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Abstract. We study an adaptive variant of oblivious transfer in which a
sender has N messages, of which a receiver can adaptively choose to re-
ceive k one-after-the-other, in such a way that (a) the sender learns noth-
ing about the receiver’s selections, and (b) the receiver only learns about
the k requested messages. We propose two practical protocols for this
primitive that achieve a stronger security notion than previous schemes
with comparable efficiency. In particular, by requiring full simulatabil-
ity for both sender and receiver security, our notion prohibits a subtle
selective-failure attack not addressed by the security notions achieved by
previous practical schemes.

Our first protocol is a very efficient generic construction from unique
blind signatures in the random oracle model. The second construction
does not assume random oracles, but achieves remarkable efficiency with
only a constant number of group elements sent during each transfer. This
second construction uses novel techniques for building efficient simulat-
able protocols.

1 Introduction

The oblivious transfer (OT) primitive, introduced by Rabin [Rab81], and ex-
tended by Even, Goldreich, and Lempel [EGL85] and Brassard, Crépeau and
Robert [BCR87] is deceptively simple: there is a sender S with messages M1, . . . ,
MN and a receiver R with a selection value σ ∈ {1, . . . , N}. The receiver wishes
to retrieve Mσ from S in such a way that (1) the sender does not “learn” any-
thing about the receiver’s choice σ and (2) the receiver “learns” only Mσ and
nothing about any other message Mi for i 6= σ. Part of the allure of OT is
that it is complete, i.e., if OT can be realized, virtually any secure multiparty
computation can be [GMW87,CK90].

In this paper, we consider an adaptive version of oblivious transfer in which
the sender and receiver first run an initialization phase during which the sender
commits to a “database” containing her messages. Later on, the sender and
receiver interact as before so that the receiver can retrieve some message Mσ. In
addition, we allow the receiver to interact with the sender k−1 additional times,
one interaction after the other, in order to retrieve additional values from the
sender’s database. Notice here that we specifically model the situation in which
the receiver’s selection in the ith phase can depend on the messages retrieved in
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the prior i− 1 phases. This type of adaptive OT problem is central to a variety
of practical problems such as patent searches, treasure hunting, location-based
services, oblivious search, and medical databases [NP99b].

The practicality of this adaptive OT problem also drives the need for ef-
ficient solutions to it. Ideally, a protocol should only require communication
linear in N and the security parameter κ during the initialization phase (so
that the sender commits to the N messages), and an amount of communication
of O(max(κ, log N)) during each transfer phase (so that the receiver can use
cryptography and encode the index of his choice).4 In the race to achieve these
efficiency parameters, however, we must also not overlook—or worse, settle for
less-than-ideal security properties.

1.1 Security Definitions of Oblivious Transfer

An important contribution of this work is that it achieves a stronger simulation-
based security notion at very little cost with respect to existing schemes that
achieve weaker notions. We briefly summarize the various security notions for
OT presented in the literature, and how our notion extends them.

Honest-but-curious model. In this model, all parties are assumed to follow
the protocol honestly. Security guarantees that after the protocol completes, a
curious participant cannot analyze the transcript of the protocol to learn any-
thing else. Any protocol in the honest-but-curious model can be transformed into
fully-simulatable protocols, albeit at the cost of adding complexity assumptions
and requiring costly general zero-knowledge proofs for each protocol step.

Half-simulation. This notion, introduced by Naor and Pinkas [NP05], consid-
ers malicious senders and receivers, but handles their security separately. Re-
ceiver security is defined by requiring that the sender’s view of the protocol
when the receiver chooses index σ is indistinguishable from a view of the pro-
tocol when the receiver chooses σ′. Sender security, on the other hand, involves
a stronger notion. The requirement follows the real-world/ideal-world paradigm
and guarantees that any malicious receiver in the real world can be mapped to
a receiver in an idealized game in which the OT is implemented by a trusted
party. Usually, this requires that receivers are efficiently “simulatable,” thus we
refer to this notion as half-simulation.

The Problem of Selective Failure. We argue that the definition of half-
simulation described above does not imply all properties that one may expect
from a OT N

k×1 scheme. Notice that a cheating sender can always make the current
transfer fail by sending bogus messages. However, we would not expect him to
4 In practice, we assume that κ > log(N)—so that the protocol can encode the re-

ceiver’s selection—but otherwise that κ is chosen purely for the sake of security. In
this sense, O(κ) is both conceptually and practically different than O(polylog(N)).
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be able to cause failure based on some property of the receiver’s selection. Of
course, the sener can also prevent the receiver from retrieving Mσ by replacing it
with a random value during the initialization phase. But again, the sender should
not be able to make this decision anew at each transfer phase. For example, the
sender should not be able to make the first transfer fail for σ = 1 but succeed
for σ ∈ {2, . . . , N}, and to make the second transfer fail for σ = 2 but succeed
for σ ∈ {1, 3, . . . , N}. The receiver could publicly complain whenever a transfer
fails, but by doing so it gives up the privacy of its query. Causing transfers
to fail may on the long term harm the sender’s business, but relying on such
arguments to dismiss the problem is terribly naive. A desperate patent search
database may choose to make faster money by selling a company’s recent queries
to competitors than by continuing to run its service.

We refer to this issue as the selective-failure problem. To see why it is not
covered by the half-simulation notion described above, it suffices to observe that
the notion of receiver security only hides the message received by the receiver
from the cheating sender’s view. A scheme that is vulnerable to selective-failure
attacks does not give the cheating sender any additional advantage in break-
ing the receiver’s privacy, and may therefore be secure under such a notion.
(This illustrates the classic argument from work in secure multiparty compu-
tation that achieving just privacy is not enough; both privacy and correctness
must be achieved simultaneously.) In fact, the schemes of [NP05] are secure
under half-simulation, yet vulnerable to selective-failure attacks. In an earlier
version [NP99b], the same authors recognize this problem and remark that it
can be fixed, but do not give formal support of their claim. A main contribution
of this work is to show that it can be done without major sacrifices in efficiency.

Simulatable OT. The security notion that we consider employs the real-
world/ideal-world paradigm for both receiver and sender security. We extend
the functionality of the trusted party such that at each transfer, the sender in-
puts a bit b indicating whether it wants the transfer to succeed or fail. This
models the capability of a sender in the real world to make the transfer fail by
sending bogus messages, but does not enable it to do so based on the receiver’s
input σ. Moreover, for security we require indistinguishability of the combined
outputs of the sender and the receiver, rather than only of the output of the dis-
honest party. The output of the honest receiver is assumed to consist of all the
messages Mσ1 , . . . ,Mσk

that it received. This security notion excludes selective-
failure attacks in the real world, because the ideal-world sender is unable to
perform such attacks, which will lead to noticeable differences in the receiver’s
output in the real and ideal world.

Finally, we observe that simulatable oblivious transfer is used as a primitive
to build many other cryptographic protocols [Gol04]. By building an efficient OT
protocol with such simulation, we take the first steps at realizing many other
interesting cryptographic protocols.
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1.2 Construction Overview

Our random-oracle protocol. Our first construction is a black-box construc-
tion using any unique blind signature scheme. By unique, we mean that for all
public keys and messages there exists at most one valid signature. First, the
sender generates a key pair (pk , sk) for the blind signature scheme, and “com-
mits” to each message in its database by xor-ing the message Mi with H(i, si),
where si is the unique signature of the message i under pk . Intuitively, we’re
using si as a key to unlock the message Mi. To retrieve the “key” to a message
Mi, the sender and receiver engage in the blind signature protocol for message
i. By the unforgeability of the signature scheme, a malicious receiver will be
unable to unlock more than k such messages. By the blindness of the scheme,
the sender learns nothing about which messages have been requested.

The random oracle serves four purposes. First, it serves as a one-time pad to
perfectly hide the messages. Second, it allows a simulator to extract the sender’s
original messages from the commitments so that we can prove receiver-security.
Third, in the proof of sender-security, it allows the simulator to both extract the
receiver’s choice and, via programming the random oracle, to make the receiver
open the commitment to an arbitrary message. Finally, it allows us to extract
forgeries of the blind signature scheme from a malicious receiver who is able to
break sender-security.

Our standard-model protocol. There are three main ideas behind the stan-
dard protocol in §4. At a very high level, just as in the random oracle protocol,
the sender uses a unique signature of i as a key to encrypt Mi in the initializa-
tion phase. However, unlike the random-oracle protocol, we observe here that we
only need a blind signature scheme which allows signatures on a small, a-priori
fixed message space {1, . . . , N}.

The second idea concerns the fact that after engaging in the blind-signing
protocol, a receiver can easily check whether the sender has sent the correct
response during the transfer phase by verifying the signature it received. While
seemingly a feature, this property becomes a problem during the simulation of
a malicious receiver. Namely, the simulator must commit to N random values
during the initialize phase, and later during the transfer phase, open any one
of these values to an arbitrary value (the correct message Mi received from the
trusted party during simulation). In the random oracle model, this is possible via
programming the random oracle. In the standard model, a typical solution would
be to use a trapdoor commitment. However, a standard trapdoor commitment is
unlikely to work here because most of these require the opener to send the actual
committed value when it opens the commitment. This is not possible in our OT
setting since the sender does not know which commitment is being opened.

Our solution is to modify the “blind-signing” protocol so that, instead of
returning a signature to the user, a one-way function (a bilinear pairing in our
case) of the signature is returned. To protect against a malicious sender, the
sender then proves in zero-knowledge that the value returned is computed cor-
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rectly. In the security proof, we will return a random value to the receiver and
fake the zero-knowledge proof.

The final idea behind our construction concerns a malicious receiver who may
use an invalid input to the “blind-signature protocol” in order to, say, retrieve a
signature on a value outside of {1, . . . , N}. This is a real concern, since such an
attack potentially allows a malicious receiver to learn the product Mi ·Mj which
violates the security notion. In order to prevent such cheating, we require the
receiver to prove in zero-knowledge that (a) it knows the input it is requesting
a signature for, and (b) that the input is valid for the protocol. While this is
conceptually simple, the problem is that the size of such a theorem statement,
and therefore the time and communication complexity of such a zero-knowledge
proof, could potentially be linear in N . For our stated efficiency goals, we need a
proof of constant size. To solve this final problem, we observe that the input to
the blind signature process is a small set—i.e., only has N possible values. Thus,
the sender can sign all N possible input messages (using a different signing key
x) to the blind signature protocol and publish them in the initialization phase.
During the transfer phase, the receiver blinds one of these inputs and then gives
a zero-knowledge proof of knowledge that it knows a signature of this blinded
input value. Following the work of Camenisch and Lysyanskaya [CL04], there
are very efficient proofs for such statements which are constant size.

Finally, in order to support receiver security, the sender provides a proof of
knowledge of the “commitment key” used to commit to its input message. This
key can thus be extracted from the proof of knowledge and use it to compute
messages to send to the trusted party.

1.3 Related Work

The concept of oblivious transfer was proposed by Rabin [Rab81] (but consid-
ered earlier by Wiesner [Wie83]) and further generalized to one-out-of-two OT
(OT 2

1) by Even, Goldreich and Lempel [EGL85] and one-out-of-N OT (OT N
1 )

by Brassard, Crépeau and Robert [BCR87]. A complete history of the work on
OT is beyond our scope. In particular, here we do not mention constructions of
OT which are based on generic zero-knowlege techniques or setup assumptions.
See Goldreich [Gol04] for more details.

Bellare and Micali [BM90] presented practical implementations of OT 2
1 under

the honest-but-curious notion and later Naor and Pinkas [NP01] did the same un-
der the half-simulation definition. Brassard et al. [BCR87] showed how to imple-
ment OT N

1 using N applications of a OT 2
1 protocol. Under half-simulation, Naor

and Pinkas [NP99a] gave a more efficient construction requiring only log N OT 2
1

executions. Several direct 2-message OT N
1 protocols (also under half-simulation)

have been proposed in various works [NP01,AIR01,Kal05].
The first adaptive k-out-of-N oblivious transfer (OT N

k×1) protocol is due to
Naor and Pinkas [NP99b]. Their scheme is secure under half-simulation and in-
volves O(log N) invocations of a OT 2

1 protocol during the transfer stage. Using
optimistic parameters, this translates into a protocol with O(log N) rounds and
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at least O(k log N) communication complexity during the transfer phase. The

same authors also propose a protocol requiring 2 invocations of a OT
√

N
1 proto-

col. Laur and Lipmaa [LL06] build an OT N
k×1 in which k must be a constant.

Their security notion specifically tolerates selective-failure, and the efficiency of
their construction depends on the efficiency of the fully-simulatable OT N

1 and
the equivocable (i.e., trapdoor) list commitment scheme which are used as prim-
itives.

In the random oracle model, Ogata and Kurosawa [OK04] and Chu and
Tzeng [CT05] propose two efficient OT N

k×1 schemes satisfying half-simulation
which require O(k) computation and communication during the transfer stage.
Our first generic OT N

k×1 construction based on unique blind signatures cov-
ers both schemes as special cases, offers full simulation-security, and fixes mi-
nor technical problems to prevent certain attacks. Prior to our work, Malkhi
and Sella [MS03] observed a relation between OT and blind signatures, but
did not give a generic transformation between the two. They present a direct
OT N

1 protocol (also in the random oracle model) based on Chaum’s blind sig-
natures [Cha88]. Their scheme could be seen as a OT N

k×1 protocol as well, but
it has communication complexity O(κN) in the transfer phase. Their scheme is
not an instantiation of our generic construction.

OT N
k×1 can always be achieved by publishing commitments to the N data

items, and executing k OT N
1 protocols on the N pieces of opening information.

This solution incurs costs of O(κN) in each transfer phase.
Naor and Pinkas [NP05] demonstrate a way to transform a singe-server

private-information retrieval scheme (PIR) into an oblivious transfer scheme
with sublinear-in-N communication complexity. This transformation is in the
half-simulation model and the dozen or so constructions of OT from PIR seem
to also be in this model. Moreover, there are no adaptive PIR schemes known.

2 Definitions

If k ∈ N, then 1k is the string consisting of k ones. The empty string is denoted
ε. If A is a randomized algorithm, then y

$← A(x) denotes the assignment to y of
the output of A on input x when run with fresh random coins. Unless noted, all
algorithms are probabilistic polynomial-time (PPT) and we implicitly assume
they take an extra parameter 1κ. A function ν : N→ [0, 1] is negligible if for all
c ∈ N there exists a κc ∈ N such that ν(κ) < κ−c for all κ > κc.

2.1 Blind Signatures

A blind signature scheme BS is a tuple of PPT algorithms (Kg,Sign,User,Vf).
The signer generates a key pair via the key generation algorithm (pk , sk) $←
Kg(1κ). To obtain a signature on a message M , the user and signer engage in an
interactive signing protocol dictated by the User(pk ,M ) and Sign(sk) algorithms.
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At the end of the protocol, the User algorithm returns a signature s or ⊥ to indi-
cate rejection. The verification algorithm Vf(pk ,M , s) returns 1 if the signature
is deemed valid and 0 otherwise. Correctness requires that Vf(pk ,M , s) = 1 for
all (pk , sk) output by the Kg algorithm, for all M ∈ {0, 1}∗ and for all signa-
tures output by User(pk ,M ) after interacting with Sign(sk). We say that BS is
unique [GO92] if for each public key pk ∈ {0, 1}∗ and each message M ∈ {0, 1}∗
there exists at most one signature s ∈ {0, 1}∗ such that Vf(pk ,M , s) = 1.

The security of blind signatures is twofold. On the one hand, one-more un-
forgeability [PS96] requires that no adversary can output n + 1 valid message-
signature pairs after being given the public key as input and after at most n
interactions with a signing oracle. We say that BS is unforgeable if no PPT
adversary has non-negligible probability of winning this game.

Blindness, on the other hand, requires that the signer cannot tell apart the
message it is signing. The notion was first formalized by Juels et al. [JLO97], and
was later strengthened to dishonest-key blindness [ANN06,Oka06]. In this work,
we further strengthen the definition to selective-failure blindness. It is defined
through the following game. The adversary first outputs a public key pk and
two messages M0,M1. It is then given black-box access to two instances of the
user algorithm, the first implementing User(pk ,Mb) and the second implementing
User(pk ,M1−b) for a random bit b

$← {0, 1}. Eventually, these algorithms produce
local output sb and s1−b, respectively. If sb 6= ⊥ and s1−b 6= ⊥, then the adversary
is given the pair (s0, s1); if sb = ⊥ and s1−b 6= ⊥, then it is given (⊥, ε); if sb 6= ⊥
and s1−b = ⊥, then it is given (ε,⊥); and if sb = s1−b = ⊥ it is given (⊥,⊥). The
adversary then guesses the bit b. The scheme BS is said to be selective-failure
blind if no PPT adversary has a non-negligible advantage in winning the above
game.

2.2 Simulatable Adaptive Oblivious Transfer

An adaptive k-out-of-N oblivious transfer scheme OT N
k×1 is a tuple of four PPT

algorithms (SI,RI,ST,RT). During the initialization phase, the sender and re-
ceiver perform an interactive protocol where the sender runs the SI algorithm
on input messages M1, . . . ,MN , while the receiver runs the RI algorithm with-
out input. At the end of the initialization protocol, the SI and RI algorithm
produce as local outputs state information S0 and R0, respectively. During the
i-th transfer, 1 ≤ i ≤ k, the sender and receiver engage in a selection protocol
dictated by the ST and RT algorithms. The sender runs ST(Si−1) to obtain up-
dated state information Si, while the receiver runs the RT algorithm on input
state information Ri−1 and the index σi of the message it wishes to receive, to
obtain updated state information Ri and the retrieved message M ′

σi
. Correct-

ness requires that M ′
σi

= Mσi for all messages M1, . . . ,MN , for all selections
σ1, . . . , σk ∈ {1, . . . , N} and for all coin tosses of the algorithms.

To capture security of an OT N
k×1 scheme, we employ the real-world/ideal-

world paradigm. Below, we describe a real experiment in which the parties run
the protocol, while in the ideal experiment the functionality is implemented
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through a trusted third party. For the sake of simplicity, we do not explicitly
include auxiliary inputs to the parties. This can be done, and indeed must be
done for sequential composition of the primitive, and our protocols achieve this
notion as well.

Real experiment. We first explain the experiment for arbitrary sender and
receiver algorithms Ŝ and R̂. The experiment RealbS,bR(N, k,M1, . . . ,MN , Σ) pro-

ceeds as follows. Ŝ is given messages (M1, . . . ,MN ) as input and interacts with
R̂(Σ), where Σ is an adaptive selection algorithm that, on input messages
Mσ1 , . . . ,Mσi−1 , outputs the index σi of the next message to be queried. In their
first run, Ŝ and R̂ produce initial states S0 and R0 respectively. Next, the sender
and receiver engage in k interactions. In the i-th interaction for 1 ≤ i ≤ k, the
sender and receiver interact by running Si

$← Ŝ(Si−1) and (Ri,M ∗
i ) $← R̂(Ri−1),

and update their states to Si and Ri, respectively. Note that M ∗
i may be differ-

ent from Mσi when either participant cheats. At the end of the k-th interaction,
sender and receiver output strings Sk and Rk respectively. The output of the
RealbS,bR experiment is the tuple (Sk,Rk).

For an OT N
k×1 scheme (SI,ST,RI,RT), define the honest sender S algorithm

as the one which runs SI(M1, . . . ,MN ) in the initialization phase, runs ST in all
following interactions, and always outputs Sk = ε as its final output. Define the
honest receiver R as the algorithm which runs RI in the initialization phase, runs
RT(Ri−1, σi) and in the i-th interaction, where Σ is used to generate the index
σi, and returns the list of received messages Rk = (Mσ1 , . . . ,Mσk

) as its final
output.

Ideal experiment. In experiment IdealbS′,bR′(N, k,M1, . . . ,MN , Σ), the (possi-

bly cheating) sender algorithm Ŝ′(M1, . . . ,MN ) generates messages M ∗
1 , . . . ,M ∗

N

and hands these to the trusted party T. In each of the k transfer phases, T
receives a bit bi from the sender Ŝ′ and an index σ∗i from the (possibly cheating)
receiver R̂′(Σ). If bi = 1 and σ∗i ∈ {1, . . . , N}, then T hands M ∗

σ∗i
to the receiver;

otherwise, it hands ⊥ to the receiver. At the end of the k-th transfer, Ŝ′ and R̂′

output a string Sk and Rk; the output of the experiment is the pair (Sk,Rk).
As above, define the ideal sender S′(M1, . . . ,MN ) as one who sends messages

M1, . . . ,MN to the trusted party in the initialization phase, sends bi = 1 in all
transfer phases, and uses Sk = ε as its final output. Define the honest ideal
receiver R′ as the algorithm which generates its selection indices σi through
Σ and submits these to the trusted party. Its final output consists of all the
messages it received Rk = (Mσi

, . . . ,MσN
).

Sender security. We say that OT N
k×1 is sender-secure if for any PPT real-

world cheating receiver R̂ there exists a PPT ideal-world receiver R̂′ such
that for any polynomial Nm(κ), any N ∈ [1, Nm(κ)], any k ∈ {1, . . . , N},
any messages M1, . . . ,MN , and any selection strategy Σ, the advantage of
any PPT distinguisher in distinguishing the distributions

RealS,bR(N, k,M1, . . . ,MN , Σ) and IdealS′,bR′(N, k,M1, . . . ,MN , Σ)
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is negligible in κ.
Receiver security. We say that OT N

k×1 is receiver-secure if for any PPT real-
world cheating sender Ŝ there exists a PPT ideal-world sender Ŝ′ such that
for any polynomial Nm(κ), any N ∈ [1, Nm(κ)], any k ∈ {1, . . . , N}, any
messages M1, . . . ,MN , and any selection strategy Σ, the advantage of any
PPT distinguisher in distinguishing the distributions

RealbS,R(N, k,M1, . . . ,MN , Σ) and IdealbS′,R′(N, k,M1, . . . ,MN , Σ)

is negligible in κ.

3 A Generic Construction in the Random Oracle Model

In this section, we describe a generic yet very efficient way of constructing adap-
tive k-out-of-N OT schemes from unique blind signature schemes, and prove its
security in the random oracle model.

3.1 The Construction

To any unique blind signature scheme BS = (Kg,Sign,User,Vf), we associate
the OT N

k×1 scheme as depicted in Fig. 1. The security of the oblivious transfer

Initialization

SI(M1, . . . ,MN ) : RI :

(pk , sk)
$← Kg(1κ)

For i = 1 . . . N
si ← Sign(sk , i)

Ci ← H(i, si)⊕Mi
pk ,C1, . . . ,CN- R0 ← (pk ,C1, . . . ,CN )

S0 ← sk ; Output S0 Output R0

Transfer

ST(Si−1) : RT(Ri−1, σi) :

Parse Si−1 as sk Parse Ri−1 as (pk ,C1, . . . ,CN )

Run protocol Sign(sk) -� Run protocol si
$← User(pk , σi)

If Vf(pk , σi, si) = 0 then Mσi ← ⊥
Else Mσi ← Cσi ⊕H(i, si)

Output Si = Si−1 Output (Ri = Ri−1,Mσi)

Fig. 1. A construction of OT N
k×1 using a random oracle H and any unique blind sig-

nature scheme BS = (Kg, Sign, User, Vf).

scheme follows from that of the blind signature scheme. In particular, Theorem 1
states that the sender’s security is implied by the one-more unforgeability of BS ,
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while Theorem 2 states that the receiver’s security follows from the selective-
failure blindness of BS . We provide brief proof sketches below; detailed proofs
can be found in the full version [CNS07].

Theorem 1. If the blind signature scheme BS is unforgeable, then the OT N
k×1

depicted in Fig. 1 is sender-secure in the random oracle model.

Proof (Sketch). The idea of this proof is that the ideal-world receiver R̂′ runs
the real-world receiver R̂ on random ciphertexts C1, . . . , CN . R̂′ observes the
random oracle queries made by R̂, trying to parse them as H(σi, si) such that
Vf(pk , σi, si)=1. If this succeeds, then it requests Mσi

from the trusted party
and returns Cσi

⊕Mσi
. If there are more than k such queries, then R̂ has forged

the blind signature scheme.

Theorem 2. If the blind signature scheme BS is selective-failure blind, then the
OT N

k×1 scheme depicted in Fig. 1 is receiver-secure in the random oracle model.

Proof (Sketch). For any real-world cheating sender Ŝ, consider the ideal-world
cheating sender Ŝ′ that, when Ŝ outputs (pk , C1, . . . , CN ), goes over all ran-
dom oracle queries made by Ŝ and tries to parse them as (i, si) such that
Vf(pk , i, si) = 1. If this succeeds it sets Mi ← Ci ⊕ H(i, si), all other mes-
sages are chosen at random. It then submits M1, . . . ,MN to the trusted party.
At the i-th transfer, Ŝ′ runs Ŝ against (Ri,M ∗

i ) $← RT(Ri−1, 1). If M ∗
i = ⊥ then

Ŝ′ submits a zero bit to the trusted party, indicating that the present transfer
should fail, otherwise it sends a one. The selective-failure blindness of BS ensures
that Ŝ cannot distinguish a query for index 1 from any other query, and that it
cannot make RT fail depending on the value of its selection.

Instantiations. Many blind signature schemes exist, but only the schemes of
Chaum [Cha88,BNPS03] and Boldyreva [Bol03] seem to be unique. Both are
efficient two-round schemes which result in round-optimal adaptive oblivious
transfer protocols.

The instantiation of our generic construction with Chaum’s blind signa-
ture scheme coincides with the direct OT scheme of Ogata-Kurosawa [OK04].
However, special precautions must be taken to ensure that Chaum’s scheme is
selective-failure blind. For example, the sender must use a prime exponent e
greater than the modulus n [ANN06], or must provide a non-interactive proof
that gcd(e, n) = 1 [CPP07]. Anna Lysyanskaya suggests having the receiver
send e to the sender. This solution is much more efficient than the previous
two, but would require re-proving the security of the OT N

k×1 scheme since it
is no longer an instance of our generic construction. In any case, the authors
of [OK04] overlooked this need, which creates the possibility for attacks on the
receiver’s security of their protocol. For example, a cheating sender could choose
e = 2 and distinguish between transfers for σi and σ′i for which H(σi) is a square
modulo n and H(σ′i) is not.
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When instantiated with Boldyreva’s blind signature scheme [Bol03] based
on pairings, our generic construction coincides with the direct OT scheme of
Chu-Tzeng [CT05]. A similar issue concerning the dishonest-key blindness of
the scheme arises here, but was also overlooked. The sender could for example
choose the group to be of non-prime order and break the receiver’s security in a
similar way as demonstrated above for the scheme of [OK04]. One can strengthen
Boldyreva’s blind signature scheme to provide selective-failure blindness by let-
ting the user algorithm check that the group is of prime order p and that the
generator is of full order p.

4 Simulatable Adaptive OT in the Standard Model

Computational assumptions. Our protocol presented in this section requires
bilinear groups and associated hardness assumptions. Let Pg be a pairing group
generator that on input 1κ outputs descriptions of multiplicative groups G1, GT

of prime order p where |p| = κ. Let G∗
1 = G1 \{1} and let g ∈ G∗

1. The generated
groups are such that there exists an admissible bilinear map e : G1 ×G1 → GT,
meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) 6=
1; and (3) the bilinear map is efficiently computable.

Definition 3 (Strong Diffie-Hellman Assumption [BB04]). We say that
the `-SDH assumption associated to a pairing generator Pg holds if for all PPT
adversaries A, the probability that A(g, gx, . . . , gx`

) where (G1, GT) $← Pg(1κ),
g

$← G∗
1 and x

$← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp in negligible in κ.

Definition 4 (Power Decisional Diffie-Hellman Assumption). We say
that the `-PPDH assumption associated to Pg holds if for all PPT adversaries A,
the probability that A on input (g, gx, gx2

, . . . , gx`

,H) where (G1, GT) $← Pg(1κ),
g

$← G∗
1, x

$← Zp, H
$← GT, distinguishes the vector T = (Hx,Hx2

, . . . ,Hx`

)
from a random vector T

$← G`
T is negligible in κ.

Boneh-Boyen signatures. We modify the weakly-secure signature scheme of
Boneh and Boyen [BB04] as follows. The scheme uses a pairing generator Pg as
defined above. The signer’s secret key is x

$← Zp, the corresponding public key
is y = gx. The signature on a message M is s ← g1/(x+M ); verification is done
by checking that e(s, y · gM ) = e(g, g). This scheme is similar to the Dodis and
Yampolskiy verifiable random function [DY05].

Security under weak chosen-message attack is defined through the following
game. The adversary begins by outputting ` messages M1, . . . ,M`. The chal-
lenger generates a fresh key pair and gives the public key to the adversary,
together with signatures s1, . . . , s` on M1, . . . ,M`. The adversary wins if it suc-
ceeds in outputing a valid signature s on a message M 6∈ {M1, . . . ,M`}. The
scheme is said to be unforgeable under weak chosen-message attack if no PPT
adversary A has non-negligible probability of winning this game. An easy adap-
tation of the proof of [BB04] can be used to show that this scheme is unforgeable
under weak chosen-message attack if the (` + 1)-SDH assumption holds.
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Initialization

SI(1
κ,M1, . . . ,MN ) : RI(1

κ) :

(G1, GT)
$← Pg(1κ)

g, h
$← G∗1 ; H ← e(g, h)

x
$← Zp ; y ← gx ; pk ← (g, H, y)

For i = 1, . . . , N do

Ai ← g1/(x+i)

Bi ← e(h, Ai) ·Mi

Ci ← (Ai, Bi) pk , C1, . . . , CN -

S0 ← (h, pk) PoK{(h) : H = e(g, h)}- R0 ← (pk ,C1, . . . ,CN )

Transfer

ST(Si−1) : RT(Ri−1, σi) :

v
$← Zp ; V ← (Aσi)

v

V�
PoK{(σi, v) : e(V, y) = e(V, g)−σie(g, g)v}�

W ← e(h, V ) W -
PoM {(h) : H = e(g, h) ∧W = e(h, V )}-

Si = Si−1 M ← Bσi/(W 1/v)
Ri = Ri−1

Fig. 2. Our OT N
k×1 protocol in the standard model associated to pairing generator

Pg. We use notation by Camenisch and Stadler [CS97] for the zero-knowledge pro-
tocols. They can all be done efficiently (in four rounds and O(κ) communication) by
using the transformation of [CDM00]. The protocols are given in detail in the full
version [CNS07].

Zero-knowledge proofs. We use definitions from [BG92,CDM00]. A pair of
interacting algorithms (P,V) is a proof of knowledge (PoK) for a relation R =
{(α, β)} ⊆ {0, 1}∗×{0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for all (α, β) ∈ R,
V(α) accepts a conversation with P(β) with probability 1; and (2) there exists
an expected polynomial-time algorithm E, called the knowledge extractor, such
that if a cheating prover P̂ has probability ε of convincing V to accept α, then
E, when given rewindable black-box access to P̂, outputs a witness β for α with
probability ε− κ.

A proof system (P,V) is perfect zero-knowledge if there exists a PPT al-
gorithm Sim, called the simulator, such that for any polynomial-time cheating
verifier V̂ and for any (α, β) ∈ R, the outputs of V̂(α) after interacting with P(β)
and that of Sim

bV(α)(α) are identically distributed.
Our protocol in the standard model is depicted in Fig. 2. All zero-knowledge

proofs can be performed efficiently in four rounds and with O(κ) communication
using the transformation of [CDM00]. The detailed protocols are provided in
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the full version [CNS07]. We assume that the messages Mi are elements of the
target group GT.5 The protocol is easily seen to be correct by observing that
W = e(h, Aσi

)v, so therefore Bσi
/W 1/v = Mσi

.
We now provide some intuition into the protocol. Each pair (Ai, Bi) can be

seen as an ElGamal encryption [ElG85] in GT of Mi under public key H. But
instead of using random elements from GT as the first component, our protocol
uses verifiably random [DY05] values Ai = g1/(x+i). It is this verifiability that
during the transfer phase allows the sender to check that the receiver is indeed
asking for the decryption key for one particular ciphertext, and not for some
combination of ciphertexts.

Receiver security. We demonstrate the receiver security of our scheme by
proving the stronger property of unconditional statistical indistinguishability.
Briefly, the ideal-world sender can extract h from the proof of knowledge in the
initialization phase, allowing it to decrypt the messages to send to the trusted
party. During the transfer phase, it plays the role of an honest receiver and asks
for a randomly selected index. If the real-world sender succeeds in the final proof
of membership (PoM) of the well-formedness of W , then the ideal sender sends
b = 1 to its trusted-party T to indicate continue.

Notice how the sender’s response W is simultaneously determined by the
initialization phase, unpredictable by the receiver during the transfer phase, but
yet verifiable once it has been received (albeit, via a zero-knowledge proof).
Intuitively, these three properties prevent the selective-failure attack.

Theorem 5. The OT N
k×1 protocol in Fig. 2 is unconditionally receiver-secure.

Proof. We show that for every real-world cheating sender Ŝ there exists an
ideal-world cheating sender Ŝ′ such that no distinguisher D, regardless of its
running time, has non-negligible probability to distinguish the distributions
RealbS,R(N, k,M1, . . . ,MN , Σ) and IdealbS′,R′(N, k,M1, . . . ,MN , Σ). We do so by
considering a sequence of distributions Game-0, . . . ,Game-3 such that for some
Ŝ′ that we construct, Game-0 = RealbS,R and Game-3 = IdealbS′,R′ , and by
demonstrating the statistical difference in the distribution for each game transi-
tion. Below, we use the shorthand notation

Pr [Game-i ] = Pr
[

D(X) = 1 : X
$← Game-i

]
.

Game-0 : This is the distribution corresponding to RealbS,R, i.e., the game

where the cheating sender Ŝ is run against an honest receiver R with selection
strategy Σ. Obviously, Pr [Game-0 ] = Pr

[
D(X) = 1 : X

$← RealbS,R

]
.

5 This is a standard assumption we borrow from the literature on Identity-Based
Encryption. The target group is usually a subgroup of a larger prime field. Thus,
depending on implementation, it may be necessary to “hash” the data messages into
this subgroup. Alternatively, one can extract a random pad from the element in the
target group and use ⊕ to encrypt the message.
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Game-1 : In this game the extractor E1 for the first proof of knowledge is used
to extract from Ŝ the element h such that e(g, h) = H. If the extractor fails,
then the output of Game-1 is ⊥; otherwise, the execution of Ŝ continues as
in the previous game, interacting with R(Σ). The difference between the two
output distributions is given by the knowledge error of the PoK, i.e.,

Pr [Game-1 ]− Pr [Game-0 ] ≤ 1
p

.

Game-2 : This game is identical to the previous one, except that during the
transfer phase the value V sent by the receiver is replaced by picking a
random v′ and sending V ′ ← Av

1. The witness (v′, 1) is used during the
second PoK. Since V and V ′ are both uniformly distributed over G1, and by
the perfect witness-indistinguishability of the PoK (implied by the perfect
zero-knowledge property), we have that Pr [Game-2 ] = Pr [Game-1 ].

Game-3 : In this game, we introduce an ideal-world sender Ŝ′ which incor-
porates the steps from the previous game. Algorithm Ŝ′ uses E1 to ex-
tract h from Ŝ, decrypts M ∗

i as Bi/e(h, Ai) for i = 1, . . . , N and submits
M ∗

1 , . . . ,M ∗
N to the trusted party T. As in Game-2, during the transfer

phase, Ŝ′ feeds V ′ $← Av′

1 to Ŝ and uses (v′, 1) as a witness in the PoK. It
plays the role of the verifier in the final PoM of W . If Ŝ convinces Ŝ′ that W
is correctly formed, then Ŝ′ sends 1 to the trusted party, otherwise it sends 0.
When Ŝ outputs its final state Sk, Ŝ′ outputs Sk as well.

One can syntactically see that

Pr [Game-3 ] = Pr [Game-2 ] = Pr
[

D(X) = 1 : X
$← IdealbS′,R′

]
.

Summing up, we have that the advantage of the distinguisher D is given by

Pr
[

D(X) = 1 : X
$← IdealbS′,R′

]
− Pr

[
D(X) = 1 : X

$← RealbS,R

]
≤ 1

p
.

Sender security. The following theorem states the sender-security of our sec-
ond construction.

Theorem 6. If the (N + 1)-SDH assumption and the (N + 1)-PDDH assump-
tions associated to Pg hold, then the OT N

k×1 protocol depicted in Fig. 2 is sender-
secure.

Proof. Given a real cheating receiver R̂, we construct an ideal-world cheating
receiver R̂′ such that no algorithm D can distinguish between the distributions
RealS,bR(N, k,M1, . . . ,MN , Σ) and IdealS′,bR′(N, k,M1, . . . ,MN , Σ). We again do
so by considering a sequence of hybrid distributions and investigate the differ-
ences between successive ones.

Game-0 : This is the distribution corresponding to R̂ being run against the
honest sender S(M1, . . . ,MN ). Obviously, we have that Pr [Game-0 ] =
Pr

[
D(X) = 1 : X

$← RealS,bR
]

.
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Game-1 : This game differs from the previous one in that at each transfer the
extractor E2 of the second PoK is used to extract from R̂ the witness (σi, v).
If the extraction fails, Game-1 outputs ⊥. Because the PoK is perfect zero-
knowledge, the difference on the distribution with the previous game is sta-
tistical (i.e., independent of the distinguisher’s running time) and given by
k times the knowledge error, or Pr [Game-1 ]−Pr [Game-0 ] ≤ k/p. Note
that the time required to execute these k extractions is k times the time
of doing a single extraction, because the transfer protocols can only run se-
quentially, rather than concurrently. One would have to resort to concurrent
zero-knowledge protocols [DNS04] to remove this restriction.

Game-2 : This game is identical to the previous one, except that Game-2
returns ⊥ if the extracted value σi 6∈ {1, . . . , N} during any of the transfers.
One can see that in this case s = V 1/v is a forged Boneh-Boyen signature
on message σi. The difference between Game-1 and Game-2 is bounded
by the following claim, which we prove below:

Claim (1). If the (N + 1)-SDH assumption associated to Pg holds, then
Pr [Game-2 ]− Pr [Game-1 ] is negligible.

Game-3 : In this game the PoK of h in the initialization phase is replaced with
a simulated proof using Sim1, the value W returned in each transfer phase
is computed as W ← (Bσi/Mσi)

v, and the final PoM in the transfer phase
is replaced by a simulated proof using Sim3. Note that now the simulation
of the transfer phase no longer requires knowledge of h. However, all of the
simulated proofs are proofs of true statements and the change in the com-
putation of W is purely conceptional. Thus by the perfect zero-knowledge
property, we have that Pr [Game-3 ] = Pr [Game-2 ] .

Game-4 : Now the values B1, . . . , BN sent to R̂ in the initialization phase are
replaced with random elements from GT. Now at this point, the second proof
in the previous game is a simulated proof of a false statement. Intuitively,
if these changes enable a distinguisher D to separate the experiments, then
one can solve an instance of the SBDHI problem. This is caputed in the
following claim:

Claim (2). If the (N + 1)-PDDH assumption associated to Pg holds, then
Pr [Game-4 ]− Pr [Game-3 ] is negligible.

The ideal-world receiver R̂′ can be defined as follows. It performs all of the
changes to the experiments described in Game-4 except that at the time of
transfer, after having extracted the value of σi from R̂, it queries the trusted
party T on index σi to obtain message Mσi . It then uses this message to compute
W . Syntactically, we have that

Pr
[

D(X) = 1 : X
$← IdealS′,bR′

]
= Pr [Game-4 ] .

Summing up the above equations and inequalities yields that

Pr
[

D(X) = 1 : X
$← IdealS′,bR′

]
− Pr

[
D(X) = 1 : X

$← RealS,bR
]
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is negligible. The running time of R̂′ is that of R̂ plus that of O(N2) exponenti-
ations, k extractions and k proof simulations, so is polynomial in κ.

It remains to prove the claims used in the proof above.

Proof (Claim (1)). We prove the claim by constructing an adversary A that
breaks the unforgeability under weak chosen-message attack of the modified
Boneh-Boyen signature scheme . By the security proof of [BB04], this directly
gives rise to an expected polynomial-time adversary with non-negligible advan-
tage in solving the (N + 1)-SDH problem.

Given a cheating receiver R̂ for that distinguishes between Game-1 and
Game-2 with advantage εSt, consider the forger A that outputs messages M1 =
1, . . . ,MN = N , and on input a public key y and signatures A1, . . . , AN runs the
honest sender algorithm using these values for h and A1, . . . , AN . At each transfer
it uses E2 to extract from R̂ values (σi, v) such that e(V, y) = e(V, g)−σie(g, g)v.
(This extraction is guaranteed to succeed since we already eliminated failed
extractions in the transition from Game-0 to Game-1.) When σi 6∈ {1, . . . , N}
then A outputs s ← V 1/v as its forgery on message M = σi. The forger A wins
whenever it extracts a value σi 6∈ {1, . . . , N} from Ŝ. Its running time is that of
R̂ plus k times the running time of a single extraction, so polynomial in κ.

Proof (Claim (2)). Given an algorithm D with non-negligible probability in dis-
tinguishing Game-2 and Game-3, consider the following algorithm A for the
PDDH problem for ` = N + 1. On input (u, ux, . . . , uxN+1

, V ) and a vector
(T1, . . . , TN+1), A proceeds as follows. For ease of notation, let T0 = V . Let f

be the polynomial defined as f(X) =
∏N

i=1(X + i) =
∑N

i=0 ciX
i. Then A sets

g ← uf(x) =
∏N

i=0(u
xi

)ci and y ← gx =
∏N

i=0(u
xi+1

)ci . If fi is the polynomial
defined by fi(X) = f(X)/(X + i) =

∑N−1
j=0 ci,jX

j , then A can also compute the

values Ai = g1/(x+i) as Ai ←
∏N−1

j=0 (uxj

)ci,j . It then sets H ← V f(x) =
∏N

i=0 T ci
i ,

and computes Bi = H1/(x+i) as Bi ←
∏N−1

j=0 T
ci,j

i , and continues the simulation
of R̂’s environment as in Game-3 and Game-4, i.e., at each transfer extracting
(σi, v), computing W ← (Bσi

/Mσi
) and simulating the PoM. When R̂ outputs

its final state Rk, algorithm A runs b
$← D(ε,Rk) and outputs b.

In the case that Ti = V xi

one can see that the environment that A cre-
ated for Ŝ is exactly that of Game-3. In the case that T1, . . . , TN are random
elements of GT, then one can easily see that this environment is exactly that
of Game-4. Therefore, if D has non-negligible advantage in distinguishing the
outputs of Game-3 and Game-4, then A has non-negligible advantage in solv-
ing the (N + 1)-PDDH problem. The running time of A is at most that of the
distinguisher D plus that of O(N2) exponentiations, of k + 1 simulated proofs,
and of k extractions.
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