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Abstract. In this paper we show that the Ate pairing, originally de-
fined for elliptic curves, generalises to hyperelliptic curves and in fact
to arbitrary algebraic curves. It has the following surprising properties:
The loop length in Miller’s algorithm can be up to g times shorter than
for the Tate pairing, with g the genus of the curve, and the pairing is
automatically reduced, i.e. no final exponentiation is needed.
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1 Introduction

Pairings in cryptography have received a fast growing interest in the past six
years and are currently a major topic in cryptologic research. Investigations are
carried out regarding the use of pairings in cryptographic protocols on one side
and regarding mathematical, algorithmic foundations of pairings on the other
side.

The present paper conducts investigations of the latter type. Building on and
generalising ideas from [5, 7, 4, 10, 17] into a common framework, the main result
of the paper consists in providing new classes of efficient non-degenerate pair-
ings on higher genus algebraic curves, called Ate pairings and superspecial Ate
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pairings, which feature some surprising properties. These pairings are different
from the well known Weil and Tate pairings in that they are defined by much
simpler algebraic expressions. Of course, for prime order groups any pairing can
be obtained as a suitable power of any fixed non-degenerate pairing, and we also
exhibit these powers for our pairings in relation to the Tate pairing.

The surprising properties of the Ate and superspecial Ate pairings are the
following: Firstly, the loop length in Miller’s algorithm for evaluating the pairing
function is up to g times shorter than for the corresponding Tate pairing, where
g is the genus of the underlying curve C. Secondly, the pairing is automatically
reduced, that is, the final exponentiation required by the Tate pairing can be
omitted.

There are constructive and destructive aspects regarding the relevance of our
pairings to cryptography. A discussion of constructive aspects of the Tate pairing
in higher genus has been carried out in [8]. The main point here is that pairings
in higher genus can make use of degenerate divisors D2 = (Q), leading to more
efficient evaluation and possibly some bandwidth savings due to compression.
While this gives an improvement of a factor of up to g in comparison with
general D2 of degree g, the efficiency comparison with the Ate pairing in genus
one is less favourable as indicated in Appendix A.

The destructive aspects of our pairings concern pairing inversion and the
difficulty of the computational Diffie-Hellman problem in finite fields. In [24] it
was shown that the computational Diffie-Hellman problem in the two domains of
the pairing as well as in the codomain can be efficiently reduced to the problem of
computing preimages of pairing values for each argument, given a fixed opposite
argument. The absence of the final powering in our pairings and the fact that
the degree of the pairing function is independent of the prime group order, and
can hence be very small, raises questions about the hardness of pairing inversion.
What can be stated at the moment is that Ate and thus Tate pairing inversion
for small q, solving for degenerate divisors D2 = (Q) in the second argument, is
actually efficient and straightforward (roughly as hard as computing the roots
of a polynomial of degree qg over an extension of degree about gk of Fq where k
is the embedding degree). In protocols it is hence prudent to restrict to public
degenerate divisors. As of now, the precise security implications of our pairings
are unknown and much more research is needed for an assessment.

Although we state most results for hyperelliptic curves only, the theory and
proofs do actually not require the hyperellipticity and readily apply to general
non-singular curves with a distinguished point P∞, once the definition of “re-
duced divisor” has been adopted accordingly (see for example [15]). We leave
these details to the interested reader.

The remainder of this paper is organised as follows: Section 2 recalls basic
properties of hyperelliptic curves and the Tate-Lichtenbaum pairing. Section 3
defines the Ate pairing on all curves and proves that it is well-defined. This is
then adapted in Section 4 to superspecial curves. Finally, Section 5 concludes
the paper and Appendix A provides detailed performance estimates.
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2 Mathematical Background

In this section, we briefly recall arithmetic on hyperelliptic curves, the definition
of the Tate-Lichtenbaum pairing and Miller’s algorithm to compute it.

2.1 Hyperelliptic Curves

Let C be a nonsingular hyperelliptic curve of genus g defined over a finite field
Fq with q = pn elements. In the remainder of the paper, we will assume that C
is an imaginary hyperelliptic curve and thus has only one point P∞ at infinity
and its affine part is given by

y2 + h(x)y = f(x) ,

with h, f ∈ Fq[x], deg h ≤ g, f monic and deg f = 2g + 1.
For any algebraic extension K of Fq consider the set

C(K) := {(x, y) ∈ K ×K | y2 + h(x)y = f(x)} ∪ {P∞} ,

called the set of K-rational points on C. The hyperelliptic involution ι defined
by ι(x, y) = (x,−y−h(x)) acts on the set C(K). However, unlike elliptic curves,
the set C(K) for g ≥ 2 does not form a group, but we can embed C into an
abelian variety of dimension g called the Jacobian of C and denoted by JC . As
usual, we will represent elements of JC(K) by elements of the divisor class group
of degree 0 divisors Div0

C(K)/PrinC(K), the definition of which is recalled in the
following paragraphs.

A divisor D on C is a formal sum of points over the algebraic closure Fq

D =
∑

P∈C(Fq)

cP (P )

with only finitely many non-zero coefficients cP ∈ Z. The set of all divisors on
C is denoted DivC and clearly forms a group under formal addition. The degree
of D is defined as deg(D) =

∑
P∈C(Fq) cP and the subgroup of degree 0 divisors

is denoted by Div0
C . The support supp(D) of a divisor D is the set of points P

with cP 6= 0 and we define ordP (D) = cP .
Let ϕ be the Frobenius morphism ϕ : C → C given by ϕ(x, y) = (xq, yq) and

define
ϕ(D) =

∑
P∈C(Fq)

cP (ϕ(P )),

then D is called Fqk -rational if and only if ϕk(D) = D. The set of Fqk -rational
divisors is denoted by DivC(Fqk) and similarly for the degree 0 divisors. To
each non-constant rational function f ∈ Fq(C)∗, we can associate the divisor
div(f) =

∑
P∈C(Fq) ordP (f)(P ), where ordP (f) denotes the order of vanishing

of f at P , i.e. ordP (f) 6= 0 if and only if f has either a zero or pole at P and
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ordP (f) then equals the multiplicity of f at P . One can prove that only finitely
many ordP (f) are non-zero and furthermore, that deg(div(f)) = 0. Any divisor
of the form div(f) with f ∈ Fq(C)∗ is called a principal divisor and the set of
all these divisors is denoted PrinC . By definition we have JC = Div0

C/PrinC
and JC(Fqk) = Div0

C(Fqk)/PrinC(Fqk), where PrinC(Fqk) = PrinC ∩Div0
C(Fqk).

Given a degree 0 divisor D, we will denote by D the corresponding divisor class
in JC .

Each divisor class D can be uniquely represented by a so called reduced
divisor, i.e. a divisor of the form∑m

i=1
(Pi)−m(P∞) , m ≤ g

with Pi = (xi, yi) ∈ C(Fq), Pi 6= P∞ and Pi 6= ι(Pj) for i 6= j. For notational
convenience, we introduce two maps on JC : given a divisor class D, we define
ρ(D) the unique reduced divisor in D and ε(D) the effective part of ρ(D), i.e.
ρ(D) = ε(D) − deg(ε(D))(P∞). Note that the sets ρ(JC) and ε(JC) can be
endowed with a group law ⊕ by defining: ρ(D1) ⊕ ρ(D2) := ρ(D1 + D2) and
similarly, ε(D1) ⊕ ε(D2) := ε(D1 +D2). Furthermore, the notion of rationality
is well defined since P∞ ∈ C(Fq).

It is not difficult to show that any reduced Fq-rational divisor admits a Mum-
ford representation [u(x), v(x)], i.e. a pair of polynomials u, v ∈ Fq[x], with
u =

∏m
i=1(x− xi), deg v < deg u ≤ g and u|v2 + vh− f . Cantor’s algorithm [6]

can be used to compute the Mumford representation of the sum of two reduced
divisors or for small genera, explicit formulae exist [3, 14, 18].

Given a divisor D representing a divisor class D in JC and an integer n,
we denote [n]D := ρ(nD), i.e. the unique reduced divisor equivalent with nD.
Finally, for D an Fqk -rational divisor, we denote by fn,D ∈ Fqk(C) any function
(determined up to non-zero constant multiple) for which div(fn,D) = nD− [n]D.

2.2 Tate-Lichtenbaum Pairing

In this section, we briefly recall the definition of the Tate-Lichtenbaum pairing
as it is usually stated in the literature and discuss the various alternatives for
the domain of the pairing.

Let r be a prime with r | #JC(Fq) and gcd(r, q) = 1 and let k be the smallest
integer such that r | (qk − 1), then k is called the embedding degree (dependent
on r). Note that this implies that the r-th roots of unity µr are contained in Fqk

and in no strictly smaller extension of Fq. Note that r > k, since k is the order
of q modulo r and hence k | r − 1 holds. Denote with JC(Fqk)[r] the r-torsion
points on JC defined over Fqk . The Tate-Lichtenbaum pairing is a well defined,
non-degenerate, bilinear pairing [9, 16]

〈·, ·〉r : JC(Fqk)[r]× JC(Fqk)/rJC(Fqk) → F∗qk/(F∗qk)r ,

which is defined as follows: let D1 ∈ JC(Fqk)[r] and D2 ∈ JC(Fqk) and let
D1 be represented by a divisor D1 and D2 by a divisor D2 with supp(D1) ∩
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supp(D2) = ∅. Since D1 has order r, the function fr,D1 ∈ Fqk(C)∗ has divisor
div(fr,D1) = rD1 − [r]D1 = rD1. The Tate-Lichtenbaum pairing of the divisor
classes D1 and D2 is then defined by

〈D1, D2〉r ≡ fr,D1(D2) =
∏

P∈C(Fq)

fr,D1(P )ordP (D2) ,

where ≡ means equality up to r-th powers. Note that since D2 has degree 0,
multiplying fr,D1 by a non-zero constant will give the same result.

In implementations, one works with the Mumford representation, i.e. with
reduced divisors D1 and D2, but the Tate pairing cannot be computed as
fr,D1(D2), since P∞ ∈ supp(D1) ∩ supp(D2). The following lemma shows that
if the function fr,D1 is properly normalised, the Tate pairing can simply be
computed as fr,D1(ε(D2)). To state the lemma, we need the notion of leading
coefficient: let u∞ be a fixed Fq-rational uniformizer at P∞, then for any func-
tion f ∈ Fq(C)∗ we define lc∞(f) to be the leading coefficient of f as a Laurent
series in u∞. Note that when f is defined at P∞ we simply have f(P∞) = lc∞(f)
independent of the uniformizer chosen.

Lemma 1. Let D1 ∈ JC(Fqk)[r], D1 = ρ(D1) and D2 ∈ JC(Fqk) and assume
that supp(D1) ∩ supp(ε(D2)) = ∅, then

〈D1, D2〉r ≡ fr,D1(ε(D2))

if and only if lc∞(fr,D1) ∈ (F∗qk)r. Furthermore, lc∞(fr,D1) being an r-th power
is independent of the uniformizer chosen.

Proof: Let D2 = ρ(D2) and choose h ∈ Fqk(C) such that D′
1 = D1 + div(h)

satisfies supp(D′
1) ∩ supp(D2) = ∅, then by definition we have

〈D1, D2〉r ≡ fr,D′1(D2) .

Since D′
1 = D1 + div(h), we can take fr,D′1 = fr,D1h

r (in fact we could multiply
fr,D′1 with a constant c, but this would give the same result as remarked before)
and thus

〈D1, D2〉r ≡ (fr,D1h
r)(D2) ≡

(fr,D1h
r)(ε(D2))

lc∞(fr,D1h
r)m2

≡ fr,D1(ε(D2))
lc∞(fr,D1)m2

,

with m2 = deg(ε(D2)). Finally, gcd(m2, r) = 1 implies that lc∞(fr,D1)
m2 is

an r-th power if and only if lc∞(fr,D1) is an r-th power. Furthermore, since
ordP∞(fr,D1) = −deg(ε(D1))r, i.e. a multiple of r, the property of lc∞(fr,D1)
being an r-th power does not depend on the uniformizer chosen. �

In practice, one often requires a unique pairing value instead of a whole coset;
therefore one defines the reduced Tate-Lichtenbaum pairing as

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r ∈ µr ⊂ F∗qk .
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It is easy to see that for any positive integer N with r|N and N |qk − 1 we have

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = 〈D1, D2〉(q
k−1)/N

N . (1)

For k > 1 and D1 ∈ JC(Fq), the reduced Tate-Lichtenbaum pairing can be
computed as in Lemma 1, but without the need for normalisation. Indeed, since
ρ(D1) is Fq-rational, we conclude that fr,D1 ∈ Fq(C) and thus lc∞(fr,D1) ∈
F∗q ⊂ (F∗qk)r. For elliptic curves, this simplification was first noticed in [5] using
a more direct proof than that of Lemma 1.

For efficiency reasons, one restricts the domain of the Tate-Lichtenbaum pair-
ing to the groups G1 = JC [r]∩Ker(ϕ− [1]) and the group G2 = JC [r]∩Ker(ϕ−
[q]), i.e. the eigenspaces of the Frobenius endomorphism on JC [r]. Note that
G1 ⊂ JC(Fq) and G2 ⊂ JC(Fqk), since for D ∈ G2 we have ϕk(D) = [qk]D = D,
because D ∈ JC [r] and qk ≡ 1 mod r. This also shows that k is the smallest
integer such that the q-eigenspace of the Frobenius in JC [r] is Fqk -rational.

Remark 1. In the remainder of the paper we will assume that any representative
D1 of D1 ∈ G1 (resp. D2 of D2 ∈ G2) is chosen to be Fq-rational (resp. Fqk -
rational).

Remark 2. In general, the smallest extension degree d such that the whole r-
torsion JC [r] is Fqd-rational is larger than k [9]. This is obvious for g ≥ 2, since
JC [r] ' (Z/rZ)2g, but even for elliptic curves, this phenomenon occurs: consider
an elliptic curve E/Fq with r | #E(Fq) and r | q− 1, but such that r2 - #E(Fq).
In this case E(Fq)[r] is both the 1-eigenspace and q-eigenspace and the minimal
d such that E[r] ⊂ E(Fqd) is equal to r.

Finally, we note that the group G2 already occurs in the original paper [9]
disguised as a Galois cohomology groupH1(G, JC)[r], with G the absolute Galois
group of Fq. In fact, in [2][Section 6.3.1] one finds that the Tate-Lichtenbaum
pairing has as domain G2 × JC(Fq)/rJC(Fq), which is yet another choice of
subgroups.

2.3 Miller’s Algorithm

In [20] (see also [21]), Miller described a fast algorithm to compute evaluations of
the form fr,D1(D2) for divisors on elliptic curves. The algorithm easily generalises
to hyperelliptic curves as follows: by definition of the group law ⊕ on JC , there
exists a function GDa,Db

∈ Fqk(C)∗ with div(GDa,Db
) = Da +Db − (Da ⊕Db)

where Da ⊕Db is reduced. As such we can take the function

fi+j,D = fi,Dfj,DG[i]D,[j]D .

This immediately leads to Algorithm 1 and the more detailed version given in
Algorithm 2.
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Algorithm 1 Miller’s algorithm for hyperelliptic curves
Inputs: n ∈ N and Da, Db ∈ JC with disjoint support
Outputs: fn,Da(Db)

Write n as
Ps

j=0 nj2
j , with nj ∈ {0, 1} and ns = 1.

D ← Da, c← 1.
for j = s− 1 down to 0 do

Compute D ← [2]D and extract GD,D.
c← c2 ·GD,D(Db).
if nj = 1 then

Compute D ← D ⊕Da and extract GD,Da .
c← c ·GD,Da(Db).

end if
end for
Return c.

3 Ate Pairing on Hyperelliptic Curves

In this section, we first recall the Ate pairing for elliptic curves and then show
that with a minor, but important change, it can be extended to hyperelliptic
curves.

The two main ideas of the Ate pairing are that the domain of the pairing
is G2 × G1 and that the loop length in Miller’s algorithm is much shorter than
for the Tate-Lichtenbaum pairing. The result is summarised in the following
theorem from [17].

Theorem 1. Let E be an elliptic curve over Fq, r a large prime with r | #E(Fq)
and denote the trace of Frobenius with t, i.e. #E(Fq) = q+1− t. For T = t− 1,
Q ∈ G2 = E[r] ∩ Ker(ϕ − [q]) and P ∈ G1 = E[r] ∩ Ker(ϕ − [1]), we have the
following:

1. fT,Q(P ) defines a bilinear pairing, called the Ate pairing
2. let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding degree,

then
e(Q,P )L = fT,Q(P )c(q

k−1)/N

where c =
∑k−1
i=0 T

k−1−iqi ≡ kqk−1 mod r
3. for r - L, the Ate pairing is non-degenerate

The reason why this construction works is the compatibility of the scalar
T = t− 1 and the action of the Frobenius on G2. Indeed, by definition of G2 we
have ϕ(Q) = [q]Q, and since r|#E(Fq) = q + 1− t it follows that ϕ(Q) = [T ]Q.
This last equality also determines the loop length in Miller’s algorithm, i.e.
dlog2 |T |e.

For a hyperelliptic curve C with g > 1, the situation is somewhat different.
Indeed, in this case r|#JC(Fq) = qg + a1(qg−1 + 1) + a2(qg−2 + 1) + · · · + ag,
so in general q cannot be replaced by a smaller equivalent. However, note that
for g > 1 and r ≈ #JC(Fq), the bit length of q itself is already g times shorter
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than the bit length of r, again resulting in a shorter loop in Miller’s algorithm.
The possibility of using T = q is already present in [7], but for a very restricted
family of curves. This observation leads to the following theorem.

Theorem 2. Let C be a hyperelliptic curve over Fq and r | #JC(Fq) a large
prime. Let G2 = JC [r] ∩Ker(ϕ− [q]) and G1 = JC [r] ∩Ker(ϕ− [1]), then

a(·, ·) : G2 ×G1 → µr : (D2, D1) 7→ fq,D2(D1)

with D2 = ρ(D2) and D1 ∈ D1 such that supp(D1) ∩ supp(D2) = ∅, defines a
non-degenerate, bilinear pairing called the hyperelliptic Ate pairing. Furthermore,
the relation with the reduced Tate-Lichtenbaum pairing is as follows:

e(D2, D1) = a(D2, D1)kq
k−1

. (2)

Note that in Theorem 2, the divisorD2 is assumed to be reduced and the function
fq,D2 is evaluated at the divisor D1 and not only at ε(D1) (but see Lemma 6).
Furthermore, the image of the hyperelliptic Ate pairing already is µr so no final
exponentiation is required. The proof of Theorem 2 follows from the following
four lemmata. The first lemma shows that the Ate pairing indeed maps into µr.

Lemma 2. Let D2 ∈ G2, D2 = ρ(D2) and D1 ∈ G1, D1 ∈ D1 with supp(D1)∩
supp(D2) = ∅, then we have fq,D2(D1) ∈ µr.

Proof: Let h ∈ Fq(C)∗ with supp(div(h)) ∩ supp(div(fq,D2)) = ∅, then using
Weil reciprocity we obtain

fq,D2(div(h)) = h(div(fq,D2))
= h(qD2 − [q]D2) = h(qD2 − ϕ(D2))

=
h(qD2)
h(ϕ(D2))

=
h(D2)q

h(D2)q
= 1 ,

therefore

fq,D2(D + div(h)) = fq,D2(D)fq,D2(div(h)) = fq,D2(D) . (3)

As D1 is defined over Fq and D1 ∈ G1, we obtain

fq,D2(D1)r = fq,D2(rD1) = fq,D2(0) = 1

since rD1 ∼ 0. Using (3) again, we conclude that fq,D2(D1) only depends on D1

and not on the representative chosen. �

The following three lemmata show that the Ate pairing can indeed be related
to the reduced Tate pairing.

Lemma 3. Given D1, D2 ∈ JC(Fqk)[r], D2 = ρ(D2) and D1 ∈ D1 such that
supp(D1) ∩ supp(D2) = ∅, we have

e(D2, D1) = fqk,D2(D1) .
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Proof: By definition of the reduced Tate-Lichtenbaum pairing, we have to
compute

e(D2, D1) = fr,D2(D1)(q
k−1)/r = fqk−1,D2(D1) ,

where the last equality follows from (1) with N = qk − 1. Up to this point the
divisor D2 does not even have to be reduced: indeed, take D′

2 = D2 + div(h)
for some h ∈ Fqk(C), then fqk−1,D′2

= cfqk−1,D2h
qk−1 for some constant factor

c ∈ Fqk . Since D1 has degree 0, the constant c is irrelevant and the factor
hq

k−1(D1) clearly equals 1 since h(D1) ∈ F∗qk .
When D2 is reduced, we have that div(fqk,D2) = qkD2− [qk]D2 = (qk−1)D2

and div(fqk−1,D2) = (qk − 1)D2 − [qk − 1]D2 = (qk − 1)D2 since D2 ∈ JC [r], so
without loss of generality we can take fqk−1,D2 = fqk,D2 , which ends the proof.

�

An easy calculation [4, Lemma 2] proves the following lemma.

Lemma 4. For any divisor D we can choose fqk,D such that

fqk,D =
∏k−1

i=0

(
fq,[qi]D

)qk−i−1

. (4)

ForD2 = ρ(D2) withD2 ∈ G2, each of the factors in the right hand side of (4)
can be expressed in terms of fq,D2 . To see this, note that ϕ(D2) = [q]D2 and
ϕi(D2) = [qi]D2, so it suffices to relate fq,ϕi(D2) with fq,D2 as in the following
lemma.

Lemma 5. Let D be a reduced divisor and ψ a purely inseparable map on C
with ψ(P∞) = P∞. Then ψ(D) is also reduced and we can take

fn,ψ(D) ◦ ψ = f
deg(ψ)
n,D .

Proof: Let D =
∑m
i=1(Pi) −m(P∞) be reduced then ψ(D) =

∑m
i=1(ψ(Pi)) −

m(P∞), where we used the fact that ψ(P∞) = P∞. Since ψ is assumed to be
purely inseparable we have ψ(Pi) 6= P∞ and ψ(Pi) 6= ι(ψ(Pj)) for i 6= j, i.e. ψ(D)
is again reduced. By definition we have div(fn,ψ(D)) = n(ψ(D)) − ([n]ψ(D)).
Since ψ is purely inseparable we have

ψ∗
(
div(fn,ψ(D))

)
= nψ∗(ψ(D))− ψ∗([n]ψ(D)) = n(degψ)D − ψ∗(ψ([n]D))

= n(degψ)D − (degψ)([n]D) = div(fdeg(ψ)
n,D ) .

The non-trivial part is the equality [n]ψ(D) = ψ([n]D), which follows from the
fact that both sides are reduced divisors (since ψ maps a reduced divisor to a
reduced divisor) and that they are linearly equivalent. Indeed,

[n]ψ(D) = nψ(D) + div(hn) = ψ(nD) + div(hn)
= ψ([n]D + div(gn)) + div(hn) = ψ([n]D) + div(ψ∗gn) + div(hn) ,
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for suitable functions hn, gn ∈ Fq(C). Furthermore,

ψ∗
(
div(fn,ψ(D))

)
= div

(
ψ∗(fn,ψ(D))

)
= div(fn,ψ(D) ◦ ψ) ,

so we can take fn,ψ(D) ◦ ψ = f
deg(ψ)
n,D . �

Proof of Theorem 2: Since D1 ∈ G1 and fixed under ϕ, and D2 ∈ G2 is
reduced (so ϕ(D2) = [q]D2), Lemma 5 implies

fq,[qi]D2(D1) = fq,ϕi(D2)(D1) = fq,ϕi(D2)(ϕ
i(D1)) = (fq,D2(D1))q

i

,

and using Lemma 4, we obtain

fqk,D2(D1) =
∏k−1

i=0

(
fq,[qi]D2(D1)

)qk−i−1

= (fq,D2(D1))
kqk−1

. (5)

Substituting the above in Lemma 3, we recover Equation (2)

e(D2, D1) = (fq,D2(D1))
kqk−1

This equation shows that fq,D2(D1) defines a non-degenerate bilinear pairing,
since e(D2, D1) is non-degenerate and bilinear. Furthermore, since fq,D2(D1) ∈
µr by Lemma 2, the hyperelliptic Ate pairing is automatically reduced, i.e. no
final exponentiation is needed. �

An important remark is that all optimisations that rely on the final power-
ing, such as denominator elimination and ignoring the point at infinity in the
evaluation, should be reexamined. It is not hard to see that the first simply no
longer holds, whereas the second can be salvaged if the function fq,D2 is properly
normalised as in the following lemma.

Lemma 6. Let D2 ∈ G2 and D1 ∈ G1 with supp(ε(D1)) ∩ supp(ε(D2)) = ∅
and let D2 = ρ(D2), then if lc∞(fq,D2) = 1 with respect to any Fq-rational
uniformizer u∞ then

a(D2, D1) = fq,D2(ε(D1)) . (6)

Proof: By definition we have div(fq,D2) = qD2 − [q]D2 = qD2 − ϕ(D2) since
D2 ∈ G2 is reduced and thus ordP∞(fq,D2) = −m2(q−1), withm2 = deg(ε(D2)).
This implies that lc∞(fq,D2) = 1 is independent of the choice of Fq-rational
uniformizer. Indeed, let u′∞ be any other Fq-rational uniformizer, then

lc′∞(fq,D2) = lc∞(u′∞)m2(q−1)lc∞(fq,D2) = lc∞(fq,D2) .

Let D′
1 ∈ D1 such that supp(D′

1) ∩ (supp(div(fq,D2)) ∪ supp(div(u∞))) and
define f̃q,D2 = fq,D2 · u

m2(q−1)
∞ . The divisor of f̃q,D2 is

div(f̃q,D2) = qε(D2)− ε(ϕ(D2)) +m2(q − 1) · (div(u∞)− P∞)
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which does not contain P∞, and it is easy to adapt the proof of Lemma 2 to
show that f̃q,D2(D1) does not depend on the choice of representative of D1.

By construction of D′
1, both fq,D2(D

′
1) and f̃q,D2(D

′
1) are well defined and

f̃q,D2(D
′
1) = fq,D2(D

′
1) · (u∞(D′

1))
m2(q−1) = fq,D2(D

′
1)

since u∞(D′
1) is in Fq. From this, we obtain

a(D2, D1) = fq,D2(D
′
1) = f̃q,D2(D

′
1) = f̃q,D2(D1)

=
fq,D2(ε(D1)) · (um2

∞ (ε(D1)))q−1

lc∞(f̃q,D2)deg(ε(D1))
= fq,D2(ε(D1))

since lc∞(f̃q,D2) = lc∞(fq,D2) = 1 by construction of f̃q,D2 . �

4 Ate Pairing on Superspecial Curves

In this section, we investigate whether the hyperelliptic Ate pairing can also
be defined on G1 × G2. Recall that a curve C is said to have p-rank zero if
JC [p] = {0}, i.e. the p-torsion is trivial. An immediate consequence of the absence
of p-torsion is that the dual of Frobenius ϕ̂ (also called Verschiebung) is purely
inseparable. Indeed, Ker(ϕ̂) ⊂ JC [q] since ϕ̂ has degree q and thus Ker(ϕ̂) = {0}.
Since ϕ̂ ◦ ϕ = [q], we conclude that ϕ̂ acts as ϕ̂(D1) = [q]D1 for D1 ∈ G1 and
ϕ̂(D2) = D2 for D2 ∈ G2.

However, p-rank zero is not restrictive enough for our purposes, since Lemma 5
holds for a purely inseparable map on the curve C, whereas Verschiebung is de-
fined on the Jacobian. A curve C is called superspecial when its Jacobian JC is
isomorphic to Eg with E a supersingular elliptic curve. Note that this is more
restrictive than supersingularity, since this only requires JC to be isogenous to
Eg. As an example of superspecial curves we mention the family described by
Duursma-Lee [7].

For a superspecial curve, we can write ϕ̂ = ϕ ◦ α for an automorphism
α ∈ Aut(C). Note that this automorphism is necessarily defined over Fq, since
ϕ = ̂̂ϕ = α̂ ◦ ϕ̂ and thus α ◦ ϕ = ϕ ◦ α.

Analysing the various lemmata used in proving Theorem 2, we immediately
run into a problem since Lemma 2 is no longer valid. Indeed, let D1 = ρ(D1)
with D1 ∈ D1 and let h ∈ Fqk(C)∗, then

fq,D1(div(h)) = h(qD1 − [q]D1) = h(qD1 − ϕ̂(D1)) =
h(D1)q

h(α(D1))
.

This shows that even if h would be Fq-rational, fq,D1(div(h)) still is not 1, so
fq,D1(D2) with D2 ∈ D2 is not independent of the representative chosen.

On the other hand, it is easy to verify that Lemma 3 and 4 remain valid when
D1 andD2 are swapped. Furthermore, since ϕ̂ is given by purely inseparable map
on C, Lemma 5 still applies. As a result we can prove the following theorem,
circumventing the fact that Lemma 2 no longer holds.
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Theorem 3. Let C be a superspecial curve over Fq and r a large prime with
r | #JC(Fq). Let G1 = JC [r] ∩Ker(ϕ− [1]) and G2 = JC [r] ∩Ker(ϕ− [q]), then

â(·, ·) : G1 ×G2 → µr : (D1, D2) 7→ fq,D1(ε(D2))d

with D1 = ρ(D1), d = gcd(k, qk − 1), lc∞(fq,D1) = 1 and assuming that
supp(D1) ∩ supp(ε(D2)) = ∅, defines a non-degenerate, bilinear pairing called
the superspecial Ate pairing. Furthermore, the relation with the reduced Tate-
Lichtenbaum pairing is as follows:

e(D1, D2) = â(D1, D2)(k/d)q
k−1

. (7)

Proof: Combining Lemma 1, Lemma 3 and Lemma 4 it suffices to compute

e(D1, D2) = fqk,D1(ε(D2)) =
k−1∏
i=0

(
fq,[qi]D1(ε(D2))

)qk−i−1

, (8)

where D1 = ρ(D1). Applying Lemma 5 to ϕ̂i we conclude that fq,ϕ̂i(D1) ◦ ϕ̂i =

fq
i

q,D1
. Since D1 is reduced and D1 ∈ G1, we have ϕ̂i(D1) = [qi]D1. Furthermore,

let D2 = ρ(D2), then since D2 is reduced and D2 ∈ G2, we have ϕ̂(D2) = D2.
Combined with ϕ̂(P∞) = P∞, we conclude that ϕ̂(ε(D2)) = ε(D2). Substituting
this in (8) leads to

e(D1, D2) = fq,D1(ε(D2))kq
k−1

= fq,D1(ε(D2))d·(k/d)q
k−1

.

Since the left hand side is an r-th root of unity and gcd((k/d)qk−1, qk−1) = 1, we
conclude that fq,D1(ε(D2))d also is an r-th root of unity. Furthermore, e(D1, D2)
is non-degenerate and bilinear, so we finally conclude that the superspecial Ate
pairing also defines a non-degenerate bilinear pairing. �

The above theorem has been proved by Galbraith et al. [10] in the special
case of supersingular elliptic curves in characteristic 2 and 3 using explicit com-
putations.

5 Conclusion

In this paper we have introduced two new pairings on hyperelliptic curves, by
generalising the Ate pairing on elliptic curves. The first version applies to all
algebraic curves, whereas the second requires the curve to be superspecial, e.g.
the Duursma-Lee curves. To prove that both versions are well-defined, we intro-
duced a proper theoretical framework explaining several simpler results in the
literature which were proved using ad hoc methods.

The most important property of the Ate pairings is that no final exponentia-
tion is necessary. This raises security questions with respect to pairing inversion
and Verheul’s results on the computational Diffie-Hellman problem, especially
when so-called degenerate divisors are used. The precise security implications of
the Ate pairings are currently unknown and much more research is needed.
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A Performance Estimates

A.1 Miller’s Algorithm

We here give an expanded version of Algorithm 1, tailored for the Ate pairing.
From the point of view of computational efficiency, a good choice of uniformizer
is u∞ = xg/y. Let p(x) be a polynomial in x, then with this choice of u∞ we
have:

lc∞(p(x)) = lc(p(x))

lc∞(y − p(x)) =
{

1 if deg(p(x)) ≤ g
−lc(p(x)) if deg(p(x)) > g

where lc(p(x)) is the leading coefficient (in the variable x) of p(x). It is then easy
to obtain lc∞(fq,D2) from the computations in Miller’s algorithm.

A more detailed description of Algorithm 1 is given in Algorithm 2. The com-
putations coming from Cantor’s algorithm can be replaced by explicit formulae,
with some minor changes as ṽ1(x) must be computed completely, both in the
addition and the doubling formulae (in explicit formulae, the computation of
ṽ1(x) is avoided to reduce costs).

Remark 3. For genus 2, computing res(ci(x), ub(x)) is relatively inexpensive
compared with polynomial operations, and it is more efficient to compute the
resultant every time we accumulate on ci rather than working with polynomials
(squaring ci in the doubling step will then become a single field operation). For
all other genera, it is more efficient to accumulate c1 and c2 as polynomials and
to compute resultants only in the final step of Algorithm 2.
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Algorithm 2 Miller’s algorithm for hyperelliptic curves (detailed)
Inputs: n ∈ N and Da, Db ∈ JC reduced with disjoint affine support, Da =

[ua(x), va(x)], Db = [ub(x), vb(x)]
Outputs: fn,Da(Db)

Write n as
Ps

j=0 nj2
j , with nj ∈ {0, 1} and ns = 1.

D = [u(x), v(x)]← Da, c1(x)← 1, c2(x)← 1, c3 ← 1.
for j = s− 1 down to 0 do

c1(x)← c1(x)2 mod ub(x)
c2(x)← c2(x)2 mod ub(x)
c3 ← c2

3

d(x)← gcd(u(x), 2v(x) + h(x))
[ũ1(x), ṽ1(x)]← 2D − div(d(x))
c1(x)← c1(x) · d(x) mod ub(x)
j ← 1
while deg(ũj) > g do

ũj+1(x) = Monic
“

ṽj(x)2+h(x)ṽj(x)−f(x)

ũj(x)

”
.

ṽj+1(x) = −ṽj(x)− h(x) mod ũj+1(x).
c1(x)← c1(x) · (vb(x)− ṽj(x)) mod ub(x)
c2(x)← c2(x) · ũj+1(x) mod ub(x)
c3 ← c3 · lc∞(y − ṽj)
j ← j + 1

end while
D = [u(x), v(x)]← [ũj(x), ṽj(x)]
if nj = 1 then

d(x)← gcd(u(x), ua(x), v(x) + va(x) + h(x))
[ũ1(x), ṽ1(x)]← D + Da − div(d(x))
c1(x)← c1(x) · d(x) mod ub(x)
j ← 1
while deg(ũj) > g do

ũj+1(x) = Monic
“

ṽj(x)2+h(x)ṽj(x)−f(x)

ũj(x)

”
.

ṽj+1(x) = −ṽj(x)− h(x) mod ũj+1(x).
c1(x)← c1(x) · (vb(x)− ṽj(x)) mod ub(x)
c2(x)← c2(x) · ũj+1(x) mod ub(x)
c3 ← c3 · lc∞(y − ṽj)
j ← j + 1

end while
D = [u(x), v(x)]← [ũj(x), ṽj(x)]

end if
end for
c← res(c1(x),ub(x))

c3·res(c2(x),ub(x))

Return c.
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A.2 Operation Count

In general, one cannot assume that fq,D2 obtained from the computations of
Algorithm 1 is normalised to have lc∞(fq,D2) = 1. The evaluation of a(D2, D1)
in Lemma 6 is then computed as

a(D2, D1) =
fq,D2

(
ε(D1)

)
lc∞(fq,D2)m1

. (9)

Tables 1 and 2 give the cost in field operations for the doubling and addition
steps of Algorithm 2, for general divisors. The row “first & last” takes into
account the cost of the resultants and final multiplications and inversion, as well
as the operations saved by having c1 = c2 = c3 = 1 in the first doubling step.

Table 1. Costs involved in Miller’s algorithm to compute a(D2, D1) using general
divisors

genus 2 genus 3

Fq 7kM 32kM
addition Fqk 1I + 29M + 5S 1I + 91M + 6S

Fq 7kM 42kM
doubling Fqk 1I + 29M + 9S 1I + 88M + 22S

Fq 0 −8kM
first & last Fqk 1I − 1M − 2S 1I + 7M − 13S

Table 2. Costs involved in Miller’s algorithm to compute â(D1, D2) for superspecial
curves using general divisors

genus 2 genus 3

Fq 1I + (25 + 3k)M + 3S 1I + (67 + 12k)M + 6S
addition Fqk 8M + 2S 44M

Fq 1I + (25 + 3k)M + 6S 1I + (64 + 12k)M + 10S
doubling Fqk 8M + 4S 54M + 12S

Fq (k − 1)M − 1S (k − 1)M − 1S
first & last Fqk 1I − 1M − 2S 1I − 1M − 12S

Tables 3 and 4 give the cost in field operations for the doubling and addition
steps of Algorithm 2, for degenerate divisors, i.e. for divisors whose support is a
single point (together with the point at infinity).

Each addition (respectively doubling) step uses the fastest known explicit
formulae in affine coordinates, adapted to include the computation of ṽ1(x).
For the genus three addition, we use the formulae of [14] with the resultant
replaced by Cramer’s rule (as was done for characteristic 2 in [3]). For the final
computations with the resultants, we go back to the resultant computation of
[14].
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Table 3. Costs involved in Miller’s algorithm to compute a(D2, D1) using degenerate
divisors

genus 2 genus 3

Fq 4kM 13kM
addition Fqk 1I + 27M + 3S 1I + 69M + 6S

Fq 4kM 13kM
doubling Fqk 1I + 27M + 7S 1I + 66M + 11S

Fq 1M + 1S 2M + 2S
first & last Fqk 1I − 1M − 2S 1I − 1M − 2S

Table 4. Costs involved in Miller’s algorithm to compute â(D1, D2) for superspecial
curves using degenerate divisors

genus 2 genus 3

Fq 1I + (25 + 4k)M + 3S 1I + (67 + 13k)M + 6S
addition Fqk 2M 2M

Fq 1I + (25 + 4k)M + 6S 1I + (64 + 13k)M + 6S
doubling Fqk 2M + 2S 2M + 2S

Fq (k − 1)M − 1S (k − 1)M − 1S
first & last Fqk 1I − 1S 1I + 1M

A.3 Performance Comparison

In this section we provide precise operation counts for three security levels: 80,
128 and 192-bit security. The sizes of the finite fields and the security parameters
k are chosen such that both the DLP in the Jacobian of the curve JC(Fq) and
the DLP in the embedding field Fqk are infeasible.

Following [13] we restrict to the use of so-called pairing friendly finite fields,
i.e. Fq is a prime field with q ≡ 1 mod 12 and k of the form 2i3j . For these fields,
the cost of the required operations of multiplication, squaring, and inversion can
each be expressed simply in terms of base field operations [13], where m, s and
i denote the cost of a multiplication, squaring and inversion respectively in Fq.

Bearing in mind that for the same security, the base field will be smaller for
higher genus, we must account for this in our cost estimates. We therefore express
all costs in terms of the number of Fq3 multiplications we need to perform, where
qi is the base field cardinality of the genus i curve. Using basic Karatsuba, we
thus have Mqi = (qi/q3)1.585 · Mq3 for i = 1, 2. This estimate is likely to be
slightly smaller than what is recorded in practice [1] and so will lead our results
to underestimate the genus one operation counts slightly; however we believe
they are sufficient for comparison purposes.

For simplicity we assume that a squaring costs the same as a multiplication,
and that one inversion is equivalent to ten multiplications. We also assume half
as many additions as doublings in Algorithm 2.
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Table 5. Cost of Fqk operations in terms of Fq operations

k Mul Sqr Inv

6 15m 15s 21m + 13s + i
12 45m 45s 51m + 43s + i
16 81m 81s 90m + 90s + i
24 135m 135s 141m + 133s + i
32 243m 243s 252m + 252s + i
48 405m 405s 411m + 403s + i
54 375m 375s 591m + 343s + i

Table 6. Number of Fq3 multiplications to compute the Ate pairing

Security g q k MOV number of Fq3 muls

ordinary superspecial
ordinary

degenerate
superspecial
degenerate

fastest Ate

1 172 6 1032 3.12× 104

80 2 86 12 1032 3.79× 105 1.21× 105 3.34× 105 4.92× 104

3 64 16 1024 8.89× 105 4.82× 105 6.30× 105 5.39× 104

1 256 12 3072 8.63× 104

128 2 128 24 3072 1.64× 106 4.97× 105 1.45× 106 1.78× 105

3 96 32 3072 3.91× 106 2.12× 106 2.80× 106 1.89× 105

1 384 24 9216 3.87× 105

192 2 192 48 9216 6.68× 106 1.99× 106 5.94× 106 6.60× 105

3 152 54 8208 9.64× 106 5.18× 106 6.90× 106 4.65× 105

Table 6 gives the results of our performance estimates. Of the right-most
five columns, the left two are based on the formulae given in Table 1 and 2
and Algorithm 2, while the third and fourth are based on Table 3 and 4. The
final column we computed using the estimates in [17], together with the final
powering cost estimates from [13], taking the minimum over the choice of Ate
or twisted Ate, average or small trace, and quadratic or sextic twist.

The table indicates that the Ate pairing for elliptic curves, can be an order
of magnitude faster than the basic version of the Ate pairing described in this
paper. The reason for the Ate pairing being particularly fast in the elliptic case
is the availability of twists, as well as very short traces. Whether high degree
twists can be utilised for the hyperelliptic Ate pairing remains open. When using
degenerate divisors however, the Ate pairing for superspecial curves with genus
two and three is certainly comparable to the genus one case.
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