
Zero-Knowledge Sets with short proofs?

Dario Catalano1, Dario Fiore1, and Mariagrazia Messina2??

1 Dipartimento di Matematica ed Informatica – Università di Catania, Italy.
{catalano,fiore}@dmi.unict.it

2 Microsoft Italia. mariame@microsoft.com

Abstract. Zero Knowledge Sets, introduced by Micali, Rabin and Kil-
ian in [17], allow a prover to commit to a secret set S in a way such
that it can later prove, non interactively, statements of the form x ∈ S
(or x /∈ S), without revealing any further information (on top of what
explicitly revealed by the inclusion/exclusion statements above) on S,
not even its size. Later, Chase et al. [5] abstracted away the Micali, Ra-
bin and Kilian’s construction by introducing an elegant new variant of
commitments that they called (trapdoor) mercurial commitments. Using
this primitive, it was shown in [5, 4] how to construct zero knowledge sets
from a variety of assumptions (both general and number theoretic).
In this paper we introduce the notion of trapdoor q-mercurial commit-
ments (qTMCs), a notion of mercurial commitment that allows the sender
to commit to an ordered sequence of exactly q messages, rather than to a
single one. Following [17, 5] we show how to construct ZKS from qTMCs
and collision resistant hash functions.
Then, we present an efficient realization of qTMCs that is secure un-
der the so called Strong Diffie Hellman assumption, a number theoretic
conjecture recently introduced by Boneh and Boyen in [3]. Using our
scheme as basic building block, we obtain a construction of ZKS that
allows for proofs that are much shorter with respect to the best previ-
ously known implementations. In particular, for an appropriate choice of
the parameters, our proofs are up to 33% shorter for the case of proofs
of membership, and up to 73% shorter for the case of proofs of non
membership.

1 Introduction

Imagine some party P wants to commit to a set S, in a way such that any other
party V can “access” S in a limited but reliable manner. By limited here we
mean that V is given indirect access to S, in the sense that she is allowed to ask
only questions of the form “is x in S?”. P answers such questions by providing
publicly verifiable proofs for the statements x ∈ S (or x /∈ S). Such proofs should
be reliable in the sense that a cheating P should not be able to convince V that
some x is in the set while is not (or viceversa). At the same time, they should
be “discreet” enough not to reveal anything beyond their validity.
? The full version of this paper is available at http://www.dmi.unict.it/~fiore

?? Work entirely done while student at University of Catania

The notion of Zero Knowledge Sets (ZKS) was recently introduced by Micali,
Rabin and Kilian [17] to address exactly this problem. Informally, ZKS allow a
prover P to commit to an arbitrary (but finite) set S in a way such that P
can later prove statements of the form x ∈ S or x /∈ S without revealing any
significant information about S (not even its size!). As already pointed out in [17],
the notion of zero knowledge sets can be easily extended to encompass the more
general notion of elementary databases (EDB). In a nutshell, an elementary
database is a set S with the additional property that each x ∈ S comes with
an associated value S(x). In the following we will refer to ZKS to include zero
knowledge EDB as well.

The solution by Micali et al. is non interactive and works in the so called
shared random string model (i.e. where a random string, built by some trusted
third party, is made available to all participants) building upon a very clever
utilization of a simple commitment scheme, originally proposed by Pedersen [20].

Commitment schemes play a central role in cryptography. Informally, they
can be seen as the digital equivalent of an opaque envelope. Whatever is put
inside the envelope remains secret until the latter is opened (hiding property)
and whoever creates the commitment should not be able to open it with a
message that is not the one originally inserted (binding property). Typically, a
commitment scheme is a two phase procedure. During the first phase, the sender
creates a commitment C, to some message m, using an appropriate commitment
algorithm, and sends C to the receiver R. In the opening phase the sender opens
C by giving R all the necessary material to (efficiently) verify that C was indeed
a valid commitment to m.

Since Pedersen’s commitment relies on the intractability of the discrete log-
arithm, so does the construction in [17]. Later, Chase et al. [5] abstracted away
Micali et al.’s solution and described the exact properties a commitment scheme
should possess in order to allow a similar construction. This led to an elegant
new variant of commitments, that they called mercurial commitment.

Informally, a mercurial commitment is a commitment scheme where the bind-
ing requirement is somewhat relaxed in order to allow for two decommitment
procedures: an hard and a soft one. At committing time, the sender can decide
as whether to create an hard commitment or a soft one, from the message m
he has in mind. Hard commitments are like standard ones, in the sense that
they can be (hard or soft) opened only with respect to the message that was
originally used to construct the commitment. Soft commitments, on the other
hand, allow for more freedom, as they cannot be hard opened in any way, but
they can be soft opened to any arbitrary message. An important requirement of
mercurial commitments is that, hard and soft commitments should look alike to
any polynomially bounded observer.

Using this new primitive, Chase et al. proved that it is possible to construct
ZKS from a variety of assumptions (number theoretic or general) 3. Their most
general implementation, shows that (non interactive) ZKS can be constructed,

3 More precisely, they require the mercurial commitment to be trapdoor as well. Very
informally, this means that the scheme comes with a trapdoor information tk (nor-

in the shared random string model, assuming non interactive zero knowledge
proofs (NIZK) [2] and collision resistant hash functions [8] 4. Moreover, they
showed that collision resistant hash function are necessary to construct ZKS, as
they are implied by the latter. Finally, Catalano, Dodis and Visconti [4] gave a
construction of (trapdoor) mercurial commitments from one way functions in the
shared random string model. This result completed the picture as it showed that
collision resistant hash functions are necessary and sufficient for non interactive
ZKS in the shared random string model.

Our Contribution. All the constructions above, build upon the common idea
of constructing an authenticated Merkle tree of depth k where each internal
node is a mercurial commitment (rather than the hash) of its two children. Very
informally, to prove that a given x ∈ {0, 1}k belongs to the committed set S,
the prover simply opens all the commitments in the path from the root to the
leaf labeled by x (more details about this methodology will be given later on).
Thus the length of the resulting proof is k · d, where d denotes the length of
the opening of the mercurial commitment, and k has to be chosen so that 2k is
larger than the size of any “reasonably” large set S 5. Assuming k = 128 and
d = O(k), as it is the case for all known implementations, this often leads to
very long proofs.

It is thus important to research if using the properties of specific number-
theoretic problems, it is possible to devise zero knowledge sets that allow for
shorter proofs. Such proofs would be desirable in all those scenarios where space
or bandwidth are limited. A typical example of such a scenario is mobile internet
connections, where customers pay depending on the number of blocks sent and
received.

In this paper, we present a new construction of ZKS that allows for much
shorter proofs, with respect to the best currently known implementation (which
is the Micali et al. construction when implemented on certain classes of elliptic
curves. From now on we will use the acronym MRK to refer to such an imple-
mentation).

Our solution relies on a new primitive that we call trapdoor q-Mercurial Com-
mitment (qTMC, for short). Informally, qTMCs allow the sender to commit to a
sequence of exactly q messages (m1, . . . ,mq), rather than to a single one, as with
standard mercurial commitments. The sender can later open the commitment
with respect to any message mi but, in order to do so successfully, he has to
correctly specify the exact position held by the message in the sequence. In other

mally not available to anyone) that allows to completely destroy the binding property
of the commitment

4 It is known that one can construct NIZK under the assumption that trapdoor per-
mutations exist or under the assumption that verifiable random functions (VRF)
exist [12, 18]. These two assumptions, however, are, as far as we currently know,
incomparable.

5 This is because 2k is also an upper bound for the size of the set. Thus, to meet the
requirements of ZKS it should not reveal anything about the cardinality of the set
itself.

words, trapdoor q-Mercurial commitments allow to commit to ordered sequences
of q messages.

Following [17, 5], we show how to construct ZKS from qTMCs and collision
resistant hash functions. This step is rather simple but very useful for our goal,
as it reduces the task of realizing efficient ZKS to the task of realizing efficient
qTMCs. Indeed, even though the proposed transformation allows us to use a
“flat” Merkle tree (i.e. with branching factor q, rather than two), it does not
lead, by itself, to shorter proofs.

Recall that, informally, a proof for the statement x ∈ S (or x /∈ S) consists
of an authenticated path from the root to the leaf labeled by x. The trouble is
that in all known implementations of ZKS, to verify the authenticity of a node in
the path, one must know all siblings of the node. If the tree is binary, the proof
contains twice as many nodes as the the depth of the tree (since each node must
be accompanied by its sibling). Thus, the length of a proof being proportional
to the branching factor of the tree, increasing the latter, is actually a bad idea
in general. Indeed, suppose we want to consider sets defined over a universe of
N elements. Using a binary authentication tree one gets proofs whose length is
proportional to log2 N(2n), where n is the size of the authentication information
contained in each node. Using a tree with branching degree q, on the other hand,
one would get proofs of size logq N(qn), which is actually more than in previous
case.

Overcoming the proofs blow-up. In this paper we propose an implementa-
tion of trapdoor q mercurial commitments that overcomes the above limitation.
Our solution relies on the so called Strong Diffie Hellman assumption originally
introduced by Boneh and Boyen [3] and builds upon the weakly secure digital
signature given in [3]. The proposed implementation exploits the algebraic prop-
erties of the employed number theoretic primitive to produce a qTMC that allows
for short openings. More precisely the size of each hard opening still depends
linearly on q, but the size of each soft opening becomes constant and completely
independent of q.

This results in ZKS that allow for much shorter proofs than MRK. Concretely,
and for an appropriate choice of the parameter q, our proofs are up to 33% shorter
for the case of proofs of membership, and up to 73% shorter for the case of proofs
of non membership.

Zero Knowledge Sets vs Signatures. The idea of obtaining short proofs
by changing the authentication procedure to deal with a “flat” authentication
tree, is reminiscent of a technique originally suggested by Dwork and Naor [9], in
the context of digital signature schemes. In a nutshell, the Dwork-Naor method
allows to increase the branching factor of the tree without inflating the signature
size. This is achieved, by, basically, authenticating each node with respect to its
parent, but without providing its siblings.

Adapting this idea to work to the case of zero knowledge sets, presents several
non trivial technical difficulties6. The main problem comes from the fact that, in
ZKS, one has to make sure that a dishonest prover cannot construct two, both
valid, proofs for the statements x ∈ S and x /∈ S. Such a requirement imposes
limitations just not present when dealing with digital signatures 7.

Other Related work. Ostrovsky, Rackoff and Smith [19] described a con-
struction that allows a prover to commit to a database and to provide answers
that are consistent with the commitment. Their solution can handle more elabo-
rate queries than just membership ones. Moreover they also consider the issue of
adding privacy to their protocol. However their construction requires interaction
(at least if one wants to avoid the use of random oracles) and requires the prover
to keep a counter for the questions asked so far.
Gennaro and Micali [11] recently introduced the notion of independent zero
knowledge sets. Informally, independent ZKS protocols prevent an adversary
from successfully correlate her set to the one of a honest prover. Their notion of
independence also implies that the resulting ZKS protocol is non-malleable and
requires a new commitment scheme that is both independent and mercurial. We
do not consider such an extension here.
Liskov [15] considered the problem of updating zero-knowledge databases. In [15]
definitions for updatable zero knowledge databases are given, together with a
construction based on verifiable random functions [18] and mercurial commit-
ments. The construction, however, is in the random oracle model [1].
Very recently Prabhakaran and Xue [21] introduced the notion of statistically
hiding sets (SHS) that is related but different than ZKS. Informally, SHS require
the hiding property to hold with respect to unbounded verifiers. At the same
time, however, they relax the zero knowledge requirement to allow for unbounded
simulators.

Road Map. The paper is organized as follows. In section 2 we introduce the
notion of trapdoor q mercurial commitments and provide the relevant defini-
tions for zero knowledge sets. Section 3 is devoted to the construction of ZKS
from trapdoor q mercurial commitments. In section 4 we show how to construct
efficient qTMCs from the Strong Diffie Hellman Assumption. Efficiency consid-
erations and comparisons with previous work are given in section 5. Finally
conclusions and directions for future work are given in section 6

6 It is probably instructive to mention the fact that, indeed, the Dwork Naor solution,
and its improvements such as [7], do not work in our setting

7 For instance, the soundness requirement above, imposes that exactly one single path
from the root to a leaf, should be “labelable” as x. It seems very hard (if at all
possible) to achieve this, when both type of proofs (i.e. proofs of membership and
proofs of non membership) allow to authenticate each node (with respect to its
parent), without providing its siblings.

2 Preliminaries

Informally, we say that a function is negligible if it vanishes faster than the inverse
of any polynomial.

2.1 Trapdoor q-mercurial commitments

Informally, a trapdoor q-mercurial commitment (qTMC for brevity) extends the
notion of (trapdoor) mercurial commitment, by allowing the sender to commit to
an (ordered) sequence of q messages, rather than to a single one. More precisely,
and like standard (trapdoor) mercurial commitments (see [4] for a definition
of trapdoor mercurial commitments), trapdoor q-mercurial commitments allows
for two different decommitting procedures. In addition to the standard opening
mechanism, there is a partial opening (also referred as tease or soft open) algo-
rithm that allows for some sort of equivocation. At committing stage, the sender
can decide to produce a commitment in two ways. Hard commitments should be
hiding in the usual sense, but should satisfy a very strong binding requirement
(that we call strong binding). Informally, strong binding means that a sender S
should be able to open a commitment only with respect to messages that were in
the “correct” position in the sequence S originally committed to. More precisely,
when opening an hard commitment for a message m, the sender is required to
specify an index i ∈ {1, . . . , q}, indicating the position of m in the sequence.
In the case of hard commitments, the strong binding property imposes that the
commitment should be successfully opened and teased to (m, i) only if m was
the i-th message in the sequence S originally committed to. Soft commitments,
on the other hand cannot be opened, but can be teased with respect to messages
belonging to any arbitrary sequence of q messages.

More formally, a trapdoor q-mercurial commitment is defined by the following
set of algorithms: (qKeyGen, qHCom, qHOpen, qHVer, qSCom, qSOpen, qSVer,
qFake, qHEquiv, qSEquiv).

qKeyGen(1k, q) is a probabilistic algorithm that takes in input a security pa-
rameter k and the number q of committed values and outputs a pair of
public/private keys (pk, tk).

qHCompk(m1, · · · ,mq) Given an ordered tuple of messages, qHCom computes a
hard commitment C to (m1, · · · ,mq) using the public key pk and returns
some auxiliary information aux.

qHOpenpk(m, i, aux) Let (C, aux) = qHCompk(m1, · · · ,mq), if m = mi the hard
opening algorithm qHOpenpk(m, i, aux) produces a hard decommitment π.
The algorithm returns an error message otherwise.

qHVerpk(m, i, C, π) The hard verification algorithm qHVerpk(m, i, C, π) accepts
(outputs 1) only if π proves that C is created to a tuple (m1, · · · ,mq) such
that mi = m.

qSCompk() produces a soft commitment C and an auxiliary information aux. A
soft commitment string C is created to no specific sequence of messages.

qSOpenpk(m, i, flag, aux) produces a soft decommitment τ (also known as ”tease”)
to a message m at position i. The parameter flag ∈ {H, S} indicates if τ cor-
responds to either a hard commitment (C, aux) = qHCompk(m1, · · · ,mq) or
to a soft commitment (C, aux) = qSCompk(). The algorithm returns an error
message if C is an hard commitment and m 6= mi.

qSVerpk(m, i, C, τ) checks if τ is a valid decommitment for C to m of index i. If
it outputs 1 and τ corresponds to a hard commitment C to (m1, · · · ,mq),
then C could be hard-opened to (m, i), or rather m = mi.

qFakepk,tk() takes as input the trapdoor tk and produces a q-fake commitment
C. C is not bound to any sequence (m1, · · · ,mq). It also returns an auxiliary
information aux.

qHEquivpk,tk(m1, · · · ,mq, i, aux) The non-adaptive hard equivocation algorithm
generates a hard decommitment π for (C, aux) = qFakepk,tk() to the i-th
message of (m1, · · · ,mq). The algorithm is non adaptive in the sense that,
for a given C, the sequence (m1, · · · ,mq) has to be determined once and for
all, before qHEquiv is executed. A q-fake commitment is very similar to a
soft commitment with the additional property that it can be hard-opened.

qSEquivpk,tk(m, i, aux) generates a soft decommitment τ to m of position i using
the auxiliary information produced by the qFake algorithm.

The correctness requirements for trapdoor q-Mercurial commitments are es-
sentially the same as those for ”traditional” commitment schemes. In particular
we require that ∀(m1, · · · ,mq) ∈ Mq, the following statements are false only
with negligible probability.

1. if (C, aux) = qHCompk(m1, · · · ,mq):

qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1 ∀i = 1 . . . q

2. If (C, aux) = qHCompk(m1, · · · ,mq)

qSVerpk(mi, i, C, qSOpenpk(mi, i, H, aux)) = 1 ∀i = 1 . . . q

3. If (C, aux) = qSCompk()

qSVerpk(mi, i, C, qSOpenpk(mi, i, S, aux)) = 1 ∀i = 1 . . . q

4. If (C, aux) = qFakepk,tk()

qHVerpk(mi, i, C, qHEquivpk,tk(m1, · · · ,mq, i, aux)) = 1

qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1 ∀i = 1 . . . q

Security The security properties for a trapdoor q-mercurial commitment scheme
are as follows:

– q-Mercurial binding. Having knowledge of pk it is computationally infea-
sible for an algorithm A to come up with C,m, i, π, m′, π′ such that either
one of the following cases holds:

• π is a valid hard decommitment for C to (m, i) and π′ is a valid hard
decommitment for C to (m′, i), with m 6= m′. We call such case a ”hard
collision”.

• π is a valid hard decommitment for C to (m, i) and π′ is a valid soft
decommitment for C to (m′, i), with m 6= m′. We call such case a ”soft
collision”.

– q-Mercurial hiding. There exists no PPT adversary A that, knowing pk,
can find a tuple (m1, · · · ,mq) ∈ Mq and an index i for which it can distin-
guish (C, qSOpenpk(mi, i, H, aux)) from (C ′, qSOpenpk(mi, i, S, aux′)), where
(C, aux) = qHCompk(m1, · · · ,mq) and (C ′, aux′) = qSCompk().

– Equivocations. There exists no PPT adversary A that, knowing pk and
the trapdoor tk, can win any of the following games with non-negligible
probability. In such games A should be able to tell apart the ”real” world
from the corresponding ”ideal” one. The games are formalized in terms of
a challenger that flips a binary coin b ∈ {0, 1}. If b = 0 it gives to A a
real commitment/decommitment tuple; if b = 1 it gives to A an ideal tuple
produced using the fake algorithms.
In the q-HHEquivocation and the q-HSEquivocation games below, A chooses
(m1, · · · ,mq) ∈ Mq and receives a commitment string C. Then A gives an
index i ∈ {1, · · · , q} to the challenger and finally it receives a hard decom-
mitment π.
• q-HHEquivocation. If b = 0 the challenger hands to A the value

(C, aux) = qHCompk(m1, · · · ,mq). A gives i to the challenger and gets
back π = qHOpenpk(mi, i, aux). Otherwise the challenger computes
(C, aux) = qFakepk,tk(), π = qHEquivpk,tk(m1, · · · ,mq, i, aux).
• q-HSEquivocation. The challenger computes

(C, aux) = qHCompk(m1, · · · ,mq), π = qSOpenpk(mi, i, H, aux) in the
case b = 0 or (C, aux) = qFakepk,tk(), π = qSEquivpk,tk(mi, i, aux) if
b = 1.

• q-SSEquivocation. If b = 0 the challenger generates (C, aux) = qSCompk()
and gives C to A. Next, A chooses m ∈M and an index i ∈ {1, · · · , q},
it gives (m, i) to the challenger and receives back qSOpenpk(m, i, S, aux).
If b = 1, A first gets qFakepk,tk(), then it chooses m ∈M, i ∈ {1, · · · , q},
gives (m, i) to the challenger and gets back qSEquivpk,tk(m, i, aux).

At some point A outputs b′ as its guess for b and wins if b′ = b.
As for the case of trapdoor mercurial commitments (see [4]) it is easy to
see that the q-mercurial hiding is implied by the q-HSEquivocation and q-
SSEquivocation.

2.2 Zero-Knowledge Sets

Zero knowledge sets [17] allows one to commit to some secret set S and then to,
non interactively, produce proofs of the form x ∈ S or x /∈ S. This is done without
revealing any further information (i.e. that cannot be deduced by the statements
above) about S, not even its size. Following the approach of [17], here we focus
on the more general notion of zero-knowledge elementary databases (EDB), since

the notion of zero-knowledge sets is a special case of zero-knowledge EDBs (see
[17] for more details about this). Let [D] be the set of keys associated to a
database D. We assume that [D] is a proper subset of {0, 1}∗. If x ∈ [D], we
denote with y = D(x) its associated value in the database D. If x /∈ [D] we
let D(x) = ⊥. An EDB system is formally defined by a triple of algorithms
(P1,P2,V):

– P1, the committer algorithm, takes in input a database D and the common
reference string CRS and outputs a public key ZPK and a secret key ZSK.

– On input the common reference string CRS, the secret key ZSK and an
element x, the prover algorithm P2 produces a proof πx of either D(x) = y
or D(x) = ⊥.

– The third algorithm is the verifier V(CRS,ZPK, x, πx). It outputs y if
D(x) = y, out if D(x) = ⊥ or ⊥ if the proof πx is not valid.

The formal definition of zero-knowledge EDB is given in [17]8.

3 Zero Knowledge EDB from trapdoor q-Mercurial
Commitments

In this section we describe a construction of zero-knowledge EDB, from trapdoor
q-mercurial commitments (defined in section 2.1), trapdoor mercurial commit-
ments [5, 4] and collision resistant hash functions. The construction is very sim-
ple, as it generalizes easily from the original [17, 5] constructions. Still, it plays
an important role in our quest for efficient zero knowledge sets, as it allows us
to concentrate solely on the problem of realizing efficient qTMCs.

Intuitive construction Assume we want to commit to a database D with keys
of length k. We associate each key x to a leaf in a q-ary tree of height k. Thus x
can be viewed as a number representing the labeling of the leaf in q-ary encoding
(see the example in Figure 1). Since the number of all possible keys is qk, to make
the committing phase efficient (i.e. polynomial in k) the tree is pruned by cutting
those subtrees containing only keys of elements not in the database. The roots
of such subtrees are kept in the tree (we call them the “frontier”). The internal
nodes in the frontier are “filled” with soft commitments. The remaining nodes
are filled as follows. Each leaf contains an hard commitment (computed using
the standard trapdoor mercurial commitment scheme) of a value nH(x) related
to D(x)9. Each internal node contains the hard q-commitment to the hashes of
the values contained in its q sons. The q-commitment contained in the root of
the tree is the public key of the zero-knowledge EDB.

8 We point out here that we will prove our construction secure with respect to a slightly
different definition (with respect to the one given in [17]) in which the completeness
requirement is relaxed to allow a negligible probability of error.

9 More precisely nH(x) is the hash of D(x) if x is in the database and 0 otherwise.

Fig. 1. A 3-ary tree of height 3 before and after a query to the database
key 311. Each node of the tree contains a mercurial commitment: the label H is for
hard commitments, S for the soft ones. Moreover the squares represent q-commitments,
while the circles represent standard commitments. If the set of database keys is S =
{121, 122, 123, 221}, the darker nodes are those belonging to a path from the root to
an element in the set. The light shaded nodes are the frontier.

When the prover P is asked for a proof of an element x ∈ D (for instance
such that D(x) = y), it proceeds as follows. It exhibits hard openings for the
commitments contained in the nodes in the path from the root to the leaf x.
More precisely, for each level of the tree, it opens the hard q-commitment with
respect to the position determined by the q-ary encoding of x for that level.
Queries corresponding to keys x such that D(x) = ⊥ are answered as follows.
First, the prover generates the possibly missing portion of the subtree containing
x. Next, it soft opens all the commitments contained in the nodes in the path
from x to the root. The soft commitments stored in the frontier nodes are then
teased to the values contained in its newly generated children.

It is easy to see that the completeness property follows from the completeness
of the two commitment schemes used. Similarly, the binding properties of the
two commitment schemes, together with the collision resistance of the underlying

hash function, guarantees that (1) no hard commitment can be opened to two
different values, and (2) no hard commitment can be opened to a value and then
teased to a different one.

Finally the zero-knowledge property follows from the fact that both the two
commitments schemes are hiding and equivocable (the fake commitments and
fake openings produced by the simulator are indistinguishable from the commit-
ments and openings produced from a real prover).

A detailed description of the construction sketched above, together with a
complete security proof, is given in the full version of this paper.

4 Trapdoor q-Mercurial Commitment based on SDH

In this section we show an efficient construction of trapdoor q-mercurial com-
mitments QC.

Our construction relies on the Strong Diffie-Hellman assumption (SDH for
short), introduced by Boneh and Boyen in [3]. Informally, the SDH assumption
in bilinear groups G1, G2 of prime order p states that, for every PPT algorithm
A and for a parameter q, the following probability is negligible:

Pr[A(g1, g
x
1 , g

(x2)
1 , · · · , g(xq)

1 , g2, g
x
2) = (c, g1/(x+c)

1)].

If we suppose that G(1k) is a bilinear group generator which takes in input a
security parameter k, then (asymptotically) the SDH assumption holds for G if
the probability above is negligible in k, for any q polynomial in k (see [3] for the
formal definition).

The SDH assumption obviously implies the discrete logarithm assumption
(i.e. if the former holds, so has to do the latter). A reduction in the other direc-
tion, however, is not known. Recently, however, Cheon [6] proved that, for many
primes p, the q-Strong Diffie Hellman problem has computational complexity
reduced by O(

√
q) with respect to that of the discrete logarithm problem (in the

same group).

The new scheme. Now we describe our proposed trapdoor q-Mercurial Com-
mitment scheme, in terms of its component algorithms (qKeyGen, qHCom, qHOpen,
qHVer, qSCom, qSOpen, qSVer, qFake, qHEquiv, qSEquiv), as described in section
2.1.

The technical construction of the proposed scheme builds upon the simulator
described in the security proof of the weak signature scheme given in [3].

In what follows H denotes a family of collision resistant hash functions whose
range is Zp.

qKeyGen(1k, q) The key generation algorithm runs a bilinear group generator
G(1k) for which the SDH assumption holds [3] to get back the description of
groups G1, G2, GT and a bilinear map e : G1×G2 → GT . Such groups share
the same prime order p.
The description of the groups contains the group generators: g1 ∈ G1, g2 ∈
G2. The algorithm proceeds by picking a random integer x← Z∗

p and it sets

A1 = gx
1 , · · · , Aq = gxq

1 , h = gx
2 . Next, it chooses a collision resistant hash

function H from H.
The public key is set as PK = (g1, A1, · · · , Aq, g2, h,H), while the trapdoor
is TK = x.

qHComPK(m1, · · · ,mq) . The hard commitment algorithm randomly selects
α, w ← Z∗

p and computes Ci = H(i||mi),∀i = 1, · · · , q (the symbol || de-
notes concatenation). Next, it defines the polynomial

f(z) =
q∏

i=1

(z + Ci) =
q∑

i=0

(βiz
i)

and sets g′1 = (
∏q

i=0 Aαiβi

i)w = g
f(αx)w
1 and g′2 = hα. In the unlucky case

that either g′1 = 1 or g′2 = 1, then one simply retries with another random
α.
Thus, letting γ = αx, we have g′1 = g

f(γ)w
1 and g′2 = hα = gγ

2 .
The commitment is (g′1, g

′
2). The auxiliary information is aux = (α, w,m1, · · · ,mq).

qHOpenPK(m, j, aux) outputs π = (α, w,m1, · · · ,mj−1,mj+1, · · · ,mq).
qHVerPK(m, j, C, π) computes the q − 1 terms Ci = H(i||mi)∀mi ∈ π and

Cj = H(j||m). Next, it defines the polynomial f(z) =
∏q

i=1(z + Ci) and
computes the βi coefficients as above.
Checks if g′1 = (

∏q
i=0 Aαiβi

i)w and g′2 = hα. If both tests succeed, it outputs
1.

qSComPK() picks α′, y ← Z∗
p at random, sets

g′1 = gα′

1 , g′2 = gy
2

and outputs (g′1, g
′
2) and aux = (α′, y).

qSOpenPK(m, j, flag, aux) If flag = H the algorithm computes Ci = H(i||mi),
∀i = 1, · · · , j − 1, j + 1, · · · , q, Cj = H(j||m), it sets

fj(z) =
f(z)

(z + Cj)
=

q∏
i=1∧i 6=j

(z + Ci) =
q−1∑
i=0

δiz
i

Next, it computes σj = (
∏q−1

i=0 Aδiα
i

i)w = g
f(γ)w
γ+Cj

1 = (g′1)
1

γ+Cj . The output is
σj .

If flag = S the algorithm computes Cj = H(j||m) and outputs σj = (g′1)
1

y+Cj .
qSVerPK(m, j, C, τ) The soft verification algorithm takes in input a message m

and an index j ∈ {1, · · · , q}. It computes Cj = H(j||mj), and checks if
e(σj , g

′
2g

Cj

2) = e(g′1, g2). If this is the case, it outputs 1.
qFakePK,TK() The fake commitment algorithm is the same as qSCom.
qHEquivPK,TK(m1, · · · ,mq, j, aux) The non-adaptive hard equivocation algo-

rithm uses the trapdoor key TK to hard open a fake commitment (which

is originally a commitment to nothing). It computes Ci = H(i||mi),∀i =
1, · · · , q and constructs the polynomial

f(z) =
q∏

i=1

(z + Ci) =
q∑

i=0

βiz
i.

It sets α = y
x , w = α′

f(y) and outputs π = {α, w,m1, · · · ,mj−1,mj+1, · · · ,mq}.
qSEquivPK,TK(m, j, aux) The soft equivocation algorithm is the same as qSOpen.

4.1 Properties of the scheme

First notice that our commitment scheme is “proper” in the sense of [4]. Recall
that a mercurial commitment scheme is said to be “proper” if the soft decom-
mitment is a proper subset of the hard decommitment. In our scheme, a soft
decommitment is implicitly contained in a hard one. Indeed, given a hard open-
ing π = (α, w,m1, · · · ,mj−1,mj+1, · · · ,mq) to a message m at position j and
the public key PK, we are able to compute a valid soft decommitment σj to the
message m of index j.

The correctness of the scheme can be easily verified by inspection. With the
next theorem we show that the remaining properties of qTMC are realized as
well.

Theorem 1. Assuming that the Strong Diffie-Hellmann holds for G and H is a
family of collision resistant hash functions, QC is a trapdoor q-mercurial com-
mitment scheme.

Proof (Theorem 1). To prove the theorem we need to make sure that the pro-
posed scheme is binding and hiding, in the sense discussed in section 2.1. We
prove each property separately.

q-mercurial binding. To prove the property we need to make sure that neither
hard collisions nor soft ones are possible. We prove that it is infeasible to find any
of such collisions under the Strong Diffie Hellmann assumption (SDH) for the
bilinear group generator G [3] and the collision resistance of the hash function
H.

Let us first consider soft collisions. Next we describe how to adapt the same
proof for the case of hard collisions.

Soft collisions. Assume there exists an adversary AS that with non-negligible
probability ε can find a soft collision. We show how to build a simulator BS that
uses AS to solve the q-SDH problem, or to break the collision resistance of H,
with probability at least ε/2.
BS receives in input from its challenger a (q+3)-tuple (g1, g

x
1 , · · · , gxq

1 , g2, g
x
2)

and the description of a hash function H. The simulator runs AS on input such
values as the public key of the q-mercurial commitment scheme. Then with
probability ε the adversary outputs (C,m, j, π, m′, τ) such that: C = (g′1, g

′
2) is

a commitment, m 6= m′, π = (α, w,m1, · · · ,mj−1,mj+1, · · · ,mq) is a valid hard
opening for C to the message m at position j and τ = (σj) is a valid soft opening
for C to m′ of index j. We distinguish two cases:

1. m 6= m′ and Cj = H(j||m) = H(j||m′) = C ′
j ;

2. m 6= m′ and Cj 6= C ′
j .

At least one of these cases occurs with probability at least ε/2. In the first case
the simulator immediately has a collision for H. In case 2 we show how to solve
the q-SDH problem.

Since qSVerPK(m′, j, C, τ) = 1 we have that e(σj , g
′
2g

C′
j

2) = e(g′1, g2). More-

over, the correct verification of π implies that g′2 = hα = gγ
2 thus σj = (g′1)

1
γ+C′

j .
Using long division we can write the q-degree polynomial f as f(z) = η(z)(z+

C ′
j)+ η−1 where η(z) =

∑q−1
i=0 ηiz

i is a polynomial of degree q− 1 and η−1 ∈ Zp.

Thus we can write σj = (gη(γ)
1 g

η−1
γ+C′

j

1)w. Hence first BS computes:

δ = (σ1/w
j ·

q−1∏
i=0

A−ηiα
i

i)1/η−1 = (gη(γ)
1 g

η−1
γ+C′

j

1 g
−η(γ)
1)1/η−1 = g

1
γ+C′

j

1 .

Finally it computes δ∗ = δα = g

α
αx+C′

j

1 = g

1
x+C′

j
/α

1 and C∗ = C ′
j/α. The simulator

gives (δ∗, C∗) to its challenger. It is easy to see that such pair breaks the q-SDH
assumption. Thus with non-negligible advantage ε/2 BS can break either the
q-SDH assumption or the collision resistance of H.

Hard collisions. Let us now assume there exists an adversary AH that,
given the public key of a q-mercurial commitment scheme, can find a hard col-
lision with non-negligible probability ε. Then we construct a simulator BH that
either solves the q-SDH problem or breaks the collision resistance of H with
probability at least ε/2. The simulator BH is similar to the one described above.
The difference is that AH outputs: (C,m, j, π, m′, π′) such that: C = (g′1, g

′
2) is

a commitment, m 6= m′ are two different messages, π = (α, w,m1, · · · ,mj−1,
mj+1, · · · ,mq) is a valid hard opening for C to m of index j and π′ = (α′, w′,m′

1,
· · · ,m′

j−1,m
′
j+1, · · · ,m′

q) is a valid hard opening for C to m′ of index j. Again
we consider two cases:

1. m 6= m′ and Cj = H(j||m) = H(j||m′) = C ′
j ,

2. m 6= m′ and Cj 6= C ′
j .

Case 1 is the same as before. In case 2, BH solves the q-SDH problem as fol-
lows. Since qHVerPK(m, j, C, π) = 1 and qHVerPK(m′, j, C, π′) = 1, it must be
the case that α = α′ (α 6= α′, would lead to two different g′2 hα and hα′).
Moreover, since the commitment scheme is proper from the valid hard opening
π′ = (α′, w′,m′

1, · · · ,m′
j−1,m

′
j+1, · · · ,m′

q) for m′
j we can “extract” a valid soft

opening for m′
j . Thus, using exactly the same argument described above, we

break the SDH assumption.

Hiding and Equivocation. First notice that, since our scheme is proper,
it suffices to check only q-HHEquivocation and q-SSEquivocation hold. In both
cases we show that it is infeasible for an adversary to distinguish between a real
commitment/decommitment tuple from a fake/equivocation one.

In the q-HHEquivocation game the adversary is asked to tell apart

{(gf(γ)w
1 , gαx

2), (α, w,m1, · · · ,mj−1,mj+1, · · · ,mq)}

from

{(gα′

1 , gy
2), (α =

y

x
,w =

α′

f(γ)
,m1, · · · ,mj−1,mj+1, · · · ,mq)}

In both cases α, w are uniformly random in Z∗
p. This is because, in the first

tuple, they are chosen uniformly and at random, while in the second tuple they
are distributed, respectively, as y and α′, which were chosen uniformly and at
random in Z∗

p.
Thus the two distributions are indistinguishable.
The proof of indistinguishability for the q-SSEquivocation is trivial. Indeed,

it is easy to see that the elements in the two distributions

{(gα′

1 , gy
2), σi = (g′1)

1
γ+Ci }

{(gα′

1 , gy
2), σi = (g′1)

1
γ+Ci }

are distributed in exactly the same manner.

5 Efficiency considerations

In the previous section we proposed a trapdoor q-mercurial commitment scheme
QC based on the Strong Diffie-Hellmann assumption. In order to build efficient
zero knowledge EDB, we also use a trapdoor mercurial commitment scheme C
based on the Discrete Logarithm constructions given in [17, 5]. For our conve-
nience we consider an implementation of the scheme that allows us to use some
of the parameter already in use for the qTMC scheme. In particular, we use
g1, A1 ∈ G1 from the public key of QC as the public key for C.

Combining the two schemes as described in section 3, we obtain an imple-
mentation of zero-knowledge EDB (based on the SDH problem) that allows for
proofs that are significantly shorter than those produced by previous proposals.

Below we compare our proposal with the most efficient (in terms of space) im-
plementation known so far, namely the one by Micali et al. [17] (MRK from now
on, for short), when implemented over elliptic curves with short representation.

We measure efficiency in terms of the space taken by each proof. For both
schemes, we assume that the universe U has size |U| = 2k = qh and, that q = 2k′ ,
for simplicity.

Groups used in the comparisons Following [10] we fix a security parameter
` = 256 to achieve k = 128 bits of security. Specifically G1 is realized as a sub-
group of points on an elliptic curve E over a finite field Fp of size p, where p is
an ` bits prime. If e is a parameter called embedding degree, G2 is a subgroup
of E(Fpe) and GT ⊂ E(F∗pe). In particular we consider elliptic curves with em-
bedding degree e = 12 and CM discriminant D = −3. As suggested in [10], for
the case of Type 3 groups (see [10] for details), such parameters enable to obtain
elements of G2 that have size twice the size of elements of G1.

q Membership Non-membership

2 773 516
4 517 260
8 517 174.7
16 645 132
32 926.6 106.4
64 1455.7 89.3
128 2418.7 77.1
256 4165 68

Table 1. Space required by proofs, in our scheme

Bandwidth A proof of membership in our scheme contains h(q + 4) + 5 ele-
ments10. A proof of non-membership 4h + 4. In MRK’s scheme a proof of mem-
bership requires 6k + 5 elements, while a proof of non-membership needs 5k + 4
elements. In both cases all the elements have size `, but, for our scheme, we let
q vary. For such a choice of parameters we obtain the following results.

The scheme of Micali et al. requires 773 elements for proofs of membership
and 644 for proofs of non-membership. Results for our scheme are summarized
in Table 1.

Notice that our scheme produces proofs of non-membership, that are always
much shorter than the corresponding MRK proofs. The space required by our
proofs of membership, on the other hand, compares favorably to MRK scheme
only until q ≤ 16, it gets slightly worse for q = 32, and much worse for larger
values of q. Thus, the choice of q = 8 leads to proofs of membership that are
(approximately) 33% shorter, and to proofs of non membership that are almost
73% shorter than MRK!

Notice that such a choice of q (i.e. q = 8) keeps the scheme practical also
in terms of length of the common reference string. Notice also that, according
to our present knowledge of the SDH problem, it seems reasonable to consider
the same security parameter for our scheme and for the MRK implementation.
This is because Cheon [6] attack requires q to be an upper-bound to a factor of
either p−1 or p+1 in order to be effective. If one sets q = 8, as suggested in the
table above, this would imply that one should increase the key size of at most
2 bits in the worst case. Thus using the same security parameter for both ours
and MRK seems to be reasonable for all practical purposes.

6 Conclusions

In this paper we introduced and implemented the notion of trapdoor q mercurial
commitments. Our construction can be used to construct zero knowledge sets

10 We assume each element has size `. This is because, the size of each element in G2

is twice that of an element in G1. Thus whenever an element in G2 is considered,
this counts as two elements in G1.

that allow for proofs that are much shorter than those obtained by previous
work. It would be interesting to investigate if it is possible to come up with an
even more efficient implementation of the new primitive. In particular, it would
be very interesting to construct a qTMC that allows for openings whose length
is independent of q.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. ACM Conference on Computer and Communications Security,
1993

2. M. Blum, A. De Santis, S. Micali and P. Persiano. Non Interactive Zero Knowledge.
SIAM Journal on Computing, 20(6), 1991.

3. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. Advances in
Cryptology – proceedings of EUROCRYPT 2004, LNCS 3027

4. D. Catalano, Y. Dodis and I. Visconti. Mercurial Commitments: Minimal Assump-
tions and Efficient Constructions. Theory of Cryptography Conference – TCC’06

5. M. Chase, A. Healy, A. Lysyanskaya, T. Malkin and L. Reyzin. Mercurial com-
mitments with applications to zero-knowledge sets. Advances in Cryptology – pro-
ceedings of EUROCRYPT 2005, LNCS 3494

6. J. Hee Cheon Security Analysis of the Strong Diffie-Hellman Problem. Advances
in Cryptology – proceedings of EUROCRYPT 2006, LNCS 4004

7. R. Cramer and I. Damg̊ard. New Generation of Secure and Practical RSA-based
signatures. Proc. of Crypto ’96 LNCS no. 1109, pages 173-185.

8. I. Damg̊ard. Collision free hash functions and public key signature schemes. Proc.
of Eurocrypt ’87 LNCS no. 304, pages 203-216.

9. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme
and its applications. J. of Cryptology 11(3) 1998, pages 187-208.

10. S.D. Galbraith, K.G. Paterson and N.P. Smart Pairings for Cryptographers Cryp-
tology ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org/.

11. R. Gennaro and S. Micali. Independent Zero-Knowledge Sets. In proceedings of
ICALP ’06, 2006

12. S. Goldwasser and R.Ostrovsky Invariant Signatures and Non Interactive Zero
Knowledge proofs are equivalent Advances in Cryptology – proceedings of CRYPTO
92

13. C.H. Lim. Efficient Multi-Exponentiation and Application to Batch Verification
of Digital Signatures. Unpublished manuscript, August 2000

14. C.H. Lim. and P.J. Lee More Flexible Exponentiation with Precomputation. Ad-
vances in Cryptology – proceedings of CRYPTO 94, LNCS 839

15. M. Liskov. Updatable zero-knowledge databases. Advances in Cryptology – pro-
ceedings of ASIACRYPT ’05, 2005

16. R. Merkle. A Digital Signature based on a Conventional Encryption Function.
Advances in Cryptology–Crypto’87. LNCS, vol.293, pp. 369–378, Springer–Verlag,
1988.

17. S. Micali, M. Rabin and J.K. Kilian. Zero-Knowledge Sets. In proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science – FOCS’03

18. S. Micali, M. Rabin and S. Vadhan. Verifiable Random Functions. In proceedings of
the 40th Annual IEEE Symposium on Foundations of Computer Science – FOCS’99

19. R. Ostrovsky, C. Rackoff and A. Smith Efficient consistency proof on a committed
database. In Proc. of ICALP 2004.

20. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. Crypto’91, pp.129-140, Lecture Notes in Computer Science vol.576,
Springer-Verlag, 1992.

21. M. Prabhakaran and R. Xue. Statistically Hiding Sets Cryptology ePrint Archive,
Report 2007/349, 2007. http://eprint.iacr.org/.

