
key. The function Kf should produce encapsulations for which it is impossible to
distinguish a correct encapsulation pair (C,K) from a simulated encapsulation
pair (Kf (r), K ′), where r is a randomly generated bitstring of length l and K ′ is a
randomly generated symmetric key of the appropriate length. Formal treatments
are given in the full version of the paper.

We construct our DEM from a suitably secure block cipher running in counter
mode and from the EMAC MAC algorithm. Details of both of these schemes can
be found in, for example, [7].

Theorem 4. An Encrypt-then-MAC DEM composed of the counter mode en-
cryption scheme and the EMAC MAC algorithm is simulatable if the underlying
block cipher is indistinguishable from random.

Sketch Proof First, we note that the decryption oracle to which the attacker has
access is of no use due to the unforgeability of the MAC. Hence, we remove it.
The result then follows from the indistinguishability of the MAC code [11] and
the indistinguishability of the counter mode encryption [1]. ut

We will now show that the Cramer-Shoup KEM is simulatable providing
that it is instantiated on a group that is simulatable. Again, we only provide
a loose description of a simulatable group here, leaving the formal description
to the full version of this paper. A group is simulatable if there exists Turing
machines (Gf ,Gf −1) analogous to those in Definition 3 for which it is impossible
to distinguish between a randomly chosen group element h ∈ G and a simulated
group element Gf (r), where r is chosen randomly from the set {0, 1}l.

Theorem 5. The Cramer-Shoup KEM is simulatable if it is instantiated on a
simulatable group G on which the DDH problem is hard, and under the assump-
tions that the hash function Hash is target collision resistant and that the key
derivation function KDF is unpredictable with random inputs.

These assumptions are formally defined as follows. The notation is taken
from the Cramer and Shoup paper [5].

Definition 7 (DDH). For any polynomial-time algorithm A that outputs a
single bit, we define AdvDDH to be

|Pr[A(p, q, g, gx, gy, gxy) = 1|x, y chosen randomly from Zq]
−Pr[A(p, q, g, gx, gy, gz) = 1|x, y, z chosen randomly from Zq]| (9)

The DDH assumption is that, for all polynomial-time algorithms A, AdvDDH
is negligible as a function of the security parameter.

Definition 8 (TCR). Let Hash be the hash function used within the Cramer-
Shoup scheme. For any polynomial-time algorithm A, we define AdvTCR to
be

Pr[A(φ∗) 6= φ∗ ∧Hash(A(φ∗)) = Hash(φ∗)
|φ∗ chosen randomly from 〈g〉 × 〈g〉] (10)

The target collision resistance (TCR) assumption is that, for all polynomial-time
algorithms A, AdvTCR is negligible as a function of the security parameter.

Definition 9 (KDF). Let KDF be the key derivation function used within the
Cramer-Shoup scheme and l be the length of symmetric keys that the scheme is
required to produce. Let E1 be the event that A and B are chosen randomly from
〈g〉 and E2 be the event that A is chosen randomly from 〈g〉 and K is chosen
randomly from {0, 1}n. For any polynomial time algorithm A that outputs a
single bit, we define AdvDist(KDF) to be

|Pr[A(p, q, g, A,KDF (A,B)) = 1|E1]− Pr[A(p, q, g, A,K) = 1|E2]| (11)

The distribution assumption for KDF is that, for all polynomial-time algorithms
A, AdvDist(KDF) is negligible as a function of the security parameter.

Proof of Theorem 5 Let A be any attacker that is attempting to distinguish a real
encapsulation pair (C, K) from a simulated encapsulation (f(r),K ′) where r is a
randomly generated bitstring of length l and K ′ is a randomly chosen symmetric
key of the appropriate length. We will assume A makes at most qE encapsulation
oracle queries and qD decapsulation oracle queries. Let Game 1 be the game in
which interacts with correct encryption and decryption oracles. Let Game 2 be
the game in which, for its first query to the encapsulation oracle, the attacker
is interacting with the following algorithm rather than the true encapsulation
algorithm:

1. Randomly select u ∈ Zq and set A = gu.
2. Randomly select û ∈ Zq \ {u} and set Â = gû.
3. Randomly select K ∈ {0, 1}n.
4. Set v = Hash(A, Â) and D = XuY uv.
5. Output the encapsulation (A, Â,D) and the symmetric key K.

Let Wi be the event that the attacker A wins Game i. We use a result of Cramer-
Shoup [5] to take us most of the way towards our goal.

Lemma 1 (Cramer-Shoup).

|Pr[W1]−Pr[W2]| ≤ AdvDDH + AdvTCR + AdvDist(KDF) + (qE + 3)/q (12)

Let Game 3 be the game in which Â is computed as follows:

2. Randomly select û ∈ Zq and set Â = gû.

Clearly the two games are identical unless û = u, hence:

|Pr[W2]− Pr[W3]| ≤ 1/q . (13)

Let Game 4 be the game in which D is computed as follows:

4. Randomly select r′ ∈ Zq and set D = gr′Y uv.

Clearly, any difference in behaviour of the attacker between Game 3 and Game
4 means that he has distinguished between the Diffie-Hellman triple (A,X, Xu)
and (A,X, gr′). [Note that the proof makes use of the fact that we may compute
Y uv as Avy in the case that we know y but do not know the discrete logarithm
of A.] Hence,

|Pr[W3]− Pr[W4]| ≤ AdvDDH . (14)

Let Game 5 be the game in which D is computed as follows:

4. Randomly select r′ ∈ Zq and set D = gr′ .

This difference is pure conceptual, and so Pr[W4] = Pr[W5]. However, now each
of the elements of the ciphertext, and the symmetric key, are randomly generated
from their appropriate ranges. At this stage, and merely through altering the
way we respond to the first encryption oracle query, we have

|Pr[W1]−Pr[W5]| ≤ 2·AdvDDH +AdvTCR+AdvDist(KDF)+(qE+4)/q . (15)

Let Game 6 be the game in which each of the encapsulation oracle queries is
answered using the algorithm in Game 5, and not just the first one. By repeated
application of the previous results we have that:

|Pr[W1]−Pr[W6]| ≤ qE

{
2·AdvDDH +AdvTCR+AdvDist(KDF))+(qE +4)/q

}
.

(16)
Lastly, suppose the group G can be simulated by the pair of Turing machines

(Gf ,Gf −1), and let Game 7 be the game in which the encapsulation oracle
computes the ciphertexts as follows.

1. Randomly select r1 ∈ {0, 1}l and set A = Gf (r1).
2. Randomly select r2 ∈ {0, 1}l and set Â = Gf (r2).
3. Randomly select r3 ∈ {0, 1}l and set D = Gf (r3).
4. Randomly select K ∈ {0, 1}n.
5. Output the encapsulation (A, Â,D) and the symmetric key K.

Since the group is simulatable, the difference between success probabilities when
the encapsulation is provided as in Game 6 is negligible. However this means
that the difference between Pr[W1] and Pr[W7] is negligible, and so the KEM
is simulatable. ut

Lastly, we need to show that simulatable groups exist. The obvious method
to attempt to simulate a cyclic group G of order q with generator g is to define

f : {0, 1}l → G by setting f(r) = gr (17)

where l À q. This provides a perfectly adequate definition of f , but leaves us
know way of computing a machine f−1 (without solving the discrete logarithm
problem in G). We are therefore required to use sneakier techniques.

Theorem 6. If q and p are primes such that p = 2q + 1, and G is the subgroup
of Z∗p of order q, then G is simulatable.

Sketch Proof To show that G is simulatable, we are required to find Turing
machines Gf and Gf −1 that are analogous to those given in Definition 3 but
for which the output of Gf is a group element. Let k be an integer much larger
than log2(q) and let α be an integer. We consider a map Gf : {0, 1}αk → G as
follows. First, split the input r into α k-bit substrings r = r1||r2|| . . . ||rα. Next,
consider r1 as an integer modulo p and test whether it is in G. If so, output
r1 mod p; otherwise consider the next substring of r in the same way. Since the
distribution of ri mod p is almost uniform, we have that the probability that
this algorithm fails to return a random element of G is approximately 1/2α.

The inverse machine Gf −1 works similarly. Given a group element g, first
chooses a random bit b ∈ {0, 1}. If b = 0 then construct a random string r1

of length k such that r1 mod p ≡ g, append random data to r1 so that it is
αk-bits long and output the result. If b=1, then construct a random element r1

such that r1 mod p /∈ G and choose a new random bit for the block r2. This
process continues until either we choose a bit b = 0 or we have constructed α
blocks of data (at which point the algorithm fails). Again, the probability that
this happens is approximately 1/2α. ut

4.2 Cramer-Shoup is PA1+

Now we are only require to show that the Cramer-Shoup scheme is PA1+ to
complete our proof that it is PA2. In this section we show that Cramer-Shoup
is PA1+ on a simulatable group under the DHK assumption.

The DHK assumption states that any attacker given a random element W in
a group generated by g, can only compute a Diffie-Hellman triple (W, gu,Wu) if
they know u.

Definition 10 (DHK). Let G be a cyclic group G of order q and a generator
g for G. The DHK assumption for G is that for any polynomial-time algorithm
A there exists a polynomial-time extractor A∗ such that the probability that A
wins the following game is negligible.

1. The challenger randomly chooses an element W ∈ G.
2. The attacker executes A on the input W . The attacker has access to an oracle

which, when given a triple (W,A, Â) ∈ G3, executes A∗(W,A, Â,R[A]) and
returns the result.

The attacker wins the game if it submits a triple of the form (W, gu,Wu) to
the oracle and the oracle fails to return u. The challenger wins the game if A
terminates without this event occurring.

The DHK assumption is certainly a very strong one. It was essentially intro-
duced by Damg̊ard in 1991 [6] and has been used in a number of applications [3,
4, 8, 9]. However, it is unclear if the assumption holds true or not. Opponents of
the assumption point out that it is not falsifiable (and so demonstrations that
it is false must be complex) [10] and that variants of the assumption have been
proven false [3]. Nevertheless, it is used to prove that a version of the Cramer-
Shoup scheme is PA1 [4] and so we consider it a reasonable assumption under
which to prove that the Cramer-Shoup scheme is PA2. The question of whether
plaintext awareness can be demonstrated under weaker assumptions is a major
open problem.

Theorem 7. The Cramer-Shoup KEM is PA1+ in a simulatable group under
the DHK assumption

Sketch Proof Let A be any PA1+ ciphertext creator. We use the assumption
that we can find algorithms that solve the DHK problem to build a plaintext
extractor A∗ for A.

Consider the following plaintext extractor A∗ for A that makes use of a DHK
oracle. When it is first invoked, A∗ receives the public key (W,X, Y, Z) and the
random coins R[A] of A. It first simulates the random coins of an attacker that
only received W from the challenger and computed X, Y and Z. This is necessary
because the DHK assumption is only valid when the challenger gives the attacker
a single group element W . The simulated random coins string is given by:

R = Gf −1(X)||Gf −1(Y)||Gf −1(Z)||R[A] (18)

where Gf −1 is the inverse function associated with the simulatable group. If A
makes a decryption oracle query on the ciphertext (A, Â,D) then A∗ proceeds
as follows:

1. Query the DHK oracle with the triple (W,A, Â) and the coins (R,RList).
The oracle will return a value u ∈ Zq or the error symbol ⊥. If the oracle
returns ⊥, then return ⊥ and terminate.

2. Set v = Hash(A, Â).
3. Check that A = gu, Â = Wu and D = XuY uv . If not, return ⊥.
4. Set B = Zu.
5. Set K = KDF (A,B).
6. Return K.

It is clear that A∗ correctly simulates the decapsulation algorithm providing that
it obtains correct solutions to the DHK problem from the DHK oracle. The DHK
assumption states that there exists an algorithm A′ that can answer the queries
of the DHK oracle given the randomness that A used in creating these queries. It
is important to note that because the DHK oracle must give back answers which
are completely correct, and not answers that are merely indistinguishable from
correct by A, it is sufficient to give A′ access to the random coins that A used
in creating its challenge. In other words, it is sufficient for A′ to take as input
the random coins R and all the random blocks RList that have been received
by A up to the point at which the DHK oracle query was made. Hence, by the
DHK assumption, there exists an algorithm A′ that correctly responds to the
DHK oracles queries, and so there exists a plaintext extractor A∗ for A. Hence,
the Cramer-Shoup KEM is PA1+. ut

5 Conclusion

We have shown that the Cramer-Shoup scheme is PA2 plaintext aware and there-
fore demonstrated the existence of fully plaintext aware encryption algorithms.
However, in order to do this, we have had to use results which demonstrate
that the Cramer-Shoup scheme is IND-CCA2 secure already. Therefore, if the
primary goal of plaintext awareness is to make proving the security of an en-
cryption scheme easier, then the results of this paper are of little use. We present
these results not as a practical tool, but as a proof that PA2 plaintext aware
schemes can be shown to exist.

Acknowledgements

The author would like to thank Martijn Stam for his detailed and insightful
comments on the several drafts of this paper. Thanks should also be given to
both Nigel Smart and the anonymous referees for their helpful comments. The
author gratefully acknowledges the financial support of the EPSRC.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In Proceedings of the 38th Symposium on Foundations
of Computer Science, IEEE, 1997.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

3. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In M. Franklin, editor, Advances in Cryptology – Crypto
2004, volume 3152 of Lecture Notes in Computer Science, pages 273–289. Springer-
Verlag, 2004.

4. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In P. J. Lee, editor, Advances in Cryptology – Asiacrypt 2004,
volume 3329 of Lecture Notes in Computer Science, pages 48–62. Springer-Verlag,
2004.

5. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

6. I. B. Damård. Towards practical public key systems secure against chosen cipher-
text attacks. In J. Feigenbaum, editor, Advances in Cryptology – Crypto ’91, vol-
ume 576 of Lecture Notes in Computer Science, pages 445–456. Springer-Verlarg,
1991.

7. A. W. Dent and C. J. Mitchell. User’s Guide to Cryptography and Standards.
Artech House, 2005.

8. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In
H. Krawcyzk, editor, Advances in Cryptology – Crypto ’98, volume 1462 of Lecture
Notes in Computer Science, pages 408–423. Springer-Verlag, 1998.

9. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
V. Shoup, editor, Advances in Cryptology – Crypto 2005, volume 3621 of Lecture
Notes in Computer Science, pages 546–566. Springer-Verlag, 2005.

10. M. Naor. On cryptographic assumptions and challenges. In D. Boneh, editor,
Advances in Cryptology – Crypto 2003, volume 2729 of Lecture Notes in Computer
Science, pages 96–109. Springer-Verlag, 2003.

11. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of
Cryptography, 13(3):315–339, 2000.

