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Abstract. We consider the standard secure multi-party multiplication
protocol due to M. Rabin. This protocol is based on Shamir’s secret
sharing scheme and it can be viewed as a practical variation on one of the
central techniques in the foundational results of Ben-Or, Goldwasser, and
Wigderson and Chaum, Crépeau, and Damgaard on secure multi-party
computation. Rabin’s idea is a key ingredient to virtually all practical
protocols in threshold cryptography.
Given a passive t-adversary in the secure channels model with syn-
chronous communication, for example, secure multiplication of two secret-
shared elements from a finite field K based on this idea uses one com-
munication round and has the network exchange O(n2) field elements,
if t = Θ(n) and t < n/2 and if n is the number of players. This is be-
cause each of O(n) players must perform Shamir secret sharing as part
of the protocol. This paper demonstrates that under a few restrictions
much more efficient protocols are possible; even at the level of a single
multiplication.
We demonstrate a twist on Rabin’s idea that enables one-round secure
multiplication with just O(n) bandwidth in certain settings, thus reducing
it from quadratic to linear. The ideas involved can additionally be em-
ployed in the evaluation of arithmetic circuits, where under appropriate
circumstances similar efficiency gains can be obtained.

1 Introduction

Given a passive t-adversary in the secure channels model with synchronous com-
munication, secure multiplication of two secret-shared elements from a finite field
K based on Rabin’s idea uses one communication round and has the network
exchange O(n2) field elements, if t = Θ(n) and t < n/2 and if n is the number of
players. This is because each of O(n) players must perform Shamir secret sharing
as part of the protocol.
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We demonstrate a twist on Rabin’s idea that enables one-round secure mul-
tiplication with just O(n) bandwidth, thus reducing it from quadratic to linear.
However, to obtain this efficiency we need to decrease the maximal corruption
tolerance, but still t = Θ(n), i.e., a number of corruptions is tolerated that is
still a constant fraction of n. Furthermore, we require the finite field L to have a
certain property; it should contain a subfield K over which it has an extension
degree linear in n.

For this result we emphasize that, unlike in previous approaches (such as
[10]), the mentioned costs analysis is not amortized, as we consider “single-shot”
(or “atomic”) secure multiplication only. The techniques involved can provide
considerable efficiency gain in certain secure linear algebra computations, such
as securely computing the determinant of a matrix and securely solving a linear
system of equations, where the chosen field is typically large in order to ensure
a small error probability [5], [6].

A main handle that enables the result mentioned above is a theorem that
demonstrates that when certain values can be extracted from the shares in a
ramp scheme by means of a linear function, several linear functions on these
values can be securely computed at the cost of only a single multiplication and
using only a single round of communication. We demonstrate how this theorem,
together with a technique due to Franklin and Yung [7], can be used to speed
up computation over arithmetic circuits.

After discussing the theorem and the main idea behind our variation, we
detail some further handles for trade-offs between communication efficiency and
corruption tolerance. We also demonstrate similar reductions in communication
complexity for secure computation in the presence of an active adversary.

2 Rabin’s Secure Multiplication Protocol

We consider Rabin ’s idea (as explained in [9]) for secure multiplication. This
protocol is a key ingredient to virtually all practical protocols in threshold cryp-
tography.

For the moment we focus on the secure channels model with synchronous
communication, in the presence of a passive t-adversary where t is maximal such
that t < n/2 and where n is the number of players in the network. Assuming
that the network has (t, n)-Shamir-sharings of two secret values a and b, the
protocol allows the network to securely generate a (t, n)-Shamir-sharing of the
product a · b. The technical idea behind this protocol is a simple and elegant
reduction from secure multiplication to secure linear computation.

Concretely, let K be a finite field with |K| > n. Let x1, . . . , xn be distinct
non-zero elements from K. Each player Pi has a share ai in the secret a and a
share bi in the secret b. Let f denote the polynomial of degree at most t such
that f(0) = a and such that f(xi) = ai for all i. Similarly, g is the polynomial
defining the secret sharing of b.

Now note that the values (a1·b1, . . . , an·bn) are consistent with the polynomial
f ·g, i.e., (fg)(xi) = aibi for all i. Since fg has degree at most 2t and since 2t < n,



these values uniquely determine f ·g, by Lagrange interpolation. Concretely, there
exists a (public) linear map φ : Kn −→ K such that φ(a1b1, . . . , anbn) = ab
always.

This reduces secure multiplication to secure linear computation: it is suffi-
cient to compute φ securely on the secret inputs aibi, where aibi is the input
of player Pi. These inputs can of course be computed locally. So, first the play-
ers perform input sharing, i.e., each player Pi (t, n)-Shamir-shares aibi among
the network, using a polynomial hi. Then each player Pj simply computes lo-
cally φ(h1(xj), . . . , hn(xj)) as his share in ab. The overall result is clearly a
(t, n)-Shamir-sharing of ab, defined by the polynomial h = φ(h1, . . . , hn). This
protocol takes a singe round of communication, and it involves the exchange of
O(n2) elements from K.

3 Prior Work: Parallel Secure Computation

Franklin and Yung [7] have shown that interesting advantages can be offered in
secure computation by relaxing the corruption tolerance level by just a constant
fraction of the number of players. They showed an amortized cost reduction
in communication complexity. More precisely, they assume that the number of
corrupted parties t satisfies t < cn where c is a constant less than the standard
maximum that can be tolerated in the given scenario (typically 1/2 or 1/3).
The same secure evaluation can now be performed on several different inputs
in parallel, while the total communication amounts to that of a single secure
evaluation.

Although our goals and techniques substantially differ from [7], we do use
some of the ideas. We recall their techniques below. Consider for simplicity the
secure channels model with a passive adversary, just as in the description of
Rabin’s idea, though with the following differences.

Let t̂ be a positive integer with t̂ < n/2, and let k be an integer with 1 ≤ k ≤ t̂.
Define t = t̂− k. The finite field K is chosen such that |K| > n+ k.

First consider the following variation on Shamir’s secret sharing scheme. Let
the sets {x1, . . . , xn} and {e0, . . . , ek} be two disjoint sets of distinct elements
from K.

– Let a = (u0, . . . , uk) be a vector of secret elements from K.
– Choose a random polynomial f(X) ∈ K[X] of degree at most t̂ such that

f(e0) = u0, . . . , f(ek) = uk.

– Define the shares as

a1 = f(x1), . . . , an = f(xn).

Clearly, t̂ + 1 shares or more jointly determine f and hence the secret vector
a. As to privacy, it is a straightforward consequence of Lagrange-interpolation
that t or fewer shares jointly give no information on the secret vector. So it is a
(t, t̂+ 1)-ramp scheme, with secrets of length t̂− t+ 1.



Now, k + 1 secure multiplications of (u0v0, . . . , ukvk) can be performed in a
very compact manner. Suppose that vectors a = (u0, . . . , uk) and b = (v0, . . . vk)
have been secret-shared. Say that the shares in a are (a1, . . . , an) (with defining
polynomial f) and the shares in b are (b1, . . . , bn) (with defining polynomial
g). The network may now obtain a secret-sharing according to the scheme above
(and with the same parameters) of the vector a∗b := (u0v0, . . . , ukvk) as follows.

First we note that for j = 0, 1, . . . , k, it holds that (fg)(ej) = ujvj . For a
reason similar to the one used in the description of Rabin’s idea, there exists
linear maps φj : Kn −→ K such that ujvj = φj(a1b1, . . . , anbn) (j = 0 . . . k).

Each player Pi now simply secret-shares (according to the scheme above, with
the same parameters) the vector (φ0(εi)aibi, . . . , φk(εi)aibi), where εi ∈ Kn is
the i-th unit vector. Define the polynomial h(X) =

∑n
i=1 hi(X), where hi is the

polynomial used by Pi in the sharing step above (i = 1 . . . n). This polynomial
is consistent with the parameters of the scheme, the secret encoded by it is the
vector a ∗ b and each player Pi can locally compute his share as

∑n
j=1 hj(xi).

We will demonstrate later that there is a more general way to look at this last
resharing step (see Theorem 1).

4 Ramp Schemes and Share Conversion

We now present a formal definition of (linear) ramp schemes, which can be seen
as a generalization of threshold secret sharing schemes.

Definition 1. Let Mi be a di × e matrix for i = 1, 2, . . . , n. For every set A ⊂
{1, 2, . . . , n}, let MA be the matrix defined by stacking the matrices (Mi)i∈A on
top of each other. The scheme defined as such is called a (linear) (t, t̂+ 1)-ramp
scheme of embedding degree k + 1 if the following two properties hold:

– For any A ⊂ {1, 2, . . . , n} with |A| ≥ t̂ + 1, there are vectors r0, r1, . . . , rk
such that riMA = ui, where ui is the ith unit vector.

– For any A ⊂ {1, 2, . . . , n} with |A| ≤ t and any vector v = (v0, v1, . . . , vk)
there is a vector κ ∈ KerMA where the first k+1 coordinates of κ correspond
with the coordinates of v.

Ramp schemes are used for secret sharing as follows. Let s = (s0, s1, . . . , sk) ∈
Kk+1 be a secret vector and choose b = (b0, b1, . . . , be−1) ∈ Ke at random under
the restriction that bi = si for i = 0, 1, . . . , k. Now define si := Mib ∈ Kdi as
the share for the ith player. Note that the embedding degree of the ramp scheme
defines the dimension of the secret space over K.

The first condition for ramp schemes is now equivalent to the statement for
the corresponding secret sharing scheme that t̂+1 or more players can compute
every coordinate of the secret vector via a linear combination of their shares.
Furthermore, the second condition is equivalent to the statement that for any
subset consisting of at most t players every possible secret vector is equally
consistent with their shares. Another key point to note is that ramp schemes
allow for a “gray zone” between the unqualified and the qualified number of



players, which allows the size of the shares to be smaller than the size of the
secret.

There is a way to rewrite the scheme due to Franklin and Yung to the no-
tation used above by applying appropriate operations on the columns of a Van-
dermonde matrix. However, since the representation using polynomials is rather
convenient for both their scheme and our scheme from Section 5, we will stick to
a polynomial notation for these schemes in the sequel. Naturally, there is also a
straightforward way of rewriting our scheme to the formal notation above, which
boils down to the elimination of a number of columns from a Vandermonde ma-
trix.

One of the key ingredients of our results is the following theorem, which allows
us to convert shares between different types of linear ramp schemes, while at the
same time computing a number of linear functions on secret values in the ramp
scheme in parallel.

Theorem 1. Assume that the players hold shares c1, .., cn in a linear ramp
scheme of the secret vector (s1, .., sm) – which means there exist linear maps
φj : Kn −→ K such that sj = φj(c1, . . . , cn) (j = 0 . . .m) and that the set of
all players is qualified in this scheme. Furthermore, let arbitrary linear functions
F1, .., F`, Fi : Km → K, be given. Then in a single round of communication, the
shares in this scheme can be transformed into shares in any other linear ramp
scheme with secret space of dimension at least ` with secret vector

(F0(s0, . . . , sm), . . . , F`(s0, . . . , sm)),

Furthermore, privacy is maintained for any subset of players for which privacy
holds in both of the ramp schemes involved.

Proof. Assume that the functions Fj are Fj(x0, . . . , xm) :=
∑m

w=0 µ
(j)
w xw for

some µ(j)
w ∈ K and define β(j)

i :=
∑m

w=0 µ
(j)
w φw(εi)ci. Note that

sj = φj(c1, . . . , cn) =
n∑

i=1

φj(εi)ci,

so that

Fj(s0, . . . , sm) =
m∑

w=0

µ(j)
w sw =

m∑
w=0

µ(j)
w

(
n∑

i=1

φw(εi)ci

)

=
n∑

i=1

(
m∑

w=0

µ(j)
w φw(εi)ci

)
=

n∑
i=1

β
(j)
i ,

and that player i can ramp share the vector (β(0)
i , . . . , β

(`)
i ) in the target scheme,

as the coefficients β(j)
i only depend on its share ci and public information. After

all players have reshared their shares in this way and the players locally sum
up their new shares, they obtain shares in the target scheme with secret vec-
tor (F0(s0, . . . , sm), . . . , F`(s0, . . . , sm)). The privacy claim is straightforward to
verify and the result follows. ut



In particular, Theorem 1 demonstrates that we can in a single round of
communication securely compute any list of linear functions (up to a certain
size) on the ramp shared secret values. Combined with the techniques of Franklin
and Yung, this is used in Section 8 to enable more efficient evaluation of certain
arithmetic circuits. Theorem 1 is later also used in combination with the ramp
scheme from Section 5, where the resulting scheme allows to compute products of
values in an extension field of K using only shares and communication consisting
of elements in K.

5 Atomic Secure Multiplication: The Main Idea

In [7], the amortized communication complexity of a secure computation is re-
duced by performing a linear number of multiplications in parallel. The more
general techniques described in this section alternatively allow to reduce the
atomic communication complexity, i.e., the minimum communication complexity
required to perform a single secure multiplication. In particular, we demonstrate
how a decreased maximum corruption tolerance, while still a constant fraction
of n, allows one to gain a linear factor in communication complexity for a single
multiplication. However, for this we require that the finite field that is used in
the computation has some additional structure. These techniques can provide
considerable efficiency gain, for instance when used as a building block in secure
linear algebra computations over large finite extension fields [5, 6].

The technical idea behind our result can be summarized as follows. We use
a dedicated ramp scheme, different from the one in [7]. It is defined using an
extension field L over K, but each share is just a single element from K. The
secret is an element in L, which is represented as a vector of elements from K by
fixing a basis of L over K and interpreting L as a vector space over K. This way,
the information rate of the scheme improves as the degree of L over K increases,
but we pay for this by having to decrease the corruption tolerance appropriately.

This approach is additive in the sense that sums of sharings of two elements
from L give a sharing of their sum. The relative difficulty lies in the product.
We show a variation on Rabin’s idea that allows the network to securely com-
pute, in a single round, the vector-representation over K of the product of two
elements from L, using just O(n) bandwidth. 4 Our idea depends crucially on
the properties of our dedicated ramp scheme.

Definition 2. For each integer d with 0 ≤ d ≤ 2k the polynomial Hd is defined
as

Hd(X0, . . . , Xk, Y0, . . . , Yk) =
∑

0≤q,r≤k : q+r=d

Xq · Yr.

4 Our results here should be contrasted with those of [4], which deals with low com-
munication secure computation over very small fields, and uses an entirely different
technique.



Definition 3. Let k be a non-negative integer and let t̂ be an integer with 2k < t̂.
The linear subspace Vk,t̂(K) of the vector space of polynomials of degree at most
t̂ consists of all polynomials f(X) ∈ K[X] of the form

f(X) = a(X) +R(X) ·X2k+1,

where a(X) ∈ K[X] is a polynomial of (formal) degree k and where R(X) ∈
K[X] is a polynomial of (formal) degree t̂− 2k − 1.

Note the presence of a “gap” in the polynomials. It ensures that after local
multiplication of shares none of the higher-term random coefficients in the cor-
responding product polynomial interferes with the coefficients that results from
the lower-term coefficients (which contain the secret vectors). Furthermore, the
degree of the polynomials is chosen large enough to ensure that the higher-term
coefficients provide sufficient privacy.

Now assume that 2k < t̂. Thus, a(X) has degree at most k as a polynomial,
but its coefficient vector will be taken of length k + 1 in all the cases. We will
sometimes “identify a(X) with its coefficient vector a.” Similar for R(X). We
have the following trivially verified property.

Lemma 1. If f(X) = a(X)+R(X) ·X2k+1 and g(X) = b(X)+R′(X) ·X2k+1 ∈
Vk,t̂(K), then

f(X) · g(X) = H0(a, b) +H1(a, b) ·X + . . .+H2k(a, b) ·X2k + S(X) ·X2k+1,

where a, b are taken as the coefficient vectors (of length k+1) of the corresponding
polynomials and where S(X) is a polynomial of degree at most 2t̂− 2k − 1.

Now let L be an extension field of K of degree k + 1, and let θ be such that

L = K(θ).

The fact that 1, θ, . . . , θk is a basis for the field L as a k + 1-dimensional
K-vector space implies the following lemma. Let a = u0 +u1 ·θ+ . . .+uk ·θk ∈ L
and b = v0 + v1 · θ + . . .+ vk · θk ∈ L, with the ui and vj elements from K.

Lemma 2. With K, θ and L fixed as above, the following holds. There exist
linear maps χj : K2k+1 −→ K (j = 0 . . . k) such that for all a, b ∈ L

ab =
k∑

j=0

χj(H0(a, b), . . . ,H2k(a, b)) · θj ,

where a and b are given by their respective coordinate vectors (u0, . . . , uk) and
(v0, . . . , vk).

This lemma is easily verified by multiplying everything out, rewriting the
powers θj with j > k with respect to the basis chosen and making the substitu-
tions.



Now consider the following secret sharing scheme. It is assumed that θ is
fixed (and public), as well as the other parameters introduced above. A secret
can be any element a ∈ L, represented as a k + 1-vector of elements from K:
a = u0 + u1θ + . . . + ukθ

k, with the uj in K. Each share will be an element of
K however. Define

t = t̂− 2k.

1. Let
a = u0 + u1 · θ + . . .+ uk · θk ∈ L

be the secret value.
2. Choose f(X) ∈ Vk,t̂(K) at random such that

f(X) = a(X) +R(X) ·X2k+1,

where a(X) ∈ K[X] is the polynomial of degree at most k whose coefficient
vector is (u0, . . . , uk) and where R(X) ∈ K[X] is a polynomial of degree at
most t̂− 2k − 1.

3. Set
a1 = f(x1) ∈ K, . . . , an = f(xn) ∈ K

as the shares.
4. For any set A ⊂ {1, . . . , n} with |A| ≥ t̂ + 1, the reconstruction of a ∈ L

from the shares {ai}i∈A is by standard Lagrange Interpolation.

As for privacy, we note the following. If |A| ≤ t (= t̂−2k), then the collection
of shares {ai}i∈A gives no information on the secret a. Indeed, for each such set
A and for each z ∈ L there exists a κ(X) ∈ Vk,t̂(K) such that

κ(X) = z(X) + T (X) ·X2k+1,

where T (X) is a polynomial of degree at most t̂− 2k − 1, and such that

κ(xi) = 0 for all i ∈ A,

and this implies the privacy claim, for instance by a simple argument similar
to the one used in the analysis of general linear secret sharing. The existence
of κ(X) per se follows from the lemma below, an immediate consequence of
Lagrange’s Interpolation Theorem.

Lemma 3. Let x1, x2, . . . , xe be distinct non-zero elements of K. Let d be an
integer with d ≥ e. For any z0, . . . , zd−e ∈ K and for any y1, . . . , ye there exists
a polynomial κ(X) ∈ K[X] of degree at most d such that

κ(X) = z0 + z1 ·X + . . .+ zd−e ·Xd−e + higher order terms ,

and
κ(x1) = y1, . . . , κ(xe) = ye.



Proof. Define f1(X) =
∑d−e

j=0 zjX
j and let f2(X) be the polynomial of degree

at most e − 1 through the e points (yi − f1(xi))/xd−e+1
i . Then the polynomial

κ(X) = f1(X) + f2(X) ·Xd−e+1 is the unique polynomial that has the required
properties. ut

Thus, the dedicated scheme above is a (t, t̂+ 1) ramp scheme with shares in
K and the secret in L (as a vector of length t̂−t

2 + 1 over K).
In order to state the claimed secure multiplication protocol we need the

following lemma, which can easily be verified using arguments similar to the
ones used in standard proofs of Langrange’s Interpolation Theorem, or by using
the properties of Vandermonde determinants.

Lemma 4. Let x1, . . . , x`+1 be fixed distinct elements of K. Then there exist
linear maps φj : K`+1 −→ K (j = 0 . . . `) such that the following holds. Let
y1, . . . , y`+1 be any elements of K. Let f ∈ K[X] be the unique polynomial of
degree at most ` such that f(x1) = y1, . . . , f(x`+1) = y`+1. Then

f(X) = φ0(y1, . . . , y`+1) + φ1(y1, . . . , y`+1) ·X + . . .+ φ`(y1, . . . , y`+1) ·X`.

Still in the secure channels model as before, assume that t̂ < n/2. Suppose
that values a = u0 +u1 ·θ+ . . .+uk ·θk ∈ L and b = v0 +v1 ·θ+ . . .+vk ·θk ∈ L,
with coefficients inK, have been secret-shared according to the dedicated scheme
explained above. Write f ∈ K[X] for the polynomial defining the sharing of
a ∈ L, with respective shares a1, . . . , an ∈ K, and write g defining that of b ∈ L,
with respective shares b1, . . . , bn ∈ K.

It now follows immediately from the fact that t̂ < n/2 and from Lemmas 1, 2,
and 4 that there exist linear maps ψj : Kn −→ K such that

ab =
k∑

j=0

ψj(a1b1, . . . , anbn) · θj ∈ L.

The coefficients defining these linear maps can be computed efficiently. We can
now use Theorem 1 to convert the local products of the shares of the players
into a sharing of ab.

If the degree [L : K] = k + 1 of the extension field L satisfies the conditions
detailed below, we can now achieve O(n) communication.

We have
t+ 2k = t̂ and t̂ < n/2.

So if we set, say,
2t̂+ 1 = n,

and
k = cn,

for some real constant c, then we can achieve t maximal such that

t <
(1− δ)n

2
, where δ = 4c.



If the parameters are such, secure multiplication of two elements from the
field L is done with communication O(n2) elements from K, which is equivalent
to O(n) elements from L. This is as claimed.

5.1 A More General View

It is possible to look at the secure multiplication protocols in a more general
way, that contain both our results and those of Franklin and Yung [7] as special
cases.

Both in the protocol of Franklin and Yung and our protocol from Sec-
tion 5, the protocols start out with two sets of shares, defining secret vectors
(s0, ..., sm), (s′0, ..., s

′
m) respectively. We then compute locally the pairwise prod-

ucts of shares in the two vectors and these pairwise products can be seen as
shares in a new ramp scheme, different from the original one.

For instance, in the scheme by Franklin and Yung the secret vector defined by
the “local products” of the shares is (s0s′0, s1s

′
1, . . . , sms

′
m) according to the new

scheme defined On the other hand, in the protocol from Section 5, assuming the
same initial secret vectors, we obtain secret vector (

∑
i+j=0 si · s′j ,

∑
i+j=1 si ·

s′j , . . . ,
∑

i+j=2m si · s′j) consisting of all homogeneous sums of the secret co-
efficients. This is why we can obtain different results after the application of
Theorem 1.

In general, we can start from any ramp scheme R, do the local multiplications
and obtain a sharing of some quadratic function of the two original secret vectors
in a new ramp scheme R′ that depends on R. This is not always useful – for
instance, it is not always the case that the set of all players is qualified in R′.
Franklin/Yung and our scheme are two nicely structured examples, where useful
results are indeed obtained.

We note that one can also obtain the homogeneous sums we use by multiple
applications of Franklin and Yung’s scheme, but since this would require O(n)
applications of their scheme (in order to obtain the required cross-products) this
would be much less efficient.

6 Further Trade-Offs

In Section 5, we presented a scheme which is secure against a t-adversary. We
now show a variation that is secure against a (stronger) t′-adversary with t′ > t,
where t′−t is a constant fraction of n. Given again a finite field L with extension
degree k + 1 over a subfield K, the bandwidth requirement remains O(n), but
there is a larger hidden constant.

The idea is to introduce a slightly modified version of the dedicated ramp
scheme from Section 5. Basically, the coefficients of a secret element a ∈ L are
distributed over two polynomials f1 and f2 with smaller gaps than the polyno-
mial that was used before, and the secure multiplication is then performed with
these two polynomials by exploiting cross-products. This doubles the size of the



shares and the required bandwidth. There is also a natural generalization of this
idea involving more then two polynomials and cross-products of shares.

In Section 5, a t-adversary was defined where t = t̂ − 2k for some integer
t̂ < n/2 and where k + 1 is the degree of L over K. In this section, we fix the
value k̂ = d(k−1)/2e, and define the t′-adversary by t′ = t̂−2k̂. We now explain
the details of the variation.

For an arbitrary value a = u0 + u1 · θ+ . . .+ uk · θk ∈ L, with coefficients in
K, we denote a(1) = u0 + u1 · θ + . . .+ uk̂ · θ

k̂ and a(2) = a− a(1). Furthermore,
we define a(1)(X) = u0 +u1 ·X + . . .+uk̂ ·X

k̂ and a(2)(X) = uk̂+1 +uk̂+2 ·X +

. . .+ uk ·Xk−k̂−1.
For i ∈ {1, 2}, choose fi(X) ∈ Vk̂,t̂(K) at random such that

fi(X) = a(i)(X) +Ri(X) ·X2k̂+1,

where a(1)(X) is the polynomial of formal degree k̂ with the initial coefficients
(u0, u1, . . . , uk̂), a(2)(X) is the polynomial of formal degree k − k̂ − 1 with the
remaining coefficients (uk̂+1, uk̂+2, . . . , uk) and where R1(X), R2(X) ∈ K[X] are
polynomials of formal degree t̂ − 2k̂ − 1. Then f1 and f2 both encode exactly
half of the coefficients of a (if k is odd) or f1 encodes one more coefficient of a
than f2 (if k is even). These polynomials are used in this section to perform the
secure multiplication.

Assume that a value b = v0 + v1 · θ + . . . + vk · θk ∈ L has likewise been
encoded, resulting in polynomials b(1)(X), b(2)(X), g1(X) and g2(X), and that
every player Pi received the values a(1)

i = f1(xi), a
(2)
i = f2(xi), b

(1)
i = g1(xi)

and b
(2)
i = g2(xi). By Lemma 3, no subset of t − 2k̂ players can obtain any

information about a(1), a(2), b(1) or b(2), and therefore the players in such a
subset also cannot obtain any information about a or b.

We now make use of the observation that

(ab)(X) = (a(1)b(1))(X) + (a(1)b(2) + a(2)b(1))(X) ·X k̂+1 + (a(2)b(2))(X) ·X2k̂+2,

with as coefficients the values H0(a, b),H1(a, b), . . . ,H2k(a, b). This is straight-
forward to verify using the discussion from the last section. Since by Lemma 4
there exists a linear map φ` such that for i, j ∈ {1, 2} the `th coefficient of
(figj)(X) can be computed as φ`(a

(i)
1 b

(j)
1 , a

(i)
2 b

(j)
2 , . . . , a

(i)
n b

(j)
n ), the same holds

for a(i)b(j)(X). In particular there exist linear maps ψ` : Kn −→ K such that

ab =
k∑

`=0

ψ`(C11, C12, C21, C22) · θ` ∈ L,

where Cij = (a(i)
1 b

(j)
1 , . . . , a

(i)
n b

(j)
n ) for i, j ∈ {1, 2}. Therefore, the techniques

from the previous section can be used to construct a multiplication protocol
that leads to two polynomials h1(X) and h2(X) of the proper form that encode
the coefficients of ab ∈ L.



7 Secure MPC Against an Active Adversary (Overview)

Using the new techniques, we construct a protocol for secure multiplication in
the presence of an active t-adversary that requires only O(n2) bandwidth when
the multiplication is performed in a field L with extension degree k + 1 over
a subfield K. Again, the corruption tolerance is not maximal, as we require
t = t̂ − 3k with t < t̂ < n/4, but it is still a constant fraction of n. Below we
sketch the underlying ideas of the protocol. A more detailed description can be
found in the appendix.

The obvious weakness of the protocol described in Section 5 is that the out-
come completely depends on the polynomials hi that the players select. Even
if only one of these polynomials is not selected according to the protocol spec-
ification, the final outcome can encode any arbitrary element of L or not even
be of the correct form. However, a closer inspection of the protocol reveals that
the values of the leading coefficients of every polynomial hi mainly depend on
the corresponding value aibi. Therefore, we can use VSS to let the players secret
share their value aibi, and then let the players locally compute their shares in
polynomials hi that are guaranteed to be of the proper form. We now sketch the
key ingredients of the protocol.

Dedicated VSS We use an adaptation of the four-round VSS protocol by Gen-
naro et al. [8] that allows the players to verify the presence of a gap in a
secret sharing polynomial. In particular, we show that it is sufficient if the
polynomials that the honest players receive as their shares using this scheme
contain the desired gap.

Resharing step Every player Pi reshares the value aibi using an instance of
the dedicated VSS scheme by embedding it in a secret sharing polynomial
vi of formal degree t̂ − k that has a gap of size 2k following the constant
coefficient. Furthermore, player Pi uses VSS to distribute evaluations on a
random polynomial of formal degree 2t̂ that has a zero constant coefficient.
The value aibi is the constant coefficient of a polynomial of formal degree
2t̂ in which all the players have a share due to the VSS scheme. Therefore,
the players can jointly subtract the polynomial vi from this polynomial and
mask the result by adding the random polynomial. These operations can
all be performed locally on the shares and lead to shares in the resulting
polynomial. The players then publicly reconstruct this polynomial by pooling
their shares and verify whether it has a zero constant coefficient. This ensures
that player Pi indeed reshared the value aibi.

Local computation Since the polynomial hi(X) should contain the element

k∑
j=0

ψj(εi)aibiθ
j ∈ L,

the polynomial

hi(X) =
k∑

j=0

ψj(εi)Xjvi(X)



is of the correct form and every player Pm can locally compute a share hi(xm)
in this polynomial using the share vi(xm). The sum of these shares then gives
a share in a polynomial of the proper form that encodes the product ab.

8 Efficient Circuit Evaluation

This section shows another application of Theorem 1. Consider any arithmetic
circuit C and a set of inputs to C and suppose that we evaluate the circuit by
repeating the following two steps until all the gates have been evaluated:

1. Evaluate all linear gates for which we have both inputs, i.e., the addition
gates and gates that perform multiplication by a constant.

2. Evaluate all multiplication gates for which we have both inputs.

Now let S(C) be the minimum number of multiplication gates that are han-
dled in one instance of step 2. We will refer to this value S(C) as the multiplica-
tive speedup of C.5 Arithmetic circuits with large multiplicative speedup occur
frequently in settings related to secure linear algebra [5]. For instance, constant-
round protocols for secure unbounded fan-in multiplication and secure matrix
multiplication require many parallel secure multiplications in a single step.

It is a natural idea to apply the scheme of Franklin and Yung here to perform
these multiplications in parallel, but in order to do this it is required that the
values that are to be multiplied are “aligned” in the corresponding instances of
the ramp scheme.

Theorem 1 enables us to perform this aligning and more. If the inputs to
the multiplication are available as secrets of some ramp scheme, or even merely
available via a linear function on the shares that the players hold in a number
of (potentially different) ramp schemes, a single resharing round can be used
in order to correctly align the inputs to the parallel multiplications. This also
implies that the same resharing step can simultaneously perform the operations
required in step 1 before the multiplications are performed, and after local mul-
tiplication of the new shares we can continue with the preparations for the next
multiplication round. We formulate this consequence of Theorem 1 a bit more
precisely below.

Theorem 2. Consider an arithmetic circuit C over the field Fq with multiplica-
tive speedup m. Then there exists a passively secure protocol for n players that
securely evaluates C having communication complexity O(|C|n2k/m+C ′), where
C ′ is the complexity of sharing the inputs and k = log(q). The protocol is secure
against at most n/2−m passive corruptions.

Proof. (Sketch) Assume for simplicity that each multiplication layer in C consists
of exactly m gates. Then to perform one set of multiplications, the protocol of
Franklin and Yung requires ramp sharings, say in ramp scheme R of two blocks A
5 This term is inspired by [11], where the speedup is defined to be the factor you save

in runtime due to parallelism.



and B of m values each, where A contains all the left inputs to the multiplication
gates and B contains all the right inputs in matching order. Local multiplication
of the shares of A and B then produces a linear secret sharing (in a new scheme
R′) of all the outputs from the multiplication gates.

Now note that we can assume that as input to an instance of Step 1 above,
we have a linear sharing of all values going into Step 1. This is either obtained
because the inputs are shared initially, or we have a sharing in R′ which was
output from a previous instance of Step 2. All we need is that the set of all
players is qualified in the scheme that occurs here. We now need to subject these
values to a linear function and place the results in the blocks A and B. Using
Theorem 1, we can do exactly this in one round and communication complexity
n2k. Clearly, there can be no more than |C|/m multiplication layers, and the
scheme of Franklin and Yung that we start from is private as long as there are
at most n/2−m corruptions ut
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A Secure MPC Against an Active Adversary

In this section we describe in detail the key ingredients of the protocol secure
against an active adversary, as described in Section 7. Throughout this section,
we assume that t = t̂− 3k with t̂ < n/4.

A.1 VSS

We start by describing the adaptation of the four-round VSS protocol by Gen-
naro at al. [8] that allows the players to verify the presence of a gap in the secret
sharing polynomial.

Let f be the polynomial defining the sharing of a ∈ L, as described in Section
5. The dealer D randomly selects a symmetric bivariate polynomial F (X,Y ) =∑t̂

i,j=0 eijX
iY j ∈ K[X,Y ] under the restriction that F (X, 0) = f(X) and that

eij = eji = 0 for j = k + 1, k + 2, . . . , 2k and i = 0, 1, . . . , n. The dealer D and
the players now execute the following steps:

1. D privately sends to every player Pi the polynomial fi(X) := F (X,xi) by
transmitting the t̂ − k coefficients that are not equal to zero by default.
In every subset of two players {i, j} one of the players (which one can be
fixed before execution of the protocol) selects a random pad rij = rji and
transmits this value privately to the other player in this set.

2. Player Pi broadcasts for every player Pj the value aij = fi(xj) + rij .
3. For every pair aij 6= aji, the dealer, Pi and Pj each broadcast the value
fi(xj) = fj(xi) = F (xi, xj).
A player is called unhappy if his value does not match the dealer’s value.
If there are more than t unhappy players, the dealer is disqualified and the
protocol stops.

4. For every unhappy player Pi the dealer broadcasts fi(X) and every player
Pj that is not unhappy broadcasts the value fj(xi).

5. Every player checks for every broadcast polynomial fi(X) whether at least
3t̂+ 1 happy players Pj broadcast a value fj(xi) such that fi(xj) = fj(xi).
If this is not the case, the dealer is disqualified. The broadcast polynomials
are from here on (publicly) used as the shares of the corresponding players.

As in [8], this protocol has the properties that when the dealer is honest, no
new information is disclosed to the adversary after the first round and that when
the protocol completes all honest players have obtained consistent polynomials
fi(X). Therefore, the main properties to be verified here are that in the case
of an honest dealer no information is disclosed about a in the first round and
that in the case of a dishonest dealer the polynomial f(X) that is fixed by the
resulting polynomials fi(X) is of the proper form. Note that, since t̂ < n/4,
this protocol can easily be adjusted so that polynomials of formal degree 2t̂ are
distributed.

Below we present a security proof for a setting in which none of the initial
2k+ 1 coefficients has a fixed value. The security for the case where some of the



coefficients are fixed to zero, but only k + 1 of the coefficients need to remain
secret, then follows as a straightforward application of this result.

Lemma 5. Let F (X,Y ) be a random symmetric bivariate polynomial of formal
degree t̂ in each variable and define fi(X) := F (X,xi) for i = 1, 2, . . . , n. If
0 ≤ d ≤ t̂, then any subset of t̂−d polynomials fi(X) gives no information about
the first d+ 1 coefficients of f(X) := F (X, 0).

Proof. Assume wlog that the given polynomials are {fi(X)}t̂−d
i=1 . We need to

show that for any selection for the first d + 1 coefficients of f(X), there is
a symmetric bivariate polynomial F (X,Y ) that is consistent with the given
polynomials and the selected coefficients. We show the equivalent statement
that there exist symmetric bivariate polynomials Fj(X,Y ) for j = 0, 1, . . . , d
such that Fj(X,xi) = 0 for i = 1, 2, . . . , t̂− d and all the d+ 1 lower coefficients
of Fj(X, 0) are zero except for the jth one, which is equal to one.

By Lemma 3, any selection c0, c1, . . . , cd for the first d + 1 coefficients of f
leads to a polynomial f ′(X) that is consistent with the selection and for which
f ′(xi) = 0 for i = 1, 2, . . . , t̂ − d. Let Cj be the selection where all selected
coefficients are zero, except for the first and the jth one which are equal to
one, and let fCj

be the corresponding polynomial with those first coefficients for
which fCj (xi) = 0 for i = 1, 2, . . . , t̂− d.

Define a number of symmetric bivariate polynomials FCj
(X,Y ) by setting

FCj
(X,Y ) := fCj

(X)fCj
(Y ) for j = 0, 1, . . . , d. Then we have that FCj

(X,xi) =
fCj (X)fCj (xi) = 0 for i = 1, 2, . . . , t̂ − d and FCj (X, 0) = fCj (X)fCj (0) =
fCj

(X). The polynomials F0(X,Y ) := FC0(X,Y ) and Fj(X,Y ) := FCj
(X,Y )−

FC0(X,Y ) for j = 1, 2, . . . , d are now of the desired form. ut

We now show that the default zeros in the polynomials fi(X) that the players
receive as their share ensure that the required gap is present in the polynomial
f(X).

Lemma 6. Take x0 = 0. For i = 0, 1 . . . , n, let fi(X) := F (X,xi) = ci0 +
ci1X + · · · + cit̂X

t̂ for certain cij ∈ K. If cik = 0 for at least t̂ + 1 values of i,
then the coefficient c0k of the polynomial f0(X) is zero.

Proof. Since F (X,Y ) =
∑t̂

i,j=0 eijX
iY j , fv(X) =

∑t̂
i=0(

∑t̂
j=0 eijv

j)Xi and

in particular f0(X) =
∑t̂

i=0 ei0X
i. Now assume that cilk = 0 for distinct

i1, i2, . . . , it̂+1. This amounts to saying that
∑t̂

j=0 ekjil
j = 0 for l = 1, . . . , t̂+ 1

and therefore the polynomial
∑t̂

j=0 ekjY
j has to be the zero polynomial. We

conclude that ekj = 0 for j = 0, 1 . . . , t̂ so that in particular ek0 = c0k = 0. ut

A.2 Multiplication/Resharing Step

Suppose that both a ∈ L and b ∈ L have been secret-shared according to the ded-
icated VSS scheme described above, resulting in distributed polynomials fi(X)



and gi(X). The aim is to let the players execute a secure resharing protocol that
results in a secret-sharing of ab according to the dedicated VSS scheme. The
resharing protocol proceeds as follows for every player Pi:

1. Player Pi selects a polynomial of the form vi(X) = aibi +
∑t̂−k

l=2k+1 rlX
l,

where rl is chosen at random from K for l = 2k + 1, 2k + 2, . . . , t̂ − k
and embeds it in a random symmetric bivariate polynomial Vi(X,Y ) =∑t̂

i,j=0 eijX
iY j ∈ K[X,Y ] under the restriction that Vi(X, 0) = vi(X)

and that eij = eji = 0 for j = 1, 2, . . . , 2k and i = 0, 1, . . . , n. This bi-
variate polynomial is then used for VSS, leading to shared polynomials
vij(X) := Vi(X,xj).

2. Player Pi selects at random a symmetric bivariate polynomial Ri(X,Y ) of
formal degree 2t̂− 1 in each variable and distributes using VSS polynomials
rij(X) := Ri(X,xj), where the evaluations rij(0) determine the polynomial
ri(X) := Ri(X, 0) of formal degree 2t̂− 1.

3. All players Pj broadcast the value fj(xi)gj(xi)−vij(0)+xjrij(0) and use er-
ror correction to reconstruct a polynomial of degree 2t̂. If the first coefficient
of the reconstructed polynomial is not zero, player Pi is disqualified.

First note that fj(xi)gj(xi) − vij(0) + xjrij(0) = (figi − vi)(xj) + xjri(xj),
so that the players reconstruct the sum of two polynomials where one of the
polynomials is random under the restriction that the first coefficient is equal
to zero. Since the VSS-schemes have the property that all honest players have
consistent shares at the end of the procedure, the polynomials ri(X), vi(X),
fi(X) and gi(X) are uniquely determined when all players pool their shares in
these polynomials. Since t̂ < n/4 < n/3, the same holds for the polynomials
Xri(X) and (figi)(X) and therefore also for the polynomial (figi − vi)(X) +
Xri(X). Furthermore, this polynomial has an initial coefficient equal to zero
if and only if the first coefficient of vi(X) is equal to aibi. Note also that the
additional zero’s in the bivariate polynomial Vi(X,Y ) ensure to the players that
the polynomial vi(X) is of the proper form.

We need to show that the n polynomials (figi − vi)(X) +Xri(X) together
with t evaluations on the points x1, x2, . . . , xt for every polynomial r, vi, fi

and gi do not give any information about a, b or ab. First, we can conclude
by the following lemma that the sum of two arbitrary polynomials of degree 2t̂
together with t evaluations for these polynomials give no information about the
first t̂− t+ 1 first coefficients of one of these two polynomials.

Lemma 7. Let f and g be polynomials of formal degree t̂ and let the polynomial
f + g and evaluations f(xi) and g(xi) be given for i = 1, 2, . . . , d. Then f + g
together with the given evaluations f(xi), g(xi) give no information about the
first t̂− d+ 1 coefficients of f .

Proof. By Lemma 3, for any selection C = (c0, c1, . . . , ct̂−d+1) there exists a
polynomial with these values as the first t̂−d+1 coefficients that evaluates to zero
in the points x1, x2, . . . , xd. Then adding this polynomial to f and subtracting it



from g leads to consistent polynomials f ′ and g′ with different initial coefficients,
while the sum f ′ + g′ remains the same. This works for every arbitrary selection
C, and therefore the given information is consistent with any selection for the
first coefficients of f . ut

As a consequence of the lemma, given the evaluations of t players we can
choose polynomials of formal degree t̂ with arbitrary first k+ 1 coefficients that
evaluate to zero in the given points and add them to the polynomials fi and gi to
give polynomials f ′i and g′i. Then, the polynomial f ′ig

′
i − figi can be subtracted

from ri, which gives a polynomial r′i that is consistent with the given points on
ri, but for which the sum f ′ig

′
i +r

′
i is equal to figi +ri. Therefore, no information

about a, b or ab is leaked during the protocol.

A.3 Local Computation

In order to obtain the desired polynomials hi(X), every player Pi now locally
computes the polynomial

hi(X) =
n∑

j=1

(
k∑

l=0

ψk(εi)(X l + xi
l)

)
vji(X),

where ψl : Kn → K for l = 1, 2, . . . , n have been defined in Section 5.
Define h(X) :=

∑n
i=1(

∑k
l=0 ψl(εi)X l)vi(X). Then it is easy to verify that

h(X) has degree t̂ and we can write it in the form(
k∑

l=0

(
n∑

i=1

ψl(εi)aibi

)
X l

)
+

t̂∑
l=2k+1

r′′l X
l

for certain r′′2k+1, r
′′
2k+2, . . . , r

′′
t̂
∈ K. In particular, the first k + 1 coefficients

are the coefficients of ab. Below, we show that the evaluations hi(0) all give
evaluations on h(X) and that for all i, j ∈ {1, 2, . . . , n} we have that hi(xj) =
hj(xi), so that there exists a symmetric bivariate polynomial H(X,Y ) such that
H(X, 0) = h(X) and H(X,xi) = hi(X). Therefore, the resulting sharing is of
the desired form.

The following two, easy to verify lemmas show that the polynomials hi(X)
that the players obtain are part of a proper sharing of the polynomial h(X).
Therefore, the protocol described above gives us a proper sharing of the new
(product) secret.

Lemma 8. ∀1 ≤ i ≤ n : hi(0) = h(i).

Lemma 9. ∀1 ≤ i, j ≤ n : hi(j) = hj(i).


