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Abstract. In 1996, Coppersmith introduced two lattice reduction based
techniques to find small roots in polynomial equations. One technique
works for modular univariate polynomials, the other for bivariate poly-
nomials over the integers. Since then, these methods have been used
in a huge variety of cryptanalytic applications. Some applications also
use extensions of Coppersmith’s techniques on more variables. However,
these extensions are heuristic methods. In the present paper, we present
and analyze a new variation of Coppersmith’s algorithm on three vari-
ables over the integers. We also study the applicability of our method to
short RSA exponents attacks. In addition to lattice reduction techniques,
our method also uses Gröbner bases computations. Moreover, at least in
principle, it can be generalized to four or more variables.
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1 Introduction

In 1996, Coppersmith introduced two methods for finding small roots of polyno-
mial equations using lattice reduction, one for the univariate modular case and
another one for the bivariate case over the integers [6, 5, 7]. These algorithms are
based on the same idea: using lattice reduction (e.g. LLL) in order to create a
second polynomial that has the same root as the first one. In both cases, this
construction leads to a rigorous method to recover the root. In particular, in the
bivariate case, the use of orthogonal lattice guarantees the independence of the
two polynomials and ensures that the root can be recovered. In order to simplify
and help understand Coppersmith’s methods, Howgrave-Graham [13] and Coron
[8] revisited his ideas and proposed alternative constructions.

Since 1996, many cryptanalytic applications have been based on these meth-
ods, for example the factorization of N = pq knowing a fraction of the most
significant bits on each factor. Another well-known example is the cryptanalysis
of RSA with small private key [4, 2].



The applications of these algorithms for finding small roots of polynomial
equations can roughly be divided into two parts. On the one hand some re-
searchers try to generalize the original Coppersmith’s methods. For example, in
[3], Blömer and May present new results using Coppersmith’s method for poly-
nomials whose shapes are more complicated than those originally considered in
Coppersmith’s articles. Another example is the paper of Howgrave-Graham [14]
in which he explains how to cast the problem of finding roots for particular poly-
nomials in the more general context of approximate GCD computations. On the
other hand, there are researchers trying to adapt all these methods for more
than two variables. As an example, several new attacks on RSA are proposed in
[9], using variants of the original method on three variables.

However, with more than two variables, one encounters a major obstruction.
Indeed, one can not guarantee any more that the polynomials outputted by
LLL reduction are algebraically independent. Still in some practical applications,
the approach continues to work. Despite this, more and more articles mention
problematic cases. For example, in [2] the authors analyze in details one of the
heuristic multivariate attacks proposed by Boneh and Durfee in [4]. In [11, 12],
Hinek analyzes the problem of algebraic independence of the polynomials. He
focuses on the fact that in experiments algebraic dependency often leads to
difficulties and he says “in light of the observations in this work, it might be the
case that this lack of reported instances is simply due to a lack of experimental
observations”. In this paper, in order to avoid these difficulties we propose a
new generalization of Coppersmith’s method in three variables, using a new
lattice construction to find a third independent polynomial. Our construction
uses Gröbner basis in addition to lattice reduction.

This paper is organized as follows. In section 2, we recall a few facts about
lattice reduction and known heuristic variations of Coppersmith’s method on
three variables over the integers. We discuss the issue of polynomials indepen-
dence. In section 3, we present an overview of our main idea which generalizes
the method by using LLL reduction on a different lattice. To construct it, we
show that the use of Gröbner bases and their properties are essential. In section
4 we describe a criterion on the input polynomials that when satisfied allows
to develop a rigorous version. In section 5, we focus on one of the RSA attacks
proposed in [9] and we show some results of experiments made with our method.
The two approaches can then be compared. Finally, in section 6 we discuss the
possibility of generalizing to four or more variables.

2 Preliminaries

2.1 Lattices

Since lattices are an essential tool for Coppersmith’s attack, let us recall a few
facts about lattices and reduced basis. A lattice L is a discrete subgroup of Rn.
If L is a non-empty subset of R

n, L is a lattice if and only if there exists r
linearly independent vectors over R (with r ≤ n) such that

L = Zb1 ⊕ · · · ⊕ Zbr



The set B = (b1, . . . , br) is called a basis of L. In this paper, as in many crypto-
graphic applications, we focus on integer lattices L ⊂ Zn.

Let L be a lattice generated by the vectors B=(b1, . . . , br) and (b⋆
1, . . . , b

⋆
r), the

vectors from Gram-Schmidt’s orthogonalization of B. Let B be the r×n-matrix
whose rows are the bi’s. The determinant of L is defined as

detL =
√

det(BtB) =

r∏

i=1

‖b⋆
i ‖2

where ‖‖ denotes the Euclidean norm. When L is a full-rank lattice (i.e. when
n = r) the formula can be simplified to detL = | detB|.

In 1982, Lenstra, Lenstra and Lovasz [15] introduced the LLL reduction al-
gorithm. Using this algorithm, one can obtain a reduced basis of a lattice L. To
analyze Coppersmith’s algorithm, we need to know that

‖b⋆
r‖ ≥ (detL)

1/r
2−(r−1)/4 (1)

for any LLL reduced basis (b1, . . . , br).

2.2 Gröbner basis on three variables

Let Z[x, y, z] be the polynomial ring in three variables x, y, z over Z. A monomial
is an elementary polynomial xα1yα2zα3 with (α1, α2, α3) ∈ N3 and a term is
λxα1yα2zα3 with λ ∈ Z. In the following, when we refer to a monomial in a
set, we use both the notations (α1, α2, α3) and xα1yα2zα3 . If p is a polynomial
defined over Z, the Newton polygon of p refers to the convex hull of all monomials
(viewed as points in N3) that appear with a non zero coefficient in p.

A monomial ordering < on Z[x, y, z] is a total ordering on the set of mono-
mials which is compatible with multiplication. Among all existing orderings, a
frequently encountered one is called deglex and is defined as:

xα1yα2zα3 < xβ1yβ2zβ3 ⇔







α < β
or
α = β and ∃i ∈ {1, 2, 3}, αi < βi

∀j < i, αj = βj

where α = (α1 + α2 + α3) and β = (β1 + β2 + β3). If a monomial ordering is
chosen, the initial term of a polynomial p, denoted by in(p), refers to its greatest
term. Let I be an ideal of Z[x, y, z], in(I) is the set of all initial terms of the
polynomials which belong to I. If the set {q1, . . . , ql} is composed by polyno-
mials of I such that (in(q1), . . . , in(ql)) = in(I), we call it a Gröbner basis of
I. In practice, a Gröbner basis can be computed using F4 algorithm [10] imple-
mented in Magma. For a system of generators having d as its maximal degree,
the theoretical complexity is polynomial in d when the number of variables is
fixed.3

3 According to M. Bardet [1], the complexity in this case is upper bounded by d72. In
practice, the computation is very fast under Magma.



2.3 Primary decomposition

Let I be an ideal of Z[x, y, z]. It is said to be prime if the condition fg ∈ I
implies that either f or g belongs to I. The radical of I, denoted by

√
I, refers

to the set {f ∈ I, ∃n ∈ N, fn ∈ I}. A primary ideal J satisfies the following
condition: if fg belongs to J with f 6∈ J , then g belongs to

√
J . If I is a primary

ideal, then
√

I is a prime one. In a noetherian ring, each ideal can be written
as an intersection of primary ideals. In practice, with the help of Magma, a few
seconds are needed to compute the primary decomposition of an ideal I or to
obtain its radical.

The set defined as {(x1, y1, z1) ∈ Z3, ∀p ∈ I, p(x1, y1, z1) = 0} is denoted as
V (I). In the following, we say that (x1, y1, z1) is a root of I if it belongs to V (I).
If I has I1∩· · ·∩Ir as a primary decomposition, then V (I) = V (I1)∪· · ·∪V (Ir).
The following property holds: V (I) = V (

√
I).

2.4 Coppersmith’s method, a basic variation on 3 variables

Let p1(x, y, z) be an irreducible polynomial of Z[x, y, z] having (x0, y0, z0) as
root over the integers satisfying |x0| < X, |y0| < Y and |z0| < Z. As usual when
working with Coppersmith’s method, we denote by W1 the quantity ‖p̃1‖∞ where
‖p(x, y, z)‖∞ is the maximum of the absolute values of the coefficients of p and
p̃1(x, y, z) represents p1(xX, yY, zZ). Our goal is to recover the root (x0, y0, z0)
in polynomial time.

As in [3], we use the notion of admissible sets. Let M be a non-empty set of
three variables monomials. A polynomial p(x, y, z) is said to be defined over M
if p can be written as linear combination of monomials in M . Let S be another
non-empty set and f, g be two polynomials such that g = fp1. The ordered
pair (S, M) is said to be admissible for p1 if the property “g defined over M” is
equivalent with “f defined over S”. The cardinality of M and S are denoted by
m and s.

Coppersmith’s algorithm works by finding a second polynomial p2 alge-
braically independent from p1, which has the same root over the integers. When
working with two variables, the resultant of p1 and p2 is non zero and the root
can easily be recovered. However, in our case, since we work with three variables,
two polynomials are not enough to recover the root. Still, it is a first important
step. Thus, we now describe how Coppersmith’s algorithm can be adapted in
three variables to find p2. We start by introducing the notation (x0

fy0
gz0

h)M

that refers to the vector (1, x0, y0, z0, . . . , x0
fy0

gz0
h, . . . ) with (f, g, h) ∈ M ,

where the order of the coordinates depends on the monomial ordering. Then, let
us take the vector r0 =(xf

0
y

g
0
zh
0
)M and the lattice L1 generated by the rows

of the matrix M1 (see figure 1).

The right hand part of M1 is denoted by P1 and the left hand one by
DM . As s < m, there exists a sublattice L′

1 ⊂ L1 of dimension (m − s) such
that its vectors have their s last coordinates equal to zero. As (x0, y0, z0) is
a root of p1, the product s0 = r0M1 gives a short vector of L′

1 defined by



M1 =

0

B
B
B
B
B
@

. . .

X
−f

Y
−g

Z
−h

| {z }

(f,g,h)∈M

. . .

xiyjzkp1
z }| {

↓ ↓ ↓

1

C
C
C
C
C
A

m

x
?
?
?
?
y

m
←−−−−−−−−−−→

s
←−−→

Fig. 1.

s0 =((x0

X
)f (y0

Y
)g(z0

Z
)h)M |(0, . . . , 0) where the symbol | refers to the concate-

nation of the two vectors. Assume that (b1, . . . , br) is an LLL reduced basis of
L′

1 (with r = m− s), then when ‖s0‖ < ‖b⋆
r‖ we know that the inner product

< s0|b⋆
r > is equal to zero. That leads to a new polynomial p2 that has the same

root as p1.

As in [5], we can show that p2, as all polynomials obtained from L′
1, is by

construction independent from p1. The crucial point of this proof is based on
the fact that, in this case, algebraic independence relies on linear independence.

In order to prove in advance that the inequality ‖s0‖ < ‖b⋆
r‖ holds, we need to

compute | detL′
1|. This can be done by adapting the method of [5], see appendix

A. From the determinant computation, we derive the conditions on the bounds
X, Y, Z:

XsxY sy Zsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) (2)

with c a well-chosen constant. In this formula dx, dy and dz denote the maximum
degree of p1 in x, y, z and sx refers to

∑

(f,g,h)∈M\S f . The corresponding sums
on y and z are denoted by sy and sz.

2.5 Recovering the root

With this method, we have two polynomials p1 and p2 that have (x0, y0, z0)
as common root over the integers, and are algebraically independent. Two ap-
proaches have been proposed to recover the root. The first idea is to compute the
(provably non-zero) resultant of p1 and p2 in one of the variables. This leads to
a polynomial in two variables, on which Coppersmith’s algorithm can be reused.
However, this polynomial usually has a very high degree. As a consequence, the
conditions on the bounds are too restrictive to make the method useful. Another
idea is to reuse Coppersmith’s method in three variables trying to find another
polynomial p3. The difficulty here is to ensure that p3 is algebraically indepen-
dent from p1 and p2. Many authors use this approach together with the heuristic
hypothesis that p3 happens to be independent from {p1, p2}.



2.6 The notion of independence

As this works focuses on the problem of algebraic independence, this notion has
to be rigorously defined. Three polynomials p1, p2, p3 are algebraically indepen-
dent if and only if P (p1, p2, p3) = 0 implies P = 0 for a polynomial P defined
over Q[x, y, z]. In general, showing this property is rather difficult. In our case,
knowing that p1 is irreducible and that p2 does not belong to (p1), it can be
reduced to a simpler problem. When the ideal I = (p1, p2) is prime, whenever
p3 does not belong to I, then p1, p2 and p3 are algebraically independent. The
proof of this result can be found in appendix B. It uses the fact that (x0, y0, z0)
is a common root of these three polynomials.

In the sequel, when we refer to I, it implicitly means a prime ideal. As a
consequence, showing that p3 does not belong to I is a sufficient condition to
obtain the independence. Let us now discuss on what happens if I is not a prime
ideal. In this case, the analysis is more complicated. Two behaviors are possible
depending on the fact that I is a primary ideal or not. If I is primary, it is
sufficient to replace it by its radical, which is prime. In the other case, I can be
written as an intersection of primary ideals I1∩· · ·∩Ir , such that at least one of
the Ij has (x0, y0, z0) as root. One has just to replace I by the well-chosen ideal
and to take its radical if it is primary.

3 A new lattice to find a third independent polynomial

Having recovered p1 and p2, we now want a method to create a third polynomial
p3 that has again the same root as p1 and p2 and moreover does not belong to
the ideal I = (p1, p2). The main idea is to construct a new lattice very similar
to Coppersmith’s one that can produce this third independent polynomial.

3.1 Overview of the main idea

Let start with analyzing the first step of Coppersmith’s algorithm. The proof
concerning the independence of p2 from p1 uses the fact that, in this case, al-
gebraic independence relies on linear independence. In three variables, a third
polynomial has to be found. As explained before, the main difficulty is less its
construction than the proof of its independence from I. Our goal is to adapt the
previous construction and to keep information both from p1 and p2. If IM is the
set of all polynomials belonging to I that are defined over M , one possible idea
would be to create a new lattice by using generators of IM as a Z-module. Thus,
any polynomial belonging to IM is generated by the columns of this new matrix.

Finding these generators is quite complicated as it is strongly linked to the
shape of the set M . For this reason, in the rest of this section, we only focus
on a pair (M, <) such that there exists an equivalence between belonging to M
and being smaller than a given monomial (< is compatible with the shape of
M). As an example, one can consider the set M defined as all (f, g, h) ∈ N3

satisfying (f + g + h) ≤ n (with n an integer) and the deglex ordering. In order
to construct these generators, we need an additional tool. In the sequel, we show
that the use of truncated Gröbner basis gives us the right tool.



3.2 Truncated Gröbner basis

As explained before, our goal here is to find linear generators of I (up to some
degree). Moreover, we want these polynomials to be defined over M in order to
preserve the dimension of the lattice. Let us denote by F , the set we are looking
for. To sum up the property we require for the construction, one can say that if
p is a polynomial defined over M and belonging to I, we want it to be written
as linear combination of the polynomials ri where the set {r1, . . . , rt} refers to
F . To construct such a set, we need the use of “truncated Gröbner basis” whose
definition is given as follows:

Definition 1. Let G = {q1, . . . , qr} be a minimal Gröbner basis of I. A trun-

cated Gröbner basis of I related to M is the set of polynomials {qi1 , . . . , qil
} of

G such that for each j ∈ {i1, . . . , il}, qij
is defined over M . The corresponding

set is denoted by GM .

The idea is just to keep among all polynomials that generate the ideal I, those
which are defined over M . Then, to obtain the set F , it is sufficient to multiply
the qij

by monomials and keep products which remain defined over M . Thus, we
have a system of generators of the vector space IM . The creation of the set GM

from G has a complexity equal to O(rm) whereas those of F has one of O(rm2).
With this construction, the set F is not necessarily minimal. As a consequence,
one could improve this construction by deleting the extra polynomials. However,
keeping them does not increase the dimension of the lattice, and does not change
the proofs.

Note: When the set M cannot be described directly by a monomial ordering,
finding a set of generators F is more difficult. However, the examples of section 5
show that it can still be done in practice. The difficulty here is to give a theoretic
construction that works for all cases.

3.3 A second Coppersmith’s iteration

Knowing how to find the set F , we are able to construct a new lattice to recover
a polynomial p3 having (x0, y0, z0) as root over the integers. The positive point
of this construction is that we can now prove that p3 does not belong to the
ideal I. Let us explain in more details, how the lattice is constructed.

Let start by considering the m × t matrix P2 whose columns represent the
polynomials {r1, . . . , rt}. From P2, one can construct the lattice LI generated
by the rows of the following matrix:

MI =









. . .

X−fY −gZ−h
︸ ︷︷ ︸

(f,g,h)∈M

. . .

r1,...,rt
︷ ︸︸ ︷

↓ ↓ ↓









m

x




y

m←−−−−−−−−−−→ t←−−→



If we assume that t < m, there exists a sublattice L′
I ⊂ LI whose dimension

is (m − t) such that its vectors have their t last coordinates equal to zero. Let

see again the vector r0 =(xf
0
y

g
0
zh
0
)M . As (x0, y0, z0) is a root of all polynomials

in I, the product t0 = r0MI satisfies t0 =((x0

X
)f (y0

Y
)g(z0

Z
)h)M |(0, . . . , 0). This

is a short vector of L′
I . Assume that (c1, . . . , cr) is an LLL reduced basis of L′

I

(with r = m − t). When ‖t0‖ < ‖c⋆
r‖, the inner product < t0|c⋆

r > is equal to
zero, that leads to a new polynomial p3 that has the same common root as p1

and p2.
Let focus on the most important point which is the independence of p3 from

the ideal I. By construction, the vector which refers to p3 is orthogonal to all
polynomials of the set F . Knowing that in each vector space E, if there exists
a vector x such that for all y ∈ E, < x|y >= 0, then x = 0, we necessarily have
p3 6∈ I. Indeed, if p3 is assumed to belong to I, it would be equal to zero, which
is not the case.

Then, from p1 and p2, we construct a polynomial p3 that again has (x0, y0, z0)
as a root over the integers and that does not belong to I. The resultant compu-
tation of the three polynomials leads to a non-zero result and the root can be
recovered easily. When trying to check if ‖t0‖ < ‖c⋆

r‖ is verified, some technical
difficulties related to the evaluation of the determinant of MI , are encountered.
As the considered lattice L′

I is much more complicated than the initial one used
in the first iteration of Coppersmith’s algorithm on three variables, it makes the
analysis more difficult. In the general case, as we are not able to evaluate the
determinant of MI precisely, this can not give explicit bounds.

4 A criterion that guarantees rigorous success

Starting with the ideal I = (p1, p2), we give in this section a criterion on the input
polynomials that guarantees that p3 can be found with no further restrictions on
X, Y, Z. Let us consider the set F related to the ideal I. In the sequel, we use the
following criterion: F should be equal to {{xiyjzkp1}(i,j,k)∈S , p2}. The monomial

xaybzc refers to those which verifies |p̃2,(a,b,c)| = ‖p̃2(xX, yY, zZ)‖∞ = W2. The
gcd of the coefficients of p2 is denoted by d. In the sequel, we show that p3 can
be found with no further restrictions than what was required to obtain p2. The
proof relies on a variation of the method explained in appendix A and is written
using the same notations.

4.1 Some preliminary results

Consider P̄2 the (m× (s + 1)) matrix whose s first columns are multiples of p̃1

and the last one represent the polynomial p̃2. Thus, P̄2 is just composed by the
matrix P̄1 and one additional column that is p̃2. Using all results of the appendix
A, there exists a subset M̂ ⊂M of size s such that if P̂1 is the matrix composed
by the rows of P1 related to M̂ , we are able to evaluate | det P̂1|. As p2 is defined
over M \ M̂ , we know that (a, b, c) can not belong to M̂ . Then, let take the set
Ṁ = M̂ ∪ {(a, b, c)}. We have |Ṁ | = (s + 1).



If we select from P̄2, the rows related to monomials in Ṁ , we obtain the
following matrix P̂2:

P̂2 =








P̂1

0
...
0

× . . . × ±W2








That leads to
| det P̂2| ≥W2W

s
1 2−6s(d2

x+d2
y+d2

z)

4.2 Construction of the lattice LI

Let P2 be the (m × (s + 1)) matrix constructed as follows: the s first columns
represent xiyjzkp1 for all (i, j, k) ∈ S and the last one is p2. LI is the lattice
generated by the rows of the following matrix:

NI =
(
DM\Ṁ | P2

)

where DM\Ṁ is the resulting matrix coming from deletion in DM of the columns

related to monomials in Ṁ . This definition of LI is different from those of LI ,
which has been announced in the previous section. However using this con-
struction does not change the explanation, moreover it gives an easier analysis.
Multiplying the rows of NI related to (f, g, h) ∈M by XfY gZh and the s first
columns of P2 related to (i, j, k) ∈ S by X−iY −jZ−k leads to the matrix N̄I

satisfying:
| det N̄I | = | detNI |XsxY syZsz

Making some elementary row operations on N̄I leads to:

(
Id A′

0 P̂2

)

whose determinant is equal to (det P̂2). Thus, we obtain

| detNI | ≥ X−sxY −syZ−szW2W
s
1 2−6s(d2

x+d2
y+d2

z)

4.3 Using LLL-reduction to construct p3

The demonstration follows the same idea as in the previous case. r0 is the vector
defined by r0 =(xf

0
y

g
0
zh
0
)M and t0 = r0NI . We have

t0 = ((
x0

X
)f (

y0

Y
)g(

z0

Z
)h

M\Ṁ
)|(0, . . . , 0

︸ ︷︷ ︸

s+1

)

The vector t0 has its (s + 1) last coordinates equal to zero. Moreover, its norm
is less than

√
m− s− 1. As the polynomial p1(x, y, z) is irreducible, and the gcd



of the coefficients of p2 is d, some elementary row operations on NI leads to the
following matrix:

N ′
I =

(
A1 | B
A2 | 0

)
l (s + 1)

l (m− s− 1)

where B is a diagonal matrix having 1 on its s first coefficients and d for the last
one. If we call L′I the lattice generated by the (m−s−1) last rows of the previous
matrix, we have |d · detL′I | = | detNI |. Moreover, the vector t0 belongs to L′I .
Let take r = m− s− 1, and assume that (c1, . . . , cr) is an LLL-reduced basis of
L′I . Thus ‖c⋆

r‖ ≥ 2−(r−1)/4| detL′I |1/r. As t0 belongs to L′I , when ‖t0‖ < ‖c⋆
r‖,

the inner product < t0|c⋆
r > is equal to zero that leads to a polynomial p3(x, y, z)

having the same common root as p1 and p2. This condition has to be satisfied:

√
m− s− 1 < 2−

m−s−2
4 | detL′I |

1
m−s−1

Then we can construct p3 if the following one is verified:

√
m− s

(m−s)
2(m−s−1)/4 < | detL′I |

√
m− s

(m−s)
2(m−s−1)/4XsxY syZsz <

W2

d

(

W s
1 2−6s(d2

x+d2
y+d2

z)
)

As X, Y, Z already verify the equation (2), we obtain that if d < W2 (this is
always the case), then we can construct p3. In this case, no further restrictions
on the bounds are needed to construct p3. This polynomial is independent from
the ideal I = (p1, p2), as explained in section 3.3.

For a well-chosen pair (M, <) (see section 3.2), the previous condition on
F can be stated in terms of the truncated Gröbner basis. More precisely, we
should have GM = {p1, p

′
2} and no multiples of p′2 should be defined over M .4

In practice, when GM = {p1, p
′
2}, the other condition is often true.

5 Application to ”Partial key exposure attack on RSA”

In this section, in order to better understand the way the algorithm works in
practice, we apply it to one of the partial key exposure attacks on RSA which
have been proposed in [9]. We start by describing the basis of this attack in
section 5.1 and 5.2.

5.1 The RSA equation

Let N = pq be a RSA modulus. The RSA encryption exponent e and decryption
exponent d both satisfy the well-known equation ed ≡ 1 mod φ(N) which can be
rewritten into ed = 1+k(N−(p+q−1)). We focus on the particular case of a small
exponent d but without any restrictions on e except that e < φ(N). In addition,
part of the high order bits of d (d̃) are known to an attacker. As a consequence,

4 The polynomial p′

2 is obtained by replacing in p2 all multiples of the initial term of
p1 by multiples of p

(1)
1 where p

(1)
1 = p1 − in(p1).



d can be rewritten as d̃ + d0 such that |d| ≤ Nβ and |d0| = |d − d̃| ≤ N δ. The
values of the two parameters β and δ will be used later. Putting these entries
into the RSA equation leads to the following polynomial:

fMSB1(x, y, z) = ex− yN + yz + R with R = ed̃− 1

The problem remains to find the root (x0, y0, z0) = (d0, k, p + q − 1) of the
polynomial p1 = fMSB1(x, y, z) with |x0| < X, |y0| < Y and |z0| < Z knowing
that X = N δ, Y = Nβ and Z = 3

√
N .

5.2 A heuristic attack

We only sketch here the general idea of the attack proposed in [9], for further
details, the reader can refer to it. Let m and t be two small integers which are
taken in {0, 1, 2} for the experiments. Let S and M be two sets of N3 defined as:

S = {(i, j, k)|(i + j) ≤ m, k ≤ j + t} M = {(f, g, h)|(f + g) ≤ m + 1, h ≤ g + t}

By multiplying p1 by monomials in S and n (a well-chosen integer) by mono-
mials in M , a collection of polynomials is obtained whose Newton polygons are
included in M and that have (x0, y0, z0) as root modulo n. A lattice is then
constructed with the coefficients of all these polynomials and an LLL reduction
is performed. By taking the two shortest vectors of the lattice (under some con-
ditions on the bounds, see [9]) two polynomials p2 and p3 can be constructed
such that they have (x0, y0, z0) as a root over the integers. If the three resulting
polynomials p1, p2, p3 are algebraically independent, it leads to the root by re-
sultant computations. Unfortunately, one can not guarantee the independence,
which makes this attack be a heuristic one.

5.3 Our attack

Let us now explain our attack, that is the way we manage to recover the root of
p1 = fMSB1(x, y, z) by using the construction exposed in section 3.3. Starting
with two independent polynomials, our construction allows us to construct a
third one having the same common root and algebraically independent from the
two others. Constructing the first two polynomials from a single one is simply
done by using the construction of section 5.2. Indeed, while this construction is
heuristic for the third polynomial, it rigorously yields the second one. We denote
by p2 the second polynomial thus found.

Let us consider the ideal I = (p1, p2) which has to be prime for our construc-
tion. If this is not the case, some preliminary computations have to be performed
in order to replace I by another prime ideal which still has (x0, y0, z0) as a root.
If I is primary, it is sufficient to replace it by its radical. If I is not primary,
we can compute its primary decomposition I = I1 ∩ · · · ∩ Ir and replace it by
the corresponding ideal Ij (or

√
Ij if necessary). In practice, testing each Ij to

find the correct one is very fast since there is a small number of such ideals in



this decomposition. Finally, from Ij we construct a lattice LIj
using an auxil-

iary set F as in section 3.2. After reducing L′
Ij

, we obtain a third independent
polynomial p3.

The polynomial p2 is derived from p1 using Coron’s and Howgrave-Graham’s
variations [13, 8] instead of the original Coppersmith method. As a consequence,
we cannot apply the criterion of section 4 to ensure that the construction of p3 is
always easier than the construction of p2. Nevertheless, it works extremely well
in practice.

5.4 Experiments

Let us take N as a 256-bit modulus for the experiments. The following tables
show the results we obtained with some fixed values of the parameters m, t and
β for both the attack proposed in [9] (which we refer to as ”Method 1”) and
ours (”Method 2”). One hundred polynomials p1 are created for each value of
δ. The first column gives the number of times the original attack only provides
one polynomial, the second column refers to the number of times it provides two
polynomials. In this case, the number of (p1, p2, p3) really independent is given
in column 3. This number is counted too with our method (column 4). The value
of δ in bold corresponds to the best bound obtained in practise in [9].

Method 1 Method 2

δ p2 (p2, p3) Indep. OK

0.09 0 100 98 100
0.10 0 100 92 100
0.11 0 100 95 100
0.12 0 100 92 100
0.13 0 100 80 100
0.132 0 100 86 100
0.134 0 100 77 100
0.136 0 100 71 100
0.138 1 99 75 100
0.140 0 100 71 100
0.142 1 99 72 100
0.144 0 100 55 100
0.146 4 95 57 99
0.148 7 89 50 96
0.150 6 91 43 97

Table 1. m = 1, t = 1, β = 0.35

Method 1 Method 2

δ p2 (p2, p3) Indep. OK (Root Pb.)

0.14 0 100 100 100 (0)
0.15 0 100 97 100 (0)
0.16 0 100 97 100 (0)
0.17 0 100 82 100 (1)
0.18 0 100 60 100 (8)
0.182 0 100 47 100 (13)
0.184 0 100 47 100 (13)
0.186 0 100 33 100 (26)
0.188 0 100 18 100 (36)
0.190 0 100 16 100 (50)
0.192 0 100 6 100 (79)
0.194 7 82 0 89 (89)
0.196 14 49 0 63 (63)
0.198 4 42 0 46 (46)
0.20 4 25 0 29 (29)

Table 2. m = 2, t = 0, β = 0.3

The first table really show that there are no more problems due to indepen-
dence. Thus, our method can be applied beyond that of [9]. In the second table,
a different problem seems to appear during the computation. This behavior can
be explained quite simply. Indeed, as we noticed before, in this application, we
can not predict in advance the restrictions on the bounds in order to obtain p3

such that p3(x0, y0, z0) = 0. Surprisingly, this is not a problem to recover the
root (see the next section).

5.5 Special cases of interest

We saw in the previous section that even if there are sometimes root problems,
it does not prevent us to recover the root. The reason why is that, in all cases,



the Gröbner basis of the ideal I = (p1, p2) is so simple that it allows to recover
the root, without needing a third polynomial. Let us show some examples where
the ”root problem” appears for I prime, primary and non-primary. These toys
examples use the tiny parameter N ≃ 250 with β = 0.3, m = 2, t = 0, and
δ = 0.190.

I is prime The initial parameters are:

p1 = 9450886190201x+ ((z − 155155341747587)y + 72582805940743679)
(x0 = 233, y0 = 482, z0 = 25517171)→ (X = 496, Y = 18080, Z = 37368409)

After using the polynomial p2, which is too large to print, coming from the
attack of [9], we have the following Gröbner basis:

{
q1 = xz − 39521501447/12x+ 46079/6z + 6785552382017/12
q2 = y − 12/197x− 92158/197

In particular, the polynomial q2 has (x0, y0, z0) as a root. By multiplying all
its coefficients by 197 and taking the equation modulo 197, we find x0 ≡ 36
mod 197. By testing then 36, 233, we find the root.

I is primary The initial parameters are:

p1 = −32390526593433x+ ((z − 96130883093383)y− 215591345005890049)
(x0 = 87, y0 = −2272, z0 = 20056623)→ (X = 453, Y = 15661, Z = 29413906)

The polynomial p2 is taken to construct I = (p1, p2). As this ideal is not
prime, it is replaced by its radical, what gives:

{
r1 = xz − 128929299037/31x+ 206327/31z + 7024533450267/31
r2 = y + 31/92x + 206327/92

The polynomial r2 has (x0, y0, z0) as a root. By multiplying it by 92 and taking
the equation modulo 92, we obtain that x0 ≡ 87 mod 92. We find the root
x0 = 87.

I is non-primary The initial parameters are:

p1 = 1581190442669x+ ((z − 3199926510559)y + 7690910313142015)
(x0 = 165, y0 = 2485, z0 = 4282719)→ (X = 237, Y = 5642, Z = 5366501)

By taking p2, we consider I = (p1, p2) which is not a primary ideal. Its
primary decomposition gives the two following prime ideals:

{
q1 = xz + 4274183387/42x+ 29185/6z− 268309596605/7
q2 = y − 42/85x− 40859/17



{
q′1 = xz + 4274183387/42x+ 34049/7z + 1590068930929/42
q′2 = y − 42/85x− 204294/85

By checking which of the two previous ideals has (x0, y0, z0) as root, we find
that it is the first one. In particular, the polynomial q2 has the right root. By
taking the equation modulo 85, we obtain that x0 ≡ 80 mod 85. This gives the
right root x0 = 165.

Some comments First of all, it seems for the previous examples to work very
well because of the size of the parameters, but in fact we have the same behaviors
with N ≃ 2256. As the previous equations only give the modular value of x0 and
not its integer value, some tests have to be performed to recover the root. In
almost cases, it has to be tested less than five times (we even often recover the
root directly). There are nevertheless some cases where the value of x0 is more
difficult to find. Another important point to notice is that in almost cases, the
ideals have the shape of those studied previously. It means that we can recover
the root with only two polynomials instead of three, except for very rare cases.

6 Possible generalizations in more variables

We expose here a method to replace the heuristic that appears in all articles
concerning small roots of polynomial equations in three variables by weaker
conditions. We show that the method can, in principle, be generalized to more
variables. Starting with an irreducible polynomial p1 having (x0,1, . . . , x0,n) as
root, the classical Coppersmith’s method provides a second polynomial p2 that
has the same root and that is independent from p1. For each j ∈ {3, . . . , n}, con-
sidering the ideal Ij−1 = (p1, . . . , pj−1), the polynomial pj can be constructed
such that pj 6∈ Ij−1. If the ideal Ij−1 is prime, the polynomials p1, . . . , pj are al-
gebraically independent. As a consequence, using a successive sequence of prime
ideals, we can obtain n polynomials algebraically independent and which have
the same common root, that leads to (x0,1, . . . , x0,n).

7 Conclusion

The main result of this paper is a new variation of Coppersmith’s algorithm
on three variables, that uses both lattice reduction and Gröbner bases com-
putations. In general, the success of this method is controlled by the shape of
the Gröbner basis of the ideal I = (p1, p2) produced by a straight adaption of
Coppersmith’s algorithm to the trivariate case. This is a first important step
toward rigorous applications of Coppersmith’s method with more than two vari-
ables. We also show how variations on our technique can improve applications
of cryptographic interest.

Open problems are to generalize the method to more applications and to
determine general criteria yielding rigorous variants of Coppersmith’s algorithm
with a wide range of applicability.
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A First iteration using a basic variation of Coppersmith’s

method on three variables

Let p1(x, y, z) be an irreducible polynomial of Z[x, y, z] having (x0, y0, z0) as root
over the integers such that |x0| < X , |y0| < Y and |z0| < Z. Let S and M be
sets of monomials over N3.

Theorem 1. If S and M are admissible sets for p1, we can find in polynomial

time p2(x, y, z) which has (x0, y0, z0) as a root over the integers and is alge-

braically independent from p1, provided that

XsxY sy Zsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) (3)

where we assume that (m− s)2 ≤ cs(d2
x + d2

y + d2
z) for some constant c.

A.1 Preliminaries

We denote by P̄1 the (m× s) matrix defined in section 2.4 whose columns refer
to the coefficients of xiyjzkp̃1 for all (i, j, k) ∈ S. The following result holds:

Lemma 1. There exists a subset M̂ ⊂M of size s such that if P̂1 is the matrix

composed by the rows of P̄1 corresponding to monomials in M̂ , we have

| det P̂1| ≥W s
1 2−6s(d2

x+d2
y+d2

z)

We omit this proof because it follows the same idea as in [5], the point is that
we work on three variables instead of two.

A.2 Construction of the lattice L1

The (m × s) matrix whose columns represent the polynomials xiyjzkp1 for all
(i, j, k) ∈ S is denoted by P1. Moreover, we call DM the (m×m) diagonal matrix
whose entries are X−fY −gZ−h with (f, g, h) ∈ M . L1 is the lattice generated
by the rows of the following matrix:

N1 =
(

DM\M̂ | P1

)

where DM\M̂ is the resulting matrix coming from deletion in DM of the columns

related to monomials in M̂ . One can observe that the definition of L1 is different
from those of L1, which has been introduced in section 2.4. In fact, the same
explanation holds with this definition, however, in this case, the conditions on
the bounds are easier to determine. By multiplying the rows of N1 related to
(f, g, h) ∈ M by XfY gZh and the columns of P1 related to (i, j, k) ∈ S by
X−iY −jZ−k, a matrix N̄1 is constructed and satisfies:

| det N̄1| = | detN1|XsxY syZsz



Making some elementary row operations on N̄1 leads to:
(

Id A

0 P̂1

)

whose determinant is equal to (det P̂1). Thus, we obtain that

| detN1| ≥ X−sxY −syZ−sz W s
1 2−6s(d2

x+d2
y+d2

z)

A.3 Using LLL-reduction to construct p2

Let consider the vector r0 =(xf
0
y

g
0
zh
0
)M and s0 = r0N1. We have

s0 = ((
x0

X
)f (

y0

Y
)g(

z0

Z
))h

M\M̂
|(0, . . . , 0
︸ ︷︷ ︸

s

)

This vector satisfies the two following conditions :

– ‖s0‖2 ≤
√

m− s
– Its s last coordinates are equal to 0.

As the polynomial p1(x, y, z) is irreducible, some elementary row operations
on N1 leads to the following matrix:

N ′
1 =

(
A1 | Id
A2 | 0

)
l s

l m− s

If we call L′1 the lattice generated by the (m − s) last rows of the previous
matrix, we obtain | detL′1| = | detN1|. Moreover, s0 belongs to L′1. Let take
r = m− s, and assume that (b1, . . . , br) is an LLL-reduced basis of L′1. We know
that ‖b⋆

r‖ ≥ 2−(r−1)/4| detL′1|1/r. As s0 is a vector belonging to the lattice L′1,
when ‖s0‖ < ‖b⋆

r‖, the inner product < s0|b⋆
r > is equal to zero, that leads to

a polynomial p2(x, y, z) which has the same root as p1(x, y, z). The following
condition has to be satisfied:

√
m− s < 2−

m−s−1
4 | detL′1|

1
m−s

to allow the construction of p2. Let see the more restrictive condition:

√
m− s < 2−

m−s−1
4 (2−6s(d2

x+d2
y+d2

z)W s
1 X−sxY −syZ−sz)

1
m−s

Finally, if XsxY syZsz < W s
1 2−(6+c)s(d2

x+d2
y+d2

z) is verified (for c a constant
such that (m− s)2 ≤ cs(d2

x + d2
y + d2

z)), the polynomial p2 can be constructed in

polynomial time. With this construction, the monomials of p2 belong to M \ M̂ .
It remains to prove that the polynomial p2 is independent from p1. In fact, if this
is not the case, the vector related to p2 is a linear combination of the columns of
P1. Knowing that p2 is orthogonal to all multiples of p1, this can not be possible.



B Algebraic independence between p1, p2 and p3

Here is the proof of the result given in section (2.6). If the ideal I = (p1, p2)
is prime and p3 6∈ I, we show that p1, p2 and p3 are algebraically indepen-
dent. Assume there exists a polynomial P defined over Q[x, y, z] such that
P (p1, p2, p3) = 0, our goal is to prove that P = 0. In the following, we de-
note by ∆(P ) the set of all points (a, b, c) ∈ N3 such that xaybzc appears in P
with a non-zero coefficient.

Starting with
∑

(a,b,c)∈∆(p) λ(a,b,c)p
a
1p

b
2p

c
3 = 0, the polynomial Q(x) can then

be defined as
∑n

c=0 µcx
c with µc =

∑

(a,b)|(a,b,c)∈∆(P ) λ(a,b,c)p
a
1p

b
2. This polyno-

mial also has p3 as a root and we can assume that µ0 6= 0, otherwise the poly-
nomial Q(x) can be replaced by Q(x)/x. As p1 and p2 are already algebraically
independent, proving that Q = 0 implies that P = 0.

The first step of the proof is to show that µ0, . . . , µn ∈ I. Indeed, let us
take Q(p3) evaluated in (x0, y0, z0). Knowing that p3 has (x0, y0, z0) as a root, it
implies that µ0(x0, y0, z0) = 0. As a consequence, its constant coefficient λ(0,0,0)

is equal to zero and then µ0 ∈ I. Using the equation Q(p3) = 0, we obtain
p3(µ1 + · · · + µnpn−1

3 ) ∈ I. As the ideal I is prime and as p3 6∈ I, we have
µ1 + · · · + µnpn−1

3 ∈ I. Evaluating again this quantity in (x0, y0, z0) leads to
µ1(x0, y0, z0) = 0, that implies µ1 ∈ I. We can then go on the proof by doing
the same for µ2, . . . , µn.

The previous results allow us to rewrite each µc as µc = p1 Fc(p1, p2)+
p2 Gc(p2) with Fc ∈ Q[x, y] such that degx(Fc) < degx(µc) and Gc a polynomial
of Q[x] defined by Gc(x) =

∑gc

i=0 lc,ix
i. The equation Q(p3) = 0 becomes then:

p1 (F0(p1, p2) + · · ·+ Fn(p1, p2)p
n
3 ) = −p2(G0(p2) + · · ·+ Gn(p2)p

n
3 )

︸ ︷︷ ︸

∈(p1)

(4)

As the ideal (p1) is prime and as p2 does not belong to (p1), it implies
that G0(p2) + · · · + Gn(p2)p

n
3 ∈ (p1) ⊂ (p1, p2). As before, by evaluating this

expression in (x0, y0, z0), we can show that l0,0, . . . , ln,0 = 0. It implies that the
polynomials Gc(x) can be expressed as Gc(x) = p2Gc,2(x) with Gc,2(x) defined

as
∑gc−1

i=0 lc,i+1x
i. As a consequence, the right hand part of the equation (4)

which belongs to (p1), can be rewritten into −p2
2(G0,2(p2) + · · · + Gn,2(p2)p

n
3 ).

By the same explanation, we finally show that Gc(x) = 0 for all c ∈ {0, . . . , n}.
Using the previous result, we can then rewrite µc as p1Fc(p1, p2). The equa-

tion Q(p3) = 0 becomes:

p1(

n∑

c=0

Fc(p1, p2)p
c
3) = 0⇒ R(p3) =

n∑

c=0

νcp
c
3 = 0

with νc = Fc(p1, p2). The polynomial R(x) satisfies Q(x) = p1R(x) and the
coefficients νc are such that degx(νc) < degx(µc). We then separate again νc

as p1Hc(p1, p2) + p2Ic(p2) and we show that Ic = 0 for all c ∈ {0, . . . , n}. By
recurrence, we finally obtain that Q(x) = pk

1V (x) with V (x) a polynomial defined
over Q[x] which has p3 as a root. It implies that V = 0, and thus P = 0. This
concludes the proof.


