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Abstract. We present the currently simplest, most efficient, optimally
resilient, adaptively secure, and proactive threshold RSA scheme. A
main technical contribution is a new rewinding strategy for analysing
threshold signature schemes. This new rewinding strategy allows to
prove adaptive security of a proactive threshold signature scheme which
was previously assumed to be only statically secure. As a separate
contribution we prove that our protocol is secure in the UC framework.
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1 Introduction

The concept of threshold cryptography was first introduced by Desmedt [Des87].
In threshold cryptography n servers run a service in such a way that even if some
t servers are corrupted, the service is still available and secure. In a threshold
signature the servers implement a service for signing messages under a signature
key shared between the servers with some threshold t.

The first RSA based threshold signature was given independently by
Boyd [Boy89] and Frankel [Fra89]. In both protocols the signing key d is shared
additively among the servers. The first RSA threshold scheme was published
by Santis et al. [SDFY94], and although the key sharing is polynomial, it does
not tolerate actively cheating servers. This restriction was later removed inde-
pendently by Frankel et al. [FGY96] and Gennaro et al. [GJK96]. All of these
protocols are only proved secure against static adversaries, i.e., the set of corrupt
parties is fixed before the protocol starts.

In [OY91], Ostrovsky and Yung introduced the notion of proactive security,
in which the life span of a protocol is divided into separate time periods and
we assume that the adversary can corrupt at most t players in each period.
However, the set of corrupted players may change from one period to the next,
so the protocol must remain secure, even though every player may have been
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corrupt at some point. This can, for instance, be achieved for a protocol based
on secret sharing by having players re-randomize the shares they hold between
periods, and erase the old shares. This is called refreshment.

In [FGMY97b] Frankel et al. published the first proactive threshold RSA
signature, as a generalization of an unpublished protocol by Jakobsson et
al. [JJKY95]. This protocol, does not scale up well: even for a moderately large
number of servers it is either highly inefficient or does not tolerate the optimal
threshold t < n/2, and it is only statically secure. Next, in [FGMY97a] Frankel
et al. achieved optimal threshold. Later, Rabin [Rab98] gave a simplified static
proactive protocol by combining the best of the linear and polynomial sharing
techniques. The protocol from [Rab98] was later optimized and simplified by
Jarecki and Saxena [JS05], still obtaining a static proactive protocol.

In [CGJ+99] Canetti et al. add mechanisms to the protocol from [Rab98],
to obtain an adaptively secure protocol, and even though adaptive security is
only claimed for the non-proactive version of [Rab98], the protocol in [CGJ+99]
seems to be the first adaptive proactive threshold RSA signature.

Later Frankel et al. [FMY01] gave an adaptively secure version of the pro-
tocol from [FGMY97b]. The protocols from [CGJ+99,FMY01] seem to be the
only published adaptive proactive threshold RSA signatures. Unfortunately both
protocols have some practical drawbacks. The linear-sharing based protocol
in [FMY01] inherits the problem from [FGMY97b] that it is inefficient or non-
optimally secure unless the number of servers is small. The protocol [CGJ+99]
modifies the protocol from [Rab98] such that before each signature generation
the signing-key shares are refreshed. This adds a considerable performance over-
head.

Our contributions
The paper has three main contributions.
1. The first contribution is a novel analysis technique which allows to prove that

the protocol from [Rab98] is – with minor modifications – adaptively secure,
contrary to what was previously believed. Indeed, as mentioned above, the
authors of [CGJ+99] add an expensive mechanism to the protocol to make
it adaptively secure. Our first contribution shows that this mechanism is
unnecessary. The technical problem we need to solve to do this is explained
below.

2. Our second contribution is a technique for avoiding so-called key-share ex-
posure. In the protocol from [Rab98], if a server fails to contribute correctly
to the signature generation, the key share of that server is reconstructed
and thus exposed in public. Such key-share exposure can degrade security in
practice. For instance, if a server fails to contribute only because it is tem-
porarily down, this error will be made worse if the remaining servers expose
its key share. Our second contribution shows that key-share exposure is not
necessary to make the protocol from [Rab98] actively and adaptively secure.

3. Our final contribution consists of two definitions for security of threshold sig-
nature schemes. One is cast in the universally composable (UC) framework,
the other one is a more standard definition similar to the one from [CGJ+99].



We show that the two are equivalent. This allows simplified proofs that our
protocols – and other protocols as well – are secure in the UC framework.
The technical problem we solve with our first contribution is the following: In

[CGJ+99] a useful technique known as the Single Inconsistent Player technique
was introduced. It facilitates proving adaptive security of threshold signature
schemes using simulation arguments as follows: we typically want to show that
a successful adversary against the protocol can be used to break security of an
underlying single server signature scheme. To this end, we build a simulator
which does a chosen message attack on the underlying signature scheme while
simulating the adversary’s view of the protocol with the aim of having him
forge a signature. The simulator initially chooses among the currently honest
players a single inconsistent player (SIP) and arranges matters such that it knows
valid-looking secret keys of all players except the SIP. It can therefore simulate
successfully even against adaptive corruption, as long as the SIP is not corrupted.
If there is a non-negligible chance that the SIP stays honest, there is also a non-
negligible chance that the adversary produces a forged signature.

It is natural to try using the SIP technique for doing also proactive adaptive
security. However, in this scenario we must choose a new SIP every time keys
are refreshed, since under a proactive attack no single party can hope to stay
honest throughout the protocol. But even this will not work: the probability that
a single SIP remains honest in a single phase cannot be made arbitrarily close to
1, whence the probability that we are lucky in every phase is negligible. Thus,
already with as few as a super-logarithmic number of proactive phases, a simple
straight-line simulation will not work. A potential solution is to use rewinding,
i.e., every time the SIP is corrupted, rewind back to the last refreshment, choose
a new SIP and try again. This turns out to work, if one is willing to refresh keys
every time a message is about to be signed (as shown in [CGJ+99]).

If we are not willing to pay the price this costs in efficiency, a further technical
problem emerges: if we rewind past a point where a message m was given as
input, we risk that when we go forward again, the adversary asks us to generate
signatures on different messages than before, in particular different from m.
The net result of this is that we may end up with a simulated transcript where
the adversary apparently breaks the scheme by producing a valid signature on
message m, which he did not ask to have signed. But in reality, the simulator
had to ask for the signature on m somewhere in the rewinding process, so we
did not break the underlying signature scheme after all. In connection with the
proof of Theorem 2 we give an example adversary to show that this really is a
problem and we show how to solve it. The basic idea is to guess the point in the
simulation where the simulator asks for a signature on the “fatal” message, and
simply refrain from asking. One then has to show that this does not bias the
distribution of the simulation. More details are given later.

How to read this paper
In Section 2.3 we give a sketch of the UC definition of security, and in Section 3
a formal specification of secure threshold signatures as an ideal functionality.
Readers who are more interested in the protocol constructions can skip this



without loss of continuity, as all protocols are proved according to the more
standard definition from Section 3.1, which is equivalent to UC security. How-
ever, to read the protocol descriptions and proofs, the notation introduced in
Sections 2.2 and 2.1 is necessary.

2 Proactive UC security

In this section we describe our computational and adversarial model. Our
work utilizes the Universal-Composability framework by Canetti, introduced in
[Can01], and last revised in [Can]. Among the upgrades in the last revision that
are relevant to us, it is now possible to model erasures, by allowing a party to
leak only partial internal state upon a corruption. Since the composition theo-
rem remains valid, we can cast proactiveness in the framework and make proofs
of security, while still being able to use the composition theorem. Likewise, it is
also shown that w.l.o.g., one may assume that a single entity (the environment)
models all activity external to the protocol, including adversarial activity. We
use this technical simplification.

Finally, it is possible to specialize [Can] to the case of synchronous networks,
which we will do here. Thus we do not need to define a new synchronous model
and reprove the composition theorem as was done in [DN03] and [Nie04].

We now give a brief description of our instance of the UC framework. For a
more detailed description of the proactive UC framework, see [Alm05].

2.1 Computations
All entities are PPT Interactive Turing machines (ITM). An n-party protocol
π in the G-hybrid model is a set of n ITMs, whose identities P1, . . . , Pn are all
different, and an ideal functionality G to which parties are granted use.

In general, G = (G1, . . . ,Gm), 1 < m, may include one or more ideal function-
alities, and we will assume G1 = Faut provides authenticated transmission, to
be used for communication between parties. In some cases, we will use instead a
functionality FSMT modeling secure point-to-point channels. These abstractions
allow us to focus on the high-level properties of our protocols, yet they can be
implemented using well known techniques. Note, however, that for proactive se-
curity, care should be taken with refreshing the key material used for message
transmission.

The protocol runs while interacting with an environment, an ITM Z that
models external (adversarial) activity, and which provides inputs to honest par-
ties and receives their corresponding outputs. We use HYBGπ,Z to denote the entire
process of running π while interacting with Z and G.

The execution proceeds in communication rounds, that we denote by r =
0, 1, . . ..

A proactive protocol proceeds in phases. A phase consists of a number of
consecutive rounds, and every round belongs to exactly one phase. There are two
kinds of phases, refreshment and operational, which occur alternately. Finally,
a stage consists of an opening refreshment phase, an operational phase in the
middle and a closing refreshment phase. Thus, each refreshment is the closing
of one stage and the opening of another. We use u = 0, 1, . . . to denote stages.



The intuition is that during the operational phases, the protocol provides
whatever service it was designed for, whereas refreshment phases are used to
rerandomize various representations of data so that attacks in different phases
will not be able to benefit from each other.

We allow Z to decide when refreshment starts (equivalently, when a new
stage begins), by sending a command to each party. Refreshment ends when all
honest parties have output a special symbol indicating end of refreshment.

2.2 Adversaries
As mentioned, Z also models the adversary. As such, Z may corrupt parties
adaptively throughout the protocol, subject to the limitation that no more than
t parties can be corrupt in every stage. In particular, this means that if a party
is corrupt during a refreshment phase, he is considered to be corrupt in both of
the two stages to which the phase belongs. After corruption, Z acts on behalf of
the corrupted player. Corruption may be passive, where Z internally executes
the correct protocol on behalf of the corrupted player, or active where Z decides
on its own the actions of the corrupted player.

If player Pi is corrupted during an operational phase, Z is given the view
of Pi starting from his state at the beginning of the current operational phase.
This models the assumption that all randomness and data used in the previous
refreshment phase is erased, except for the information that the protocol specifies
should be used afterwards.

If the corruption is made during a refreshment phase, say, the closing re-
freshment of stage u, Z receives the view of Pi starting from his state at the
beginning of the operational phase of stage u, and Pi is assumed to be corrupt
for stage u + 1.

If Pi is corrupt when a refreshment begins, Z may decide to leave him, which
may allow Z to corrupt new parties, subject to the bound of t corruptions per
stage. In this case, we say Pi is decorrupted.

A decorrupted player immediately starts taking part in the protocol as any
honest player. In the passive corruption case, he starts from the correct state
specified by the protocol at this point. In the active corruption case, he starts
from a default state after round r. This state is application-dependent in general.

2.3 UC Security
Security is defined by comparing protocol π’s execution with an ideal protocol
execution. There, instead of parties, an ideal functionality F is used to specify
the desired input/output behavior of π. It also specifies the information allowed
to be leaked from π to the environment.

Security loosely speaking means that whatever Z could achieve by attacking
π, it could also achieve by interacting with F . To make this precise, a special
ITM T is introduced. The goal of T is to simulate the adversary’s view of π,
based only on the information F is willing to exchange with the environment.

We declare π secure in the G-hybrid model if no environment can distinguish
interactions with π from those with F and T . More formally:

The environment is assumed to always end by outputting a bit which we
think of as its guess at whether it works in the ideal or the hybrid scenario.



When Z interacting with π in the G-hybrid model, on security parameter k,
auxiliary input z to Z, and the random coins of all machines are uniformly
chosen, this output of Z is a random variable denoted HYBGπ,Z(k, z). We denote
by HYBGπ,Z() the ensemble {HYBGπ,Z(k, z)}k∈N,z∈{0,1}∗ .

Similarly, IDEALF,T ,Z(k, z) and IDEALF,T ,Z() are the random variable and
ensemble produced when Z interacts with F and T in the ideal process.

Using
c
≈ to denote computational indistinguishability, we then have:

Definition 1 (UC Security). A protocol π proactively t-realizes a functional-
ity F in the G-hybrid model, if there exists a simulator T such that for all envi-
ronments Z corrupting at most t parties per stage it holds that IDEALF,T ,Z()

c
≈

HYBGπ,Z().

3 Defining Proactive Threshold Signatures

We define threshold signatures by giving a functionality, FThSig, that is a version
of Canetti’s signature functionality[Can04], adapted for the threshold case.

Functionality FThSig

Key Generation, initiate Having received the same message (KeyGen, sid)
from all honest parties in a set S = {S1, . . . , Sn} in the same round, and
sid = (S, sid′) for some sid′, send (KeyGen, sid) to Z.

Key Generation, finalize Upon receiving (KeyGen, sid, v) from Z, if
(KeyGen, sid) was sent earlier, record v and send (sid, v) to all Si ∈ S. All
further commands that do not contain the sid established here are ignored.

Signature Generation, initiate Having received (Sign, sid, m) from all honest
Si ∈ S in the same round, store (Sign, sid, m) and send it to Z. There might
be several identical (Sign, sid, m) stored.

Signature Generation, finalize Upon receiving (Signature, sid, m, σ) from Z,
if (Sign, sid, m) is stored and an entry of the form (m, σ, 0) was not
recorded, delete an entry (Sign, sid, m), record the entry (m, σ, 1) and send
(Signature, sid, m, σ) to all Si ∈ S.

Signature Verification Upon receiving a message (Verify , sid, m, σ, v′)
from some party P , give (Verify , sid, m, σ, v′) to Z. Upon receiving
(Verified , sid, m, σ, φ) from Z, send (Verified , sid, m, σ, f) to P , where f is
determined as follows:
1. If v′ = v and the entry (m, σ, 1) is recorded, then set f = 1 (guarantees

that if v′ is the registered public key and σ is legitimately generated, then
verification succeeds).

2. Else, if v′ = v and no entry (m, σ, 1) is recorded, set f = 0 (guarantees
that if v′ is the registered public key and m was not legitimately signed,
then verification fails). Record the entry (m, σ, 0).

3. Else, if v 6= v′, set f = φ.
Refreshment On input signaling that a refreshment phase starts in this round,

record this and signal end of refreshment in the next round (this reflects
that our protocol implementing the functionality takes one round to do the
refreshment).



Note that all our functionalities receive initially a session id sid = (S, sid′)
where S is the set of players who participate in realizing the functionality and
sid′ is a number identifying this particular instance of the functionality.

The functionality defines a player set S called the servers and a verification
key v. Only the servers can ask FThSig to sign messages, but any player with
the correct key v can use FThSig to verify a signature. For simplicity we also
assume some external mechanism for the servers to agree on which message to
sign and in which round. We model this by assuming throughout that all our
environments behave such that if an honest player gets a message to sign as
input, all honest players get the same message as input in the same round.

We note that the logic in Canetti’s signature functionality is slightly more
complicated than ours because it has to deal with the case where the signer is
corrupted. In our case the single signer is replaced by the set of servers, and
hence we can demand by bounding the number of corrupted servers that things
will always work as if “the signer” is honest.

For a protocol π (in the G-hybrid model) we can then say it is a secure UC
threshold signature scheme for the class Z if π realizes FThSig when quantifying
over Z ∈ Z in the definition of security.

3.1 Equivalence to a more standard notion
In [Can04] it was proved that for a (non-threshold) signature scheme, imple-
menting the signature functionality in [Can04] is equivalent to the scheme being
correct (i.e. signed messages are accepted by the verification algorithm), consis-
tent (two verifications of the same message and signature give the same result)
and unforgeable under chosen message attack.

Threshold Signature Scheme FThSig

Key Generation (well-formed) If all honest Si ∈ S receive the same mes-
sage (KeyGen, (S, sid′)) in the same round, then after some rounds all honest
parties Si ∈ S output one common message (sid, v).

Signature Generation (well-formed) If all honest Si ∈ S receive the same
message (Sign, sid, m) in the same round, then after some rounds all honest
Si ∈ S output one common message (Signature, sid, m, σ).

Signature Verification (well-formed) If an honest party Pi receives input
(Verify , sid, m, σ, v′) in round r, then Pi outputs one corresponding message
of the form (Verified, sid, m, v′, f) in round r.

No other messages (well-formed) No honest party outputs a message not de-
scribed above.

Signature Verification (correct) If an honest party Pi receives input
(Verify , sid, m, σ, v) in round r and some honest party once output
(Signature, sid, m, σ), then Pi outputs (Verified, sid, m, v, 1) in round r.

Signature Verification (consistent) If two honest parties Pi and Pj

(not necessarily distinct) outputs (Verified, sid, m, σ, v, fi) respectively
(Verified, sid, m, σ, v, fj), then fi = fj .

Signature Verification (unforgeable) If an honest party Pi outputs
(Verified, sid, m, v, 1) in round r, then in some round r′ ≤ r an honest
party received the input (Sign, sid, m).



In this section we do a similar “sanity check” of our definition of a UC
threshold signature scheme, by giving a property based definition of what it
means for a protocol to be a secure threshold signature scheme and then proving
that this notion is equivalent to the UC notion.

Let Z be a set of environments. We say that π has one of the properties
in the figure above (relative to Z ) if for all Z ∈ Z , the probability that the
property fails when executing HYBGπ,Z is negligible.

Theorem 1. If π is well-formed, correct, consistent and unforgeable relative to
Z , then π is a secure UC threshold signature scheme for Z .

Briefly, this result is shown by constructing a UC simulator T , which will
generate on its own a set of keys for the signature scheme by executing internally
an instance of π. Then, using the private key(s), it can trivially simulate Z’s
view of π by simply following the protocol to generate signatures. One then
observes that the only way this could differ from actual executions is if Z can
produce a valid signature that was not legally generated. Such a signature would
be accepted in the hybrid process, but rejected in the ideal one. However, the
unforgeability of π ensures that such events occur with negligible probability.
The (tedious but straightforward) details can be found in [Alm05].

4 Passive Security

In this section we give a UC threshold signature scheme under the class Z of
passive, adaptive environments which corrupts at most t = n− 1 players in each
stage. In Section 5 we describe how to obtain active security. To simplify matters,
we will assume a trusted dealer who distributes keys to the servers initially. The
dealer is modeled as an ideal functionality FKeyGen, in other words, we operate
in the FKeyGen-hybrid model.

Functionality FKeyGen

Key Generation, initiate Having received the same message (KeyGen, sid)
from all honest parties in the same round, parse sid as (S, sid′), perform
RSA key generation with security parameter k to obtain modulus N and
exponents e, d. Next, for i = 1, . . . , n, where n is the size of the set S,
choose at random di in [−nN2..nN2] and set dpublic = d−

∑
i di. Then send

(KeyGen, sid, v, dpublic) to Z, where v is the RSA public key (N, e).
Key Generation, finalize (To avoid having to specify how many rounds key

generation will take, we let the environment decide when to return results)
Upon receiving (KeyGenFinish, sid) from Z, send (KeyGen, sid, v, dpublic, di)
to each Si ∈ S.

The keys generated will be used in an RSA signature scheme, where we
assume (as usual) that binary strings of length up to some polynomial in
the security parameter k can be signed, where the signature on m is of form
H(m)d mod N , and where H is some preprocessing that typically involves a
hash function. The details of this are left out of scope here.



We also assume secure point-to-point channels, i.e., we assume a functional-
ity FSMT for secure message transmission. This functionality will accept inputs
containing message and sender/receiver id, and will in the next round deliver the
message to the intended receiver, revealing only the message length to the ad-
versary. Whenever we speak about sending a message privately in the following,
this refers to calling FSMT.

Protocol π

All parties in the protocol run the following code:

Key Generation, initiate On input (KeyGen, sid), parse sid as (S, sid′) and
send (KeyGen, sid) to FKeyGen.

Key Generation, finalize Wait to receive (KeyGen, sid, v, di, dpublic) from
FKeyGen, store this information, and output (sid, v). Here v is the RSA public
key (N, e).

Signature Generation, initiate On input (Sign, sid, m), send
(sid, m, H(m)di mod N) to all Sj ∈ S.

Signature Generation, finalize Upon receiving (sid, m, H(m)dj mod N) from
all Sj ∈ S (i.e. for j = 1, . . . , n), compute the signature

σ = H(m)d1H(m)d2 · · ·H(m)dnH(m)dpublic mod N,

and output (Signature, sid, m, σ).
Signature Verification On input (Verify , sid, m, σ, v′), where v′ is an RSA key

(N ′, e′), define f ∈ {0, 1} by f = 1 iff σe′ mod N ′ = H(m), and output
(Verified , sid, m, σ, v′, f).

Refreshment For each decorrupted Pi, his default state after round r is di, i.e.,
his actual share. Each Si ∈ S reshares di, i.e., chooses di,j at random in
[−N2..N2], sets di,public = di −

∑
j di,j , sends di,public to all Sj ∈ S and di,j

privately to Sj . In the next round, each Si ∈ S computes dnew
i =

∑
j dj,i.

Finally, all Si ∈ S compute dnew
public = dpublic +

∑
i di,public. Everyone signals

end of refreshment. Only dnew
public and the private dnew

i are remembered in the
next phase.

By Theorem 1 it is sufficient to show the following:

Theorem 2. If the underlying signature scheme is unforgeable under chosen
message attack, then the protocol π is well-formed, correct, consistent and un-
forgeable relative to the class Z of environments which corrupt, passively and
adaptively, at most n− 1 players in each proactive stage.

Proof. It is straight-forward to verify that the protocol is well-formed, correct
and consistent (in fact these properties hold unconditionally). What remains is
to prove that it is unforgeable. So, assume for the sake of contradiction that there
exists Z ∈ Z such that with some non-negligible probability P (Z) it happens
in HYB

(FSMT,FKeyGen)
π,Z that an honest party Pi outputs (Verified, sid, m, σ, v, 1) in

round r without m being signed in some round r′ ≤ r (in the following we
say that m was signed in round r′ if (Sign, sid, m) was input to all honest
parties). We use this to construct a PPT reduction Red′(Z) which breaks the



underlying signature scheme with some non-negligible probability P ′ related to
P (Z). It is given a random RSA verification key (N, e) and is given an oracle
O(N, d) : m 7→ H(m)d mod N . It then tries to compute a forgery, i.e. a value
(m,σ) where σe mod N = H(m) and where O(N, d) was not queried on m. The
algorithm Red(Z) described on the next page is used as a sub-routine.

The strategy of Red(Z) is to run Z while simulating its view of the protocol.
More precisely, Red(Z) runs HYB(FSMT,FKeyGen)

π,Z , but it simulates itself the actions of
(FSMT,FKeyGen) and the (currently) honest players, using the verification key and
oracle it is given, but of course without knowing the secret RSA key. The hope
is that Z will behave (approximately) as in a real attack and will hence produce
a forgery that can help us break the signature scheme.

The reduction Red(Z) uses the single inconsistent player (SIP) technique ex-
plained in the introduction. A new SIP is chosen at random after every refresh-
ment phase. We use Sju to denote the SIP chosen after the opening refreshment
of stage u. If the current SIP Sju is corrupted, Red(Z) rewinds to the beginning
of stage u and tries again.

We now analyze Red(Z): Let an attempt for stage u be a run of Red(Z) from
state Stateu−1 at the beginning of the opening refreshment of u, until Sju

is
corrupted or the closing refreshment of u begins. Let a failed attempt (successful
attempt) be an attempt where Sju is (not) corrupted. Notice that Red(Z) is
trying to create a sequence of successful attempts, closing with Z terminating
or the unforgeability property being violated. Call such a sequence a successful
sequence. Let d denote the signing key corresponding to the input verification
key (N, e), and let du

1 , . . . , du
n, du

public be the shares used by Red(Z) in success-
ful attempt u, and similarly du

i,j , d
u
i,public the values used in the refreshment in

successful attempt u. These are called the real shares in the following.We first
prove:

Claim 1: the view of Z in a successful sequence is statistically indistinguish-
able from its view in HYB

(FSMT,FKeyGen)
π,Z .

Note that Red(Z), when it creates and updates the shares di, follows exactly
the protocol, except that the secret is zero, instead of the correct d. We now
want to argue that if we modify the shares generated by Red(Z) so they are
consistent with d, Z will still see essentially the same view. To this end, define a
new set of shares d′

u
1 , . . . , d′

u
n, d′

u
public, d

′u
i,j , d

′u
i,public that are equal to the shares

generated by Red(Z), except
d′

u
ju

= du
ju

+ d, d′ju,ju+1 = dju,ju+1 + d .

We call these the virtual shares. Note that the new set of values is consistent with
secret exponent d, but if we restrict to the subset seen by Z the virtual shares
equal the real ones. Moreover, except with negligible probability, the virtual
shares are legal, i.e., all shares are in the intervals specified in the protocol. This
follows immediately from the fact that the size of the intervals is larger than
d by an exponential factor. Note also that when signatures are generated, the
contribution from the SIP, σju

, as generated by Red(Z) satisfies σju
= H(m)d′uju ,

since σ = H(m)d and −du
public =

∑
i∈S du

i . In other words, Red(Z) already
generates signatures consistently with the virtual shares.



Reduction Red(Z)

Run a copy of HYB
(FSMT,FKeyGen)

π,Z while simulating (FSMT,FKeyGen) and the honest parties
as follows:

Key Generation, initiate On input v = (N, e) and a set of players S, choose di

at random in [0..nN2] for all Si ∈ S and set dpublic = −
∑

i di. Then, choose
a player Sj0 at random among the honest players in S and call Sj0 the single
inconsistent party (SIP) for stage 0.

Key Generation, finalize When Z gives the command to generate keys, send
(KeyGen, sid, v, di, dpublic) to each Si on behalf of FKeyGen. Store the current

state State0 of HYB
(FSMT,FKeyGen)

π,Z .
Refreshment On a signal that opening refreshment of u starts in this round,

record state Stateu−1 of HYB
(FSMT,FKeyGen)

π,Z and set Stateu := Stateu−1. Then
execute the refreshment on behalf of the honest players according to the pro-
tocol, using as input the current di. This results in a new set of di’s for all the
players, and a new dpublic.

a Update and record Stateu. Finally Red(Z) picks
a new SIP Sju among the Si ∈ S still honest after the refreshment phase.

Signature Generation, initiate When Z inputs (Sign, sid, m) to all honest
Si ∈ S, call O(N, d) to obtain σ = H(m)d mod N .

Signature Generation, finalize In the next round, for each Si ∈ S \{Sjp}, set
σi = H(m)di mod N , and for the SIP Sjp , compute

σjp = σ ·H(m)−dpublic ·
∏

Si∈S\{Sjp}

σ−1
i .

Then for all honest Si ∈ S, send σi to all parties in S.
Corruption When Z corrupts a server Si, Red(Z) sends the di it holds for Si to

Z, or both di and its older share if corruption is made in opening refreshment
of u. If Si = Sju (where Sju denotes the current SIP for stage u), then Red(Z)
gives up this attempt to simulate stage u and restarts the simulation from
the recorded state Stateu at the beginning of the appropriate phase, using
fresh randomness (notice that this involves choosing a new random SIP). To
ensure that Red(Z) runs in PPT it will rerun each operational phase at most
kn times and then give up the reduction completely.

Signature Verification Red(Z) does not need to do anything special here, since
verification is just done as in the protocol using v′.

Termination If it ever happens that the unforgeability property is violated by
some party Pi outputting (Verified, sid, m, σ, v, 1), then Red(Z) terminates
with output (m, σ). If Z terminates first, then Red(Z) terminates with an
empty output.

a Notice that by inspecting the messages that Z sends privately on behalf of

the corrupted parties in HYB
(FSMT,FKeyGen)

π,Z , Red(Z) can also compute the di of all
corrupted Si ∈ S.

This means that the mapping from real to virtual shares creates (except
for a negligibly small set of cases) a 1-1 correspondence between successful se-



quences generated by Red(Z) and executions of HYB(FSMT,FKeyGen)
π,Z . Since Z’s view

is unchanged under this correspondence, Claim 1 follows.

Since no SIP is even defined in HYB
(FSMT,FKeyGen)
π,Z it follows from Claim 1 that

all ju are statistically independent of the view of Z in any attempt until Sju
is

corrupted. Since ju is chosen uniformly at random and Z corrupts at most n−1
parties, it follows that in any given attempt, with probability at least statistically
close to 1/n the environment Z does not corrupt Sju . From this it easily follows
that after kn reruns we get a successful attempt except with negligible probabil-
ity. Since the number of operational phases is polynomial it follows that Red(Z)
also gets a successful sequence, except with negligible probability. From Claim 1
it also follows that the unforgeability property fails with probability statistically
close to P (Z) in this successful sequence. Now, every time the unforgeability
property fails in Red(Z), by some party Pi outputting (Verified, sid, m, σ, v, 1),
it by definition holds that σe mod N = H(m) and that m was not signed in the
the successful sequence. Therefore Red(Z) never queried O(N, d) on m in the
successful attempts used to produce the successful sequence.

It is tempting to believe that Red(Z) could just output (m,σ) and break the
signature scheme with probability statistically close to P (Z). However, this may
not work as Red(Z) also makes queries to O(N, d) in the failed attempts. If m
was queried in a failed attempt, Red(Z) does not break the signature scheme
by outputting (m,σ). Below we will say that a message on which the simulator
queried O(N, d) during a failed attempt and for which Z did not request a
signature generation in the successful sequence is a dirty message. When the
environment outputs a forgery on a dirty message m in the final state, then
we have a situation where Z produced a successful forgery, but where Red(Z)
cannot use this forgery as its own. Accordingly, successful forgeries by Z on dirty
messages are called useless forgeries.

To see that useless forgeries are a real problem, consider the following en-
vironment Z: it runs for k operational phases and in phase i picks a random
message mi from the set {0, 1, . . . , k} which was not signed already, and then
inputs (Sign, sid, mi) to all parties. After the signature is generated, Z cor-
rupts all parties except one (at the end of any operational phase, it leaves all
parties). After k phases it outputs a forgery (mk+1, σ) on the single message
mk+1 ∈ {0, 1, . . . , k} which was not signed yet. It is easy to see that Red(Z)
will have to rerun each operational phase an expected n times, and that the
probability that mk+1 was not signed in any failed attempt thus is negligible.
This shows that the reduction Red does not work for all Z. So, we must come
up with a better simulation strategy.

First of all we can assume that Red(Z) never queries O(N, d) on the same
message m twice by having it remember previous queries (here we use that RSA
signatures are unique). For a run of Red(Z) we then use (m1, . . . ,mL) to denote
the distinct messages on which Red(Z) queried O(N, d), in the order of query.
Furthermore, when Red(Z) produces a useless forgery on some dirty message
m we define l0 by ml0 = m, and when Red(Z) produces a useful forgery or no



forgery we let l0 = 0. Clearly, given Z and the randomness r used by Red(Z),
the value l0 is uniquely defined by some function l0 = l0(Z, r).

Consider now the following reduction Redl0(Z) which has access to an oracle
for the function l0. When running with randomness r, Redl0(Z; r) runs Red(Z; r),
but tries to keep ml0 clean. First it queries l0 = l0(Z, r) and proceeds as follows:
When l0 = 0 it just runs Red(Z; r) (so, Redl0(Z; r) = Red(Z; r) when l0 = 0).
When l0 > 0 it runs Red(Z; r) with the following changes: initially it just counts
on how many distinct messages it queried O(N, d), until it is about to query on
the l0’th message ml0 . Then it remembers ml0 and does not query O(N, d) on
ml0 . After ml0 is defined Redl0(Z) still runs Red(Z; r), except that in addition to
rerunning when the SIP Sju

is corrupted it also reruns when it is about to query
on ml0 , so that it never queries O(N, d) on ml0 . Notice that by definition of l0 > 0
the message ml0 would be dirty in Red(Z; r). So, if Red(Z; r) was run, the message
ml0 would by definition not be requested signed by Z in the successful sequence.
So, all requests by Z to signed ml0 would occur in failed attempts, because
the SIP was corrupted. Therefore the modification in Redl0(Z; r) of aborting
when ml0 is requested signed only aborts attempts which would also have been
aborted by Red(Z; r). In particular, the successful sequence of Redl0(Z; r) is
identical to the successful sequence of Red(Z; r) (so, Redl0(Z; r) = Red(Z; r)
when l0 > 0). It follows that independent of l0, Redl0(Z; r) = Red(Z; r). However,
since Redl0(Z) by construction never queries O(N, d) on ml0 it follows that
Redl0(Z) produces no useless forgeries, so Redl0(Z) outputs a forgery (m,σ)
with probability statistically close to P (Z).

Consider finally the algorithm Red′(L,Z) which runs as follows: It first sam-
ple a uniformly random number l′0 ∈ [L]. Then it runs Redl0(Z; r) with uniformly
random r, except that when Redl0(Z) queries the oracle l0, Red′(L,Z) replies
with l′0. If L > l0, then l′0 = l0(Z, r) with probability 1/L. Since Redl0(Z) out-
puts a forgery with probability statistically close to P (Z), it follows that when
L > l0, the algorithm Red′(L,Z) outputs a forgery with probability statistically
close to P (Z)/L. Assume then that there exists a PPT environment Z which
violates the unforgeability property in HYB

(FSMT,FKeyGen)
π,Z with non-negligible prob-

ability P (Z). Then there also exists a polynomial bound L(k) on the running
time of Z and thus there exists a PPT algorithm Red′ = Red′(L(k),Z) which
breaks the unforgeability under chosen message attack of the RSA signature
scheme with probability P ′ statistically close to the non-negligible P (Z)/L, a
contradiction. ♦

5 Active Security

In this section we sketch how to make the protocol robust. We follow the ap-
proach from [Rab98] and [CGJ+99] with some modifications to avoid share ex-
posure.

5.1 The Protocol
Preliminaries
We need a statistically hiding integer commitment scheme com, where a commit-
ment to integer a is denoted by com(a) (we suppress here the random coins need



to produce the commitment). We assume that the initial key setup generates pa-
rameters for such a scheme. We require that the scheme is linear. Informally this
means that there exists a method to compute from two commitments com(a)
and com(b) and an integer c a new commitment com(a) + c · com(b), and if
one can open com(a) to a and com(b) to b, one can compute an opening of
com(a)+c ·com(b) to z = a+cb. This opening should reveal essentially no infor-
mation about a and b except that z = a + cb. A commitment scheme with these
properties exists, where binding is based on the factoring assumption [FD02].

Using this commitment scheme we can construct a statistically private VSS
scheme as follows. Given a secret integer s ∈ [0..B] in some known interval, pick
a degree t polynomial f with f(0) = sL by letting a0 = sL, picking integer
coefficients a1, . . . , at as in [Rab98] and letting f(x) =

∑t
j=0 ajx

j . Then for
j = 0, 1, . . . , t compute a commitment cj = com(aj) and broadcast c0, c1, . . . , ct.
Then for i = 1, . . . , n compute di =

∑t
j=0 ijcj . Then compute an opening of

di to f(i) and send this opening to Pi. If Pi does not receive an opening of∑t
j=0 ijcj it complains and the dealer must broadcast an opening of

∑t
j=0 ijcj .

If the dealer fails to do so, the VSS is rejected. It is straight-forward to verify
that this is a secure integer VSS scheme that hides the shared value information
theoretically.

A VSS to a secret s is given by the commitments di and we use
[s] = (com(f(1)), . . . , com(f(n))) to denote a VSS to s. Given a VSS
[a] = (com(f(1)), . . . , com(f(n))) and a VSS [b] = (com(g(1)), . . . , com(g(n)))
and an integer c we can compute a VSS [a] + c · [b] = (com(f(1)) + c ·
com(g(1)), . . . , com(f(n)) + c · com(g(n))). Clearly, from openings of [a] and
[b] the parties can compute an opening of [a] + c · [b].
Generation of Challenges
We will be using several interactive proofs of the standard public coin 3-move
form (Σ-protocols), where the prover must answer a challenge. For us, it will
always be the case that all players have to give proofs simultaneously. After the
opening messages of the proofs have been sent, the challenges are generated as
follows: each party picks uniformly random k-bit values ai, bi ∈ {0, 1}k, deals
a VSS of ai and then broadcasts bi. The parties open all the VSS’s (that were
successfully generated) and compute the k-bit values ci = bi⊕

⊕
j aj . The string

ci is used as challenge in the proof given by Pi. The rationale for this method
is that, although a corrupt Pi will not be able to predict the challenge ahead of
time, a simulator can put itself in a position where it knows all aj before bi is
chosen, and can therefore force ci to be any desired value.

Key Setup
We have the following requirements on the key setup. First, let p = 2p′ + 1 and
q = 2q′+1 be safe primes and let N = pq and let SQN be the subgroup of squares
in ZN (which has order p′q′). We let L = n! and require that gcd(e, L) = 1.

The key generator now additionally broadcasts a random element g of order
p′q′, for i = 1, . . . , n broadcasts the value hi = gdi mod N , broadcasts public
parameters for a commitment scheme as described above, and finally deals a
VSS αi = [di].



In the following, let EDLN be the language for equality of discrete loga-
rithms, where (a,A, b,B) ∈ EDLN iff a,A, b,B ∈ SQN and there exists w such
that A = aw mod N and B = bw mod N .

Signature Generation, with Share Exposure
The only difference from the passive protocol is that after generating an alleged
signature σ′, the parties check whether σ′e mod N = H(m). If this is not the
case, then each party Pi has to prove that (σ2

i mod N,H(m)2 mod N,hi, g) ∈
EDLN . This is done using the same standard Σ-protocol that was used in
[Rab98], but with the above method for generating the challenges. The pro-
tocol requires that the inputs are in SQN , but this is guaranteed by the key
setup and the squarings done.

Let I be the set of i for which Pi failed this proof. The parties then compute
the VSS αI =

∑
i∈I αi and opens it to some value dI . We have that dI =

∑
i∈I di.

Therefore, the correct signature σ satisfies σ2 = H(m)2(dpublic+dI)
∏

i 6∈I σ2
i mod

N . Finally, from σ2 mod N,H(m) = σe mod N , we can easily compute σ, since
2 and e are relatively prime.

Refreshment
At the beginning of refreshment, decorrupted parties may not have reliable in-
formation determining their key shares. Therefore, each party Pj sends to each
other party all the public information he holds on αi, for all i. In other words,
the commitments to the shares of di are sent. This means each player receives n
suggestions for αi, but since a majority will be correct, we may assume that all
honest parties now agree on each αi. Then for each Pi the key share di is pri-
vately reconstructed from the VSS αi, i.e., players send the opening information
for the commitments in αi privately to Pi. Decorrupted players may not be able
to send correct opening information, but a majority will be able to do so, and
this is sufficient.

Next, the refreshment protocol proceeds as in the passive case, with the
following changes:
1. In addition to sending di,j to Pj , party Pi will also broadcast hi,j = gdi,j mod

N , deal a VSS αi,j = [di,j ] and give a zero-knowledge proof that αi,j can be
opened to a value di,j for which hi,j = gdi,j mod N . The details of this proof
is given below.

2. If any of the proofs fails or hi 6= gdi,public
∏n

j=1 hi,j mod N , then Pi is de-
tected as a cheater. Also, if hi,j 6= gdi,j mod N , then Pj broadcasts a com-
plaint. Then Pi must broadcast di,j such that hi,j = gdi,j mod N , and Pj

adopts this values. If Pi fails to do so, then Pi is detected as a cheater.
3. For each party Pi which was detected as a cheater, the other parties simulate

Pi, as follows. They define di,i = di and let di,j = 0 for j 6= i and let
di,public = 0. Notice that di = di,public +

∑n
j=1 di,j and that Pj knows di,j , as

desired. Then they let hi,i = hi and let αi,i = αi, and let hi,j = g0 mod N
and let αi,j be a default secret sharing of 0. Notice that hi,j = gdi,j mod N
and αi,j is a secret sharing of di,j , for j = 1, . . . , n, as desired.



4. Finally each Pi computes dnew
i =

∑n
j=1 dj,i and all parties compute hnew

i =∏n
j=1 hi,j and αnew

i =
∑n

j=1 αi,j .
The proof mentioned above proceeds by having each party run the following (in
the role of prover) k times in parallel1.
1. The prover knows some secret s ∈ [0..B] and has broadcast h = gs mod N

and dealt a VSS α = [s].
2. The prover broadcasts H = gr mod N for a uniformly random r ∈R [0..(B +

2k)] and deals a VSS β = [r].
3. The prover is given a challenge c ∈ {0, 1}, generated as described earlier.
4. The parties open the VSS cα+β to some value z. If hcH mod N = gz mod N ,

then the parties accept the proof.
Using standard techniques, one can argue that this protocol is honest verifier

zero-knowledge, and sound relative to the binding property of the commitments
used.

5.2 Analysis
We give a sketch of the security analysis. We want to reprove Theorem 2 for
the class of actively cheating adversaries. Except for unforgeability, the required
properties are straight-forward to verify. In particular, the correctness follows
directly from the binding property of the commitment scheme, the soundness
of the applied proof systems and the observation that for a decorrupted party
Pi, by virtue of the VSS αi, there is always sufficient backup information at the
beginning of refreshment in order to reconstruct the correct value di to Pi as
his share. Formalizing this requires a rewinding argument to demonstrate that
an adversary breaking correctness can break the binding property of the com-
mitments. This rewinding does not cause any problems since first, the reduction
is not part of the UC simulator and second, we may assume that we know the
factorization of N (but not the trapdoor for the commitment scheme), and so we
can simulate perfectly the actions of honest players in all cases, by just following
the protocol.

The proof of unforgeability follows the proof from the passive case, with a few
additions to the reduction to unforgeability of the signature scheme, as detailed
below.

The key generation is simulated as in the passive case with the following
addition. Pick a random square h mod N (which will have order p′q′ except
with negligible probability, by choice of N). Let g = he mod N . Then g is also a
random element of order p′q′, as desired. Notice that h = gd mod N . Now, for the
consistent parties Pi, let hi = gdi mod N and let αi = [di], and for the SIP Pj0 ,
let hj0 = h(

∏
i 6=j0

hi)−1 mod N and let αj0 = [dj0 ], such that hj0 = gd′j0 mod N
where d′j0 is the virtual share of the SIP. It can be seen that all additional values
introduced in the simulation have the same distribution as in the protocol, except

1 We use parallel repetition of a standard protocol with a 1-bit challenge since this
gives us soundness with no extra assumptions. If one is willing to make the strong
RSA assumption, 1 repetition with a k-bit challenge is sufficient, this follows from
results in [FD02].



that αi is a VSS of the incorrect share dj0 instead of the virtual share d′j0 ; This
is however unnoticeable as long as the SIP is honest, as the VSS is statistically
hiding.

The refreshment protocol is simulated as in the passive case. Additionally, all
parties broadcast the values hu

i,j = gdu
i,j mod N and deal VSS’s αu

i,j = [du
i,j ]. The

value hu
ju−1,ju

= g
d′uju−1,ju mod N is computed using the virtual contribution.

Since d′
u
ju−1,ju

is defined to be d′
u
ju−1,ju

= du−1
ju−1

−
∑

i 6=ju−1
du

ju−1,i, this can be
computed as hu

ju−1,ju
= hu−1

ju
(
∏

i 6=ju
hu

ju−1,i)
−1 mod N .

Notice that αu
ju−1,ju

= [du
ju−1,ju

] is still computed using the incorrect contri-
bution. This means that the simulator does not know a witness for the proof that
αu

ju−1,ju
can be opened to a value x such that hu

ju−1,ju
= gx mod N . Therefore

this proof is simulated, as follows. Using the honest verifier zero-knowledge prop-
erty, the first message in the k proofs are set up such that there exists exactly
one string of challenges cju−1 ∈ {0, 1}k which the simulator can answer. Then the
simulator waits for the VSS’s of the ai values to be dealt, and using the shares of
the honest parties it computes each ai and broadcasts bju−1 = cju−1⊕

⊕
i ai. Note

that this simulation introduced no new rewinding. As a consequence of αu
ju−1,ju

being incorrect, the VSS αu
ju

will be incorrect. Again this is not a problem as
long as the SIP Pju

is not corrupted.
The signature generation is simulated as in the passive protocol. Addition-

ally, for the consistent parties a proof that (σi,H(m), hi, g) ∈ EDLN is sim-
ulated by following the protocol (as di is known). Notice that the signature
share of the SIP is computed as to make it σju

= H(m)−d′uju mod N . Therefore
(g, hu

ju
,H(m)2, σ2

ju
) ∈ EDLN . So we can run the honest verifier simulator for the

proof of membership in EDLN , and in this way generate an opening message for
which we can answer one challenge value. As above, we can make the challenge
equal this value without rewinding, and hence complete the simulation. As long
as the SIP is not corrupted this will give Z a view statistically close to that of
the protocol. As for simulating the value αI , notice that it is not a problem that
the VSS αu

ju
is not correct, as it will never enter the sum αI when the SIP Pju

is honest.
As in the passive case, the simulation is statistically close to the protocol

until the SIP is corrupted, and as argued during the description, we introduced
no more rewinding. Therefore the reduction goes through as in the passive case,
using the same rewinding technique.

As for efficiency, note that although we introduced some changes compared
to Rabin’s original protocol, to make our proof go through, the performance is
essentially the same: signature generation is constant round and requires broad-
casting O(n(k + log n)) bits.

5.3 Signature Generation, without Share Exposure

Because of the model it is considered secure to open the VSS αI to reveal the
value dI in the signing protocol, as the parties Pi for i ∈ I are considered
corrupted. In practice a party Pi might, however, end up in I just because a
network plug was pulled or its network was congested because of a denial of



service attack. In such a situation it might not be such a good idea to reveal di,
as it constitutes a value which the ’adversary’ does not know already. We can
indeed do better.

Instead of opening the VSS αI to the value dI the parties notice that this
VSS defines a polynomial f of degree at most t such that f(0) = dIL and the
party Pi is holding an opening of a public commitment com(f(i)).

Each party Pi can therefore broadcast the value hi = H(m)f(i) mod N
and prove (using standard techniques similar to what we described above) that
com(f(i)) can be opened to a value f(i) such that hi = H(m)f(i) mod N .

This gives the parties at least t + 1 of the values H(m)f(i) mod N .
Therefore the parties can use interpolation as described in [Sho00] to
compute H(m)f(0)L mod N = H(m)dIL2

mod N . Then they compute σ′ =
H(m)dpublicL2

H(m)σIL2 ∏
i 6∈I(σi)L2

mod N = H(m)dL2
mod N . Using that

gcd(e, L) = 1 they then compute H(m)d mod N from H(m)dL2
mod N .

It might seem puzzling that this is adaptively secure, given the similarity
to the protocol from [Sho00] which is not known to be adaptively secure. The
crucial point is that we applied the technique to compute H(m)dIL2

mod N and
not H(m)dL2

mod N . Since the value dI can be computed from the shares di of
the corrupted parties, dI is known to the simulator in the reduction (as opposed
to d). Therefore it can ’simulate’ the computation of H(m)dIL2

mod N by simply
running the protocol honestly.
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