The Collision Intractability of MDC-2
in the Ideal-Cipher Model

John P. Steinberger

Dept. of Mathematics, University of California, Davis, California 95616 USA
jpsteinb@math.ucdavis.edu

Abstract. We provide the first proof of security for MDC-2, the most
well-known construction for turning an n-bit blockcipher into a 2n-bit
cryptographic hash function. Our result, which is in the ideal-cipher
model, shows that MDC-2, when built from a blockcipher having block-
length and keylength n, has security much better than that delivered by
any hash function that has an n-bit output. When the blocklength and
keylength are n = 128 bits, as with MDC-2 based on AES-128, an ad-
versary that asks fewer than 27* queries usually cannot find a collision.

Keywords: Collision-resistant hashing, cryptographic hash functions,
ideal-cipher model, MDC-2.

1 Introduction

OVERVIEW. A double block length hash-function uses an n-bit blockcipher as
the building block by which it maps (possibly long) strings to 2n-bit ones. The
classical double block length hash-function is MDC-2, illustrated in Figure 1.
This nearly 20-year-old technique [5,22] is specified in the ANSI X9.31 and
ISO/IEC 10118-2 standards [1,13], and it is implemented in popular libraries
and toolkits, such as OpenSSL.

This paper gives the first proof of security for MDC-2. Our result establishes
that when MDC-2 is based on an ideal blockcipher with keylength and block-
length of n bits, the adversary must ask well over 2"/ queries to find a collision.
In particular, for n = 128, no adversry can find a collision with so much as a
50% chance if it asks fewer than 2749 forward-or-backward queries of a 128-bit
blackbox-modeled blockcipher.

Getting a collision-resistance bound of queries when n = 128 is still far
from the optimum one might hope for, which is a bound of 2!2% queries for an
output of 2n = 256 bits (the birthday bound). But obtaining any bound above
264 (a trivial lower bound) has proved elusive to researchers thus far, given the
combinatorial complexity of the problem.

WHAT 1s MDC-27? Traditionally, MDC-2 was instantiated using DES, and some
people may understand MDC-2 to mean MDC-2 based on DES. This is not our
meaning. Indeed this paper assumes a common keylength and blocklength n
bits, and so our results don’t directly apply to MDC-2 based on DES. (We as-
sume that, with signficant work, one could extend our analysis to handle the

274.9

bl sl

X1
D N
N N>
Algorithm MDC27(X) -
X1+ Xm < X where | X;|=n
for i + 1 to m do A, B,
Vi+ Xi © Ea, (X3) X
W; + X; @ E,(X;)
Ait1, Biy1) — (VEWE, WEVE any AN
(Ait1, Biy1) + () o D
return V,,W,,
Va 2
/
A3 B3
X3
[4AY D
UV \N>%

@ 2

Fig. 1: Left: Definition of the MDC-2 algorithm based on a blockcipher E with key
length and block length n. The message being acted on is X = X; --- X, where m > 1
and | X;| = n. Strings A; and B; are distinct n-bit constants. For an even-length sting
S we let ST and S® be its left and right half. Right: Illustration of the algorithm
acting on a three-block messsage X = X1X>X3s. The resulting hash is H(X) = V3 Ws.
The darkened edge of the box representing the blockcipher indicates the input that is
the key.

DES parameters of 56-bit keys and 64-bit blocks, but we haven’t done this.) In
this paper we consider MDC-2 using a blockcipher E: {0,1}" x{0,1}" — {0,1}"
with equal-length blocks and keys. We make this assumption for simplicity, while
preserving contemporary applicability: eliminating “bit-dropping” makes the al-
gorithm cleaner, while the usage of MDC-2 that people nowadays envisage is
with the blockcipher AES-128 [30]. All future mention of MDC-2 in this paper
assumes equal blocklength and keylength.

The MDC-2 algorithm is simple and elegant: building on the usual Merkle-
Damgard approach [6, 21], the compression function uses two parallel invocations

of the Matyas-Meyer-Oseas compression function [20] and then swaps the right
halves of the outputs. It is defined and illustrated in Figure 1. It is easy to
see that the algorithm doesn’t work (that is, it admits efficient attacks) if it is
“over-simplified” by dropping the left/right swapping, the feed-forward XOR, or
both.

The version of MDC-2 that we consider does not incorporate a “bit fixing”
step like replacing the leftmost bit of each left-column blockcipher key in Figure 1
with a 0-bit and replacing the leftmost bit of each right-column blockcipher key
with a 1-bit. Such bit-fixing was employed in MDC2-DES [1,13] to overcome
the key-complementation property of the primitive and also, conceivably, as a
security measure.

We also comment that in the version of MDC-2 that we consider, no length-
annotation or padding is used, and the domain is correspondingly restricted
to ({0,1}")*. It is easy and customary to use padding and length-annotation
to extend MDC-2 to handle a domain of any string of less than 2™ bits. Provable-
security results immediately extend: a collision-intractability result for the
({0,1}")* domain version of a hash function will always lift to give essentially
the same bound for the {0,1}" domain version one gets after padding and
length annotation.

OUR RESULTS. We work in the ideal-cipher model, as in [4,8,15]. This is the
customary model for proving the security of a blockcipher-based hash function.
In the ideal-cipher model the underlying primitive, a blockcipher E, is modeled
as a family of random permutations {Ex} with a random permutation chosen
independently for each key K. The adversary may make a query Ex(X) to
discover the corresponding value Y = Eg(X), or the adversary may make a
query Ex'(Y) so as to learn the corresponding value X = Ex'(Y) for which
Ek(X) =Y. We are interested in the chance that an adversary can find a colli-
sion, namely a pair of distinct messages that collide under MDC2% | by asking ¢
queries. More formal definitions will be given below.

It is easy to show that finding a collision for MDC2 implies finding K, X, K', X'
with (K, X) # (K',X') such that Ex(X)® X = Ex(X')® X'. From this it eas-
ily follows (see [4]) that an adversary’s chance of finding a collision in ¢ queries
is at most g(q + 1)/2" =~ ¢*/2" where n = |X| = |K]| is the block size. This is a
trivial upper bound, only as good as the conventional bound one expects for a
hash function with n-bit output.

Ideally one would like to prove a bound of ¢*/22" for MDC-2, the bound
corresponding to the birthday attack, since the output length of MDC-2 is 2n.
However, despite the lack of known attacks on MDC-2, no one has even been
able to exhibit an improvement on the trivial bound of ¢?/2". In this paper we
give the first improvement by showing that an adversary has chance O(g°/23")
of finding an attack and therefore needs at least ¢ ~ 23"/5 queries to have an
even chance of finding a collision. For example when n = 128 (the main case
of interest) we show that an adversary needs ¢ = 27 queries to have an even
chance of obtaining a collision, which is over 2!° greater than the trivial bound
of 2635 Figure 2 shows our upper bound as function of ¢ for the case n = 128.

[

|

08¢ |
[

|

06 | '
[

I

04 ,'

02} ”

/
/

50 60 635 70 749 80 90

log,(q)

Fig. 2: Our upper bound on Adv}35°2(q) as a function of ¢ (solid line) compared to the
previous best upper bound of g(q + 1)/2'*® (dotted line).

2 Preliminaries

Let Bloc(n) be the set of functions E: {0,1}" x {0,1}" — {0,1}" such that
E(K,-) = Ek(-) is a permutation on {0,1}". Given a blockcipher E € Bloc(n)
we define MDC2%: ({0,1}")* — {0,1}*" by the algorithm of Fig. 1. The hash
of a word X where |X| is a multiple of n by MDC2¥ is denoted by MDC2¥ (X).

An adversary is a computationally unbounded but always-halting algorithm
A with access to an oracle E € Bloc(n). We can assume (by standard argu-
ments) that A is deterministic. The adversary can make either a “forward”
query (K;, X;)twa to its oracle E or a “backward” query (K;,Y;)pwa- The for-
ward query is answered by Y; = Ek,(X;) and the backward query is answered by
X; = E;(ll(Y,) Either way the result of the query is stored in a triple (X;, K;,Y;)
and the query history of AP, denoted Q = Q(AF), is the tuple (Q1,...,Q,)
where Q; = (X;, K;,Y;) is the result of the i-th query made by the adversary,
and where ¢ is the total number of queries made by the adversary. If (X;, K;,Y;)
is an element of the query history then we refer to X; as the “word input” of the
query, to K; as the “key” of the query, and to Y; as the “output” of the query.
The quantity X; @ Y; is called the “XOR output” of the query.

The adversary’s goal is to output a pair of nonempty strings X, X’ such that
X # X' and MDC2¥(X) = MDC2¥(X"). Moreover we impose the condition
that the adversary must have made all queries necessary to compute MDC2% (X)
and MDC2¥(X). This restriction is reasonable since otherwise the adversary
can output very long words X, X' where MDC2F(X) = MDC2¥(X') with
good probability but where computing MDC2F (X), MDC2¥(X") is infeasible.
(For example, without making any queries, the adversary could simply output

0%" and 02K™ where K is the lcm of all numbers between 1 and 2" and have
probability 1 of obtaining a collision, but this isn’t a reasonable type of attack.)

Since we may tell simply from the adversary’s query history © whether it
is possible for the adversary to output words X # X' such that MDC2”(X) =
MDC2”(X") and such that Q contains all the queries necessary for the com-
putation of MDC2¥(X), MDC2”(X"), we will in fact dispense the adversary
from having to output X, X' and simply determine whether the adversary has
been successful or not by examining its query history Q. Formally, we say that
Coll”(Q) holds if there are two distinct nonempty words X, X’ of lengths di-
visible by n such that MDC2% (X)) = MDC2¥(X") and such that Q contains all
the queries necessary to compute MDC2F (X)), MDC2¥(X') as defined by the
algorithm of Fig. 1. The goal of the adversary A is thus to make some sequence
of queries Q = Q(A) such that Coll”(Q). We define the adversary’s ability to
break MDC-2 by

AdV%DCZ(A) — PI‘[E & Bloc(n); Q « AF . CO”E(Q)]

We let Adv¥PC?(g) be the max over all adversaries A making at most ¢ queries
of AdvMP“?(A). Our goal is thus to upper bound AdvY "% (q). We can assume
without loss of generality that A always asks exactly ¢ queries and thus that
|Q(AP)| = q.

Say that numbers n and ¢ have been fixed as well as an adversary A such
that |Q(AF)| = q for all E € Bloc(n). If P is any predicate that can be true or
false for a sequence of queries Q (such as Coll”(Q)) then we write Pr[P(Q)] as
a shorthand for Pr[E < Bloc(n); Q < AP : P(Q)]. With this notation we have
AdvMPC?(4) = Pr[Coll”(Q)]. We will often use this simpler notation to avoid
over-complicating our formulas.

3 Our Security Bound

Our upper bound can be stated in varying degrees of generality and compre-
hensibility. The most general and least comprehensible statement of our upper
bound is the following;:

Theorem 1. Letn, q be natural numbers with ¢ < 2. Let N = 2", N' = N —¢q
and let my, My, me be any positive numbers with eqN%/N’ <my < N3, eq/N' <
me. Finally let My = myN' /gN=, M, =m.N'/q and N" = N'(Nz —m;)/N=.
Then

AdvpP?(g) <

@ /maN' + ZQN%eqN%Mb(I—ln(Mb))/N’ + qNeIMe(=In(MO)/N' o (1)
a(mg +mamy +my) [N + 2)
q(4m,mp)/N' + q(2mgomp) /N" + (3)
g(mim; + 5m} +mame + 6m,) /N’ + q(4m, + 8m3)/N" + (4)
q(4 + 10my + 2mym,)/N" + 3q/N’ + 4¢/N" + ¢*/N"? 1 (5

| a [AVR@) <] ma my | me |

264 757 x 1077 || 2.64 x 10% | 44.01 | 3.7147
268-22 107*]| 7.01 x 10° | 128.09 | 3.9448
27219 1/100 || 1.75 x 107 | 898.95 | 4.1899
274.00 1/10 || 2.66 x 107 | 2902.32 | 4.3082
27412 1/3 || 3.14 x 107 | 4687.89 | 4.3523
27491 1/2 || 3.29 x 107 | 5355.49 | 4.3640
275.21 1 o o _

Fig. 3: Upper bounds on Adv}iR9? (¢) given by Theorem 1. The right three columns
specify the values mg,, myp, and m,. used to obtain the bound of the second column.

For Theorem 1 to give a good bound one must choose suitable values for the
constants mg, mp, me. Choosing large values of m,, my, m. reduces the terms of
line (1) but increases the terms of lines (2)-(5). Unfortunately there is no good
closed form for the optimal values of m,, mp, m. (these will change with every
q), hence the complex-looking form of Theorem 1. The meaning of the constants
Mg, My, M. is explained in the proof.

What Theorem 1 concretely means for n = 128 is shown in Figs. 2-3. Fig. 3
shows specific numerical upper bounds for Adv}s5“?(q) for various values of q.
The threshold value where Theorem 1 gives an upper bound of 1/2 is ¢ = 2749
(to be compared with the previous best threshold of ¢ = 263-3). For each value
of ¢ we also show the values of m,, my, m. which yield the stated upper bound.
Fig. 2 plots our upper bounds on Advll\g‘;02 (q) as a function of ¢, compared to the
previous upper bound of g(¢+1)/N. The method for optimizing m,, my, m. for
given values of n, q in order to obtain the best bound on Adv%DCZ(q) is discussed
in the full version of this paper [29]. There we also show (via straightforward

calculus) that Theorem 1 implies the following:
Theorem 2. Let ¢ = 23"~ where € > 0. Then AdvMP®%*(¢) - 0 as n — 0. 1

Asymptotically as n — oo, thus, our bound for AdvMP“?(q) behaves like the
function min(1, ¢°/23"), though the two functions still look significantly different
for n = 128 (e.g. ¢°/2°" has a threshold of 276-¢ for n = 128 whereas our bound
on Adv)i5%%(q) has a threshold of 2749). Though the two functions converge
asymptotically there does not seem to be any good closed form relating our

bound on Adv¥P?(g) to the function ¢®/23™.

4 Analysis

OVERVIEW. Rather than analyzing the probability that the queries Q made
by the adversary contain the means of constructing a collision we simplify the
problem by analyzing the probability that the queries Q contain the means of
constructing the last two rounds of a collision. Effectively we look to see whether

there exist keys Ko, K1, K|, K| and n-bit words X1, X3, X, X} such that the
MDC-2 hash of X; X5 using the incoming keys Ky, K; (rather than A;, Bj)
equals the MDC-2 hash of X] X} using the incoming keys K, K, and such that
Q contains all the queries necessary to make both hashes. Naturally a collision
does not necessarily involve two words of at least two blocks each, as either or
both words may consist of a single block, and our analysis also allows for this
contingency.

To upper bound the probability of the adversary obtaining queries that can
be used to construct the last two rounds (or fewer) of a collision we upper bound
the probability of the adversary making a query that can be used as the final
query to complete such last two rounds. Namely for each i, 1 <1 < ¢, we upper
bound the probability that the answer to the adversary’s i-th query (K;, X;)fwa
or (K;,Y;)bwa (depending) will allow the adversary to use the i-th query to
complete (what looks like) the last two rounds of a collision. In the latter case
we say the i-th query is “successful”, and we give the attack to the adversary.

Naturally this probability will depend on the adversary’s first ¢ — 1 queries.
In particular we need to make sure that the adversary hasn’t already been too
“lucky” with its first ¢ — 1 queries, or else the probability of the i-th query being
successful will be hard to upper bound. An example of being “lucky” would be
if there exists a large subset of the first ¢ — 1 queries that all have the same
XOR output (there are two more ways of being lucky defined below). Our upper
bound thus breaks down into two pieces: an upper bound for the probability of
the adversary getting lucky in one of three specific ways defined below, and the
probability of the adversary ever making a successful i-th query, conditioned on
the fact that the adversary has not yet become lucky by its (¢ — 1)-th query.

DETAILS. Fix numbers n, ¢ and an adversary A asking g queries to its oracle. We
upper bound Pr[Coll” (Q)] by exhibiting predicates Win0(Q), ..., Win8(Q) such
that Coll”(Q) = Win0(Q) V...V Win8(Q) and then by upper bounding sepa-
rately the probabilities Pr[Win0(Q)], . . ., Pr[Win8(Q)]. Obviously Pr[Coll® (Q)] <
Pr[Win0(Q)] + - - - + Pr[Win8(Q)]. (The event Win0(Q) happens if the adversary
is lucky, whereas if the adversary is not lucky but makes a successful i-th query
then one of the predicates Win1(Q), ..., Win8(Q) will hold.)

To state the predicates Win0(Q), ..., Win8(Q) we need some extra defini-
tions. Define functions a, b, b*, b® and ¢ on query sequences of length q as
follows:

a(Q)

{(G,j) € [1...q%: i # j,X; ®Y; = X; ®Y;}| is the number of
ordered pairs of distinct queries in @ with same XOR outputs
b"(Q) = maxy¢ggyns2 [{i : (Xi @ Y;)" = Y} is the maximum size of a set
of queries in @ whose XOR outputs all have the same left n/2 bits
bR(Q) = maxyegg1yns2 [{i 1 (X; @ Y;)® =Y} is the maximum size of a set
of queries in @ whose XOR, outputs all have the same right n/2

bits
b(Q) = max(b"(Q),b%(Q))
c(Q) = maxyego,1}» [{i : X; ®Y; = Y}| is the maximum size of a set of

queries in @ whose XOR outputs are all the same

The event Win0(Q) is simply defined by
Win0(Q) = (a(Q) = ma) V (b(Q) > ms) V (c(Q) > m)

where m,, my, m. are the constants from Theorem 1. Thus as m,, my, m. are
chosen larger Pr[Win0(Q)] diminishes.

The events Winl(Q), ..., Win8(Q) are different in nature from the event
Win0(Q); they concern the feasibility of fitting certain subconfigurations of
MDC-2 using queries from Q = (X3, K1,Y1), ..., (X, Ky, Yy). Take for example
the configuration 1a of Fig. 5. In this configuration, the two strings marked A are
equal and the queries marked i, !i are different. These are the only constraints;
unmarked strings may or may not be equal, and other queries in the diagram
may or may not be equal. Since the bottom left and bottom right queries are
distinct fitting the diagram means using two distinct queries Q; = (X;, K;,Ys)
and Qy = (Xy, Ky, Yy) from Q for these two positions. We say that four queries
Qi = (Xi, Ky, Y3), Qv = (Xor, Yo, Yi), Q5 = (X;,K;,Y5),Qr = (Xi, Ki, Yi) in
Q “fit” configuration la if ¢ # ¢’ and if Q;, Q#, Q;, Qr can be placed in re-
spectively the bottom left, bottom right, top left and top right positions of
configuration la such that the wiring constraints of the diagram are respected
and such that the two strings marked A are equal. Formally, the four queries Q;,
Qy, Qj, Qr fit configuration 1la if and only if

(AN Xi=Xo)NX; = X)) AN(Xi @Y = Xp @ Yy) A
(XjeY)' =K A((X;0Y) =K A
(Xp @ Vi)' = Kj) A ((Xk @ Vi) = K.

Moreover we say that ExistsFit;,(Q) holds if there exist 4,44,k € [1..q] such
that queries Q;, Qi, @;, Qr fit configuration la. The predicates ExistsFits,
ExistsFity, ExistsFits, ExistsFity,, ExistsFity, ExistsFitg,, ExistsFitgp, ExistsFitge,
ExistsFitgq, ExistsFity,, ExistsFityy, whose configurations are shown in Figs. 5-6,
are likewise defined. In these configurations strings marked by the same letter
must be equal but strings marked with different letters may or may not be equal;
likewise queries marked i, !i or j, !j are different but two queries marked with
different letters may be the same. We also let ExistsFit; = ExistsFit;, VExistsFity,
ExistsFit, = ExistsFity, VExistsFity;, and so on. Note that ExistsFitg, = ExistsFitg,
and that ExistsFitg. = ExistsFitgq, thus ExistsFits = ExistsFitg, V ExistsFitg. (con-
figurations 6b, 6d are only provided to facilitate referencing).

Some additional notation is required to indicate inequality between queries in
configurations 5 and 8. In these configurations, pairs of queries from the bottom
row that do not both contain a ‘1’ or both contain a ‘0’ (namely, queries with
different labels) are presumed different; there are no constraints relating top
row to bottom row queries, and queries with the same label are not presumed
equal (see Fig. 4 for an explanation of “top row”, “bottom row”). The predicates
ExistsFits(Q), ExistsFits(Q) then denote the existence of a set of queries in Q
fitting respectively configurations 5 and 8 under these constraints.

query 1TL ~
row T (top) —:

query 1BL ~
row B (bottom) —:

Fig.4: The query labels.

Let NotWinj = Win0(Q) V --- V Win j(Q) for 1 < j < 8. We now define:

Win1(Q) = NotWin0(Q) A ExistsFit; (Q)
Win2(Q) = NotWin1(Q) A ExistsFit2(Q)

and so forth. Thus Win4(Q), for example, is the predicate which is true if and
only if a(Q) < mg,b(Q) < mp, ¢(Q) < m. (these conditions being NotWin0(Q))
and Q contains queries that fit configurations 4a or 4b but Q does not contain
queries fitting configurations la, 1b, 2 or 3.

The reader will note that all configurations in Figs. 5-6 have at most two
pieces and each piece is a subportion of two rounds of MDC-2. If the configuration
has two pieces (such as configurations 2, 4a, 4b, 5, 6a, 6b, 6¢, 6d, Ta, 7b, 8 as
opposed to configurations la, 1b, 3) then the left portion of the configuration is
called “Word 1” and the right portion of the configuration is called “Word 2”
(Fig. 4). Queries in the right-hand column of a two-round piece are called “right
column” queries and queries in the left-hand column of a two-block portion are
called “left column” queries. “Top row” and “bottom row” queries are defined the
expected way. A query in the configuration is given coordinates 1T R for “Word
1, Top row, Right column” or 2BL for “Word 2, Bottom row, Left column” etc.
If the configuration has only one piece then we drop the prefix “1” or “2” and
simply give coordinates T'L, T R, etc. for the queries. The reader should refer to
Fig. 4.

We now show that Coll?(Q) = Win0(Q) V ---V Win8(Q):

Lemma 1. Coll®(Q) = Win0(Q) V ---V Win8(Q).

Proof. First note that ExistsFit;(Q) V -- -V ExistsFitg(Q) = Win0(Q)V ---V
Win8(Q), so it is sufficient to show that Coll”(Q) = ExistsFit;(Q)V ---V
ExistsFits (Q).

Say Coll”(Q). Then a collision can be constructed from the queries Q. We can
assume that the collision is earliest possible in the sense that one cannot truncate

A1 Bl Al Bl

)

A B A B
Configuration 2

either one or both words involved to form a collision from the leftover prefixes
(otherwise, take this smaller pair of words). By definition collisions involve words
with at least one block, so the collision must either (i) use two words that are
one block long each (ii) use one word of at least two blocks and one word of
one block or (iii) use two words of at least two blocks each. If the collision uses
two words that are one block long each then obviously ExistsFit2(Q) (if query i
where equal to !4, the two words would be the same), so we can assume either
(if) or (iii).

Say first the collision is of type (ii), namely that the collision has one word
with m > 2 blocks, which is wLOG word 1, and one word of with one block,
which is word 2. Note first that when word 1 is hashed via MDC-2 there can
never be a round where the same query appears both on the left and right-hand
sides unless ExistsFit; (Q) holds (to see this, take the earliest such round; since
the constant keys A;, By are different this is not the first round and the two
queries from the round before are different but have the same XOR output, so
ExistsFit; (Q)). Therefore we can assume that at every round in the hashing of
word 1, different queries appear on the left and right-hand sides. Naturally the
same query may appear both in the left and right columns in different rounds.

We now examine the last two rounds of the hashing of word 1. The four (not
necessarily distinct) queries comprising these two rounds are labeled 17L, 1TR,
etc. as in Fig. 4 and as per our convention described above. The two queries
making up the unique round for the hashing of word 2 are simply labeled 2L
and 2R, where 2L is the query with key input 4; and 2R is the query with key
input B;. By our previous remark, queries 1T L and 1TR are distinct as well
as queries 1BL and 1BR. If query 1BL equals query 2L and query 1BR equals
query 2R then ExistsFit3(Q). On the other hand if query 1BL is not equal to
query 2L and query 2BR is not equal to query 2R then ExistsFits(Q). Therefore
we can assume (by symmetry) that query 1BL is not equal to query 2L but that
query 1BR equals query 2R. But then ExistsFits,(Q). This concludes the case
when the adversary’s collision is of type (ii).

We now assume that both of the words involved in the collision have at least
two rounds. We examine the last two rounds of the hashing of each word; the
queries for these last two rounds are labeled as in Fig. 4. By the same remark
as above, the same query cannot appear in both left and right positions at the
same round of the same word, so the top row constraints of configuration 8 are
satisfied. If query 1BL equals 2BL and query 1BR equals query 2BR then the
collision is not earliest possible, a contradiction, so we can assume (by symmetry)
that query 1BL is not equal to query 2BL. If queries 1BR and 2BR are equal
then ExistsFity,(Q) so they too must be unequal. But then ExistsFits(Q) so we
are done. O

The reader may have noted that ExistsFits(Q) does not actually appear in the
proof of Lemma 1. However Win6(Q) will be used to upper bound Pr[Win7(Q)]
(as Pr[Win7(Q)] < Pr[Win6(Q)] + Pr[NotWin6(Q) A Win7(Q)]).

Let WinFit(Q) = Win1(Q) V...V Win8(Q), so Pr[Coll” (Q)] < Pr[Win0(Q)] +
Pr[WinFit(Q)]. We show:

Lemma 2. Let N, N', N"”, my, my, My, m., M. be as in Theorem 1. Then
1
Pr[Win0(Q)] < ¢%/moN'+2qNzeaN 2 Mp(1-In(Mp))/N' 4 N gaMe(1-In(Mc)/N'

and:
Lemma 3. Let N, N', N", m,, my, m. be as in Theorem 1. Then:

Pr[WinFit(Q)] < ¢(m2 + mem?2 + m2)/N' +

q(4mamp) /N' + q(2mqmy) /N" +

g(myme + 5mg +mame + 6ma) /N’ + g(4mq + 8mp) /N" +
g(4 + 10my + 2mym) /N" + 3¢/N' + 4¢/N" + ¢* /N". I

Lemmas 2 and 3 imply Theorem 1 (by Lemma 1). The proof of Lemma 2 uses
straightforward balls-in-bins probability and can be found in the full version
of our paper [29]. The proof of Lemma 3 is more involved and in some sense
constitutes the heart of our paper. Here we only give a grief glimpse of the
type of analysis involved by showing how to upper bound Pr[NotWin0(Q) A
ExistsFit;,(Q)], which establishes “half” of the upper bound for Pr[Win1(Q) =
NotWin0(Q) A (ExistsFit;,(Q) V ExistsFit15(Q))]. (Again, the full proof of Lemma
3 is found in the full version.)

For the next proof we use the notational convention that (K;, X;) denotes a
forward query (K;, X;)swa and that (K;,Y;) denotes a backward query (K;,Y;)bwd-
The constants N, N', N will remain throughout as defined in Theorem 1,
namely N =27, N'=N — ¢, N" = N'(Nz —m;)/Nz.

Proposition 1. Pr[NotWin0(Q) AExistsFit1,(Q)] < g(mq+m3)/N'+2qmy/N".

Proof. Let Q; denote the first ¢ queries made by the adversary. The term “last
query” means the latest query made by the adversary (we examine the adver-
sary’s queries (K;, X;) or (K;,Y;) one at a time, in succession as they come in).
The last query is always given index i. We say the last query is “successful” if
the output Y; or X; for the last query is such that a(Q;) < mg, b(Q;) < my,
¢(Q;) < m. and such that the adversary can use the query (X;, K;,Y;) to fit
configuration la using only queries in Q; (in particular, the last query must be
used in the fitting for that query to count as successful). The goal is thus to
upper bound the adversary’s chance of ever making a successful last query.
The strategy for upper bounding the probability of the last query being suc-
cessful is to consider separately the different ways in which the last query can
be used to fit the configuration and to upper bound the probability of success
in each case, and finally to sum the various upper bounds. For example, the
adversary may use the last query only once in the configuration or otherwise in
several different positions of the configuration (such as, say, TL and BL). The
basic setup for upper bounding the probability of success in a given case is to
upper bound the maximum number of different outputs ¥; or X; (depending on
whether the last query is a forward or backward query) that would allow the
query (X;, K;,Y;) to be used to fit the configuration, and then to divide this

number by N' = N — ¢ (since either Y; or X;, depending, is chosen randomly
among a set of at least N' different values). That ratio is then multiplied by ¢,
since the adversary makes ¢ queries in all, each of which could become a suc-
cessful last query.

Case 1: The last query is used exactly once in the configuration. We can assume
WLOG that it is used in the left column.

Subcase 1.1: The last query is used in position BL. Say first that the last
query is a forward query (K, X;). Since the last query cannot be successful if
b(Q;—1) > my (by definition) we can assume that b(Q;_1) < mp. Then since the
left half of the XOR output of the query used in position 7T'L must be equal to the
left half of K; there are at most m; different queries in Q; ; that could be used
in position T'L, for the given inputs (K;, X;) of the last query. Likewise because
the right half of the XOR output of the query used in position T'R must be equal
to the right half of K; there are at most m; different queries in Q;_; that could
be used in position T'R. Since X; together with the outputs of the queries used
in positions T'L, T R completely determine the query used in position BR, there
are therefore at most m% different queries in Q; 1 which can be used in position
BR for the given inputs (Kj, X;). Therefore there are at most m? outputs Y;
which would enable the last query be used to fit the configuration at position BL
(namely which would enable the XOR, output X; & Y; of query BL to be equal
to the XOR output of query BR), so the chance of success of the last query if it
is forward is < m?/N'.

Now say the last query is a backward query (Kj,Y;). We cannot reason like
for the forward query case that there are only m? queries in Q;_; that that
can appear in position BR since we do not know the word input X; anymore.
However because the query used in position BR has same XOR output and same
word input as the query in position BL it must also have the same output as the
query in position BL, which means the output of the query in position BR is
actually Y;. Now because F is a blockcipher, there is exactly at most one possible
query for position BR in Q;_; for any given value of the key of the query in
position BR, and since the key can take at most m? different values (as in the
forward case) there are again at most m? different queries that can be used in
position BR. Therefore there are at most m} different values for X; which would
make the backwards query (K;,Y;) successful, so the last query again has chance
of success < m2 /N'.

Thus the last query has chance of success < m? /N’ whether it is a forward
or backward query. Multiplying by ¢, we obtain that the chance of ever making
a successful last query of this type is < gm?/N'. This concludes the analysis of
Subcase 1.1.

Note: we will not always give as many details as in Subcase 1.1. In particular, we
will not continue to remind that one can assume a(Q;—1) < mq, b(Qi—1) < myp,
¢(Q)i—1 < me (or else the last query is by definition not successful) and we will

often shorten phrases of the type “query used in position T'L” to simply “query
TL”.

Subcase 1.2: The last query is used in position T'L. Because the queries use
in positions BL, BR are distinct but have the same XOR output there are at
most m, different ordered pairs of queries in Q;_; that can be used for the pair
BL, BR. But the pair of queries for BL, BR completely determines what the
XOR output X; @ Y; of the last query should be. Therefore the last query has
chance at most m, /N’ of success and the total probability of making this type
of successful last query is < gm,/N'.

Note: Subcase 1.2 does not require a separate analysis for the forward and back-
ward case because we can upper bound the maximum number of successful XOR
outputs for the last query without looking at the inputs for the last query; by
contrast, in Subcase 1.1 we inspected X; in the forward case and Y; in the back-
ward case in order to determine the maximum possible number of successful
XOR outputs. In general, whenever an upper bound on the total number of
successful XOR outputs for the last query can be found without inspecting any
inputs for the last query besides the key, the same analysis will work both for
the forward and backward cases.

Case 2: The last query is used twice or more in the configuration. Because
queries BR and BL are distinct the queries TR and T'L are also distinct and
so the last query must in fact appear exactly twice in the configuration. We can
assume WLOG that it is used in position TL.

The type of analysis we use for this case is slightly different than the analysis
for Subcases 1.1, 1.2. To estimate the probability of the last query succeeding
we will first look at the left n/2 bits of XOR output, estimate their probability
P, of success (the left bits are “successful” if they do not preclude the last query
from being successful) and then we estimate the probability of success P,; of the
right n/2 bits of XOR output being successful, conditioned on the fact that the
left /2 bits are successful (the right n/2 bits are “successful” if the last query
is successful). The probability of success of the last query is then P, P,;. Note
that if the set of left half of XOR outputs which are successful has size T' then
P, <TNz /N’ since the return to any query has chance < N 3 /N' of having its
left half of XOR output equal to any particular value (there are at most N 3
strings that have that left half, each of which is returned with chance at most
1/N'). Then if the left half is successful and there are U different possible ways
of completing the left half into a successful string, namely U different successful
right halfs, the chance of the right half being successful given NotWin0(Q; 1)
is < U/(N% — my) since the XOR output could be any of at least N2 — my
values with equal probability (there are at most my values which we know will
not appear because they have already appeared for this left half). So the total
chance of success of the last query in this case (assuming U was independent, of

the left half, as it will be in our analysis) is < TUN2 /N'(N% —my) or < TU/N".

Subcase 2.1: The last query is used in positions T'L, BL. Since the last query
appears in positions T'L, BL the left half of the last query’s XOR output must
be equal to the left half of its key input, so the left half of output has chance
P <N 3 /N' chances of succeeding. If it succeeds, there are at most my queries
for BR in Q;_; with that left half of XOR output (which must be shared with
query BL), so the right half of XOR output has chance P,; < mb/(N% —mp)
of succeeding if the the left half succeeds. Therefore the last query has chance
PP, < mbN%/N’(N% —myp) = mp/N" of succeeding and the adversary’s total
chance of making this kind of successful last query is < gmy/N".

Subcase 2.2: The last query is used in position T'L and in position BR. One
can apply the same type of analysis as for Subcase 2.1, showing that the total
chance of a successful last query of this type is < gmy/N".

Subcase 2.2 concludes Case 2 and thus all possible cases of making a suc-

cessful query for configuration la. Summing up the probabilities we get that
Pr[NotWin0(Q) A ExistsFit1,(Q)] < g(mg +m3)/N' + 2gm; /N". O

5 Conclusion

We have proved the first nontrivial security bound for MDC-2. While such a
bound has been a long time coming, we expect that our result is only a first
foot in the door. In particular there remains a large gap between the best-known
collision-finding attack, which is the trivial attack that succeeds with chance
q?/2%", and the security bound of Theorem 1. Likely our security bound is far
from optimal, and it remains an interesting open question to find matching upper
and lower bounds.

Acknowledgments

This work was supported in part by NSF CCR-0208842 and a gift from Intel
Corporation; thanks to Jesse Walker for sponsoring this research. Part of this
work was carried out while the author was visiting NTT labs in Yokosuka, Japan;
thanks to Tatsuaki Okamoto for his kind support. The research topic was sug-
gested to the author by Phillip Rogaway, who also provided patient mentoring
and guidance throughout the project.

References

1. ANSI X9.31. Public key cryptography using reversible algorithms for the financial
services industry. American National Standards Institute, 1998.

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

. B. den. Boer and A. Bosselaers. Collisions for the compression function of MD5.

Advances in Cryptology — EUROCRYPT ’93, Lecture Notes in Computer Sci-
ence, vol. 765, Springer, pp. 293-304, 1993.

J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly efficient
blockcipher-based hash functions. Advances in Cryptology — EUROCRYPT 05,
Lecture Notes in Computer Science, vol. 3494, Springer, pp.—546-541, 2005.

J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. Advances in Cryptology —
CRYPTO ’02, Lecture Notes in Compuer Science, vol. 2442, Springer, pp. 320—
355, 2002.

B. Brachtl, D. Coppersmith, M. Hyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel,
and M. Schilling. Data authentication using modification detection codes based
on a public one-way encryption function. US Patent #4,908,861. Awarded March
13, 1990 (filed Auguest 28, 1987).

I. Damgard. A design principle for hash functions. Advances in Cryptology —
CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, Springer, pp. 416—
427, 1990.

H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes 2 (2), 1996.
S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-
dom permutation. Advances in Cryptology — ASIACRYPT ’91, Lecture Notes in
Computer Science, vol. 739, Springer, pp. 210-224, 1991.

M. Hattori, S. Hirose, and S. Yoshida. Analysis of double block lengh hash func-
tions. Cryptography and Coding, 9th IMA International Conference, Lecture
Notes in Computer Science, vol. 2898, Springer, pp. 290-302, 2003.

S. Hirose. Provably secure double-block-length hash functions in a black box
model. Information Security and Cryptology—ISISC ’04, Lecture Notes in Com-
puter Science, vol. 3506, Springer, pp. 330-342, 2005.

S. Hirose. Some plausible constructions of double-block-length hash functions.
Fast Software Encryption (FSE ’06). Lecture Notes in Computer Science,
vol. 4047, Springer, pp. 210-225, 2005.

W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of iterated hash functions
based on block ciphers. Advances in Cryptology — CRYPTO ’93. Lecture Notes
in Computer Science, vol. 773, Springer, pp. 303-311, 1993.

ISO/IEC 10118-2:2000. Information technology — Security techniques — Hash
functions — Hash functions using an n-bit block cipher. International Organiza-
tion for Standardization, Geneva, Switzerland, 2000. First released in 1992.

A. Joux. Multicollisions in iterated hash functions, applications to cascaded con-
structions. Advances in Cryptology — CRYPTO ’04. Lecture Notes in Computer
Science, vol. 3152, Springer, pp. 306-316, 2004.

J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search.
Journal of Cryptology, vol. 14, no. 1, pp. 17-35, 2001.

L. Knudsen, X. Lai, and B. Preneel. Attacks on fast double block length hash
functions. Journal of Cryptology, vol. 11, no. 1, pp. 59-72, 1998.

X. Lai and J. Massey. Hash functions based on block ciphers. Advances in
Cryptology — EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658,
Springer, pp. 55-70, 1992.

W. Lee, M. Nandji, P. Sarkar, D. Chang, S. Lee, and K. Sakurai. PGV-style block-
cipher-based hash families and black-box analysis. IEICE Transactions 88-A(1),
pp. 39-48, 2005.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. S. Lucks. Design principles for iterated hash functions. Cryptology ePrint
Archive, Report 2004/253, 2004.

S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with
cryptographic algorithm. IBM Technical Disclosure Bulletin, 27, pp. 5658-5659,
1985.

R. Merkle. One way hash functions and DES. Advances in Cryptology -
CRYPTO ’89. Lecture Notes in Computer Science, vol. 435, Springer, pp. 428—
446, 1990.

C. Meyer and S. Matyas. Secure program load with manipulation detection code.
Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM ’88), pp. 111-130, 1988.

M. Nandi, W. Lee, K. Sakurai, and S. Lee. Security analysis of a 2/3-rate double
length compression function in the black-box model. Fast Software Encryption
(FSE ’05), Lecture Notes in Computer Science, vol. 3557, pp. 243-254, 2005.
M. Nandi. Towards optimal double-length hash functions. Progress in Cryptogra-
phy —INDOCRYPT 05, Lecture Notes in Computer Science, vol. 3797, Springer,
pp. 77-89, 2005.

M. Rabin. Digitalized signatures. In R. DeMillo, D. Dobkin, A. Jones, and R.
Lipton, editors, Foundations of Secure Computation, Academic Press, pp. 155—
168, 1978.

R. Rivest. The MD4 message digest algorithm. Advances in Cryptology —
CRYPTO ’90, Lecture Notes in Comptuer Science, vol. 537, pp. 303-311, 1991.
P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resis-
tance, and collision Resistance. Fast Software Encryption (FSE ’04), Lecture
Notes in Computer Science, vol. 3017, pp. 371-388, Springer, vol. 3017, 2004.
T. Satoh, M. Haga, and K. Kurosawa. Towards secure and fast hash functions.
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E82—-A No. 1, pp. 55—62.

J. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model.
Full version of this paper. Cryptology ePrint Archive, Report 2006/294, 2006.
J. Viega. The AHASH mode of operation. Manuscript, 2004. Available from
www.cryptobarn.com.

X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash
functions MD4 and RIPEMD. Advances in Cryptology — EUROCRYPT 05,
Lecture Notes in Computer Science, vol. 3494, Springer, pp. 1-18. 2005.

X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. Advances
in Cryptology — CRYPTO 05, Lecture Notes in Computer Science, vol. 3621,
Springer, pp. 17-36, 2005.

