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Abstract. In this work we introduce a novel paradigm for the construc-
tion of ramp schemes with strong multiplication that allows the secret
to be chosen in an extension field, whereas the shares lie in a base field.
When applied to the setting of Shamir’s scheme, for example, this leads
to a ramp scheme with strong multiplication from which protocols can be
constructed for atomic secure multiplication with communication equal
to a linear number of field elements in the size of the network.
This is also achieved by the results from Cramer, Damgaard and de
Haan from EUROCRYPT 2007. However, our new ramp scheme has
an improved privacy bound that is essentially optimal and leads to a
significant mathematical simplification of the earlier results on atomic
secure multiplication.
As a result, by considering high degree rational points on algebraic
curves, this can now be generalized to algebraic geometric ramp schemes
with strong multiplication over a constant size field, which in turn leads
to low communication atomic secure multiplication where the base field
can now be taken constant, as opposed to earlier work.

1 Introduction

Recent constructions of ramp schemes with (strong) multiplication [2, 3] play
a crucial role in advances in the communication efficiency of secure multi-party
computation [2–4] and, quite surprisingly, of constant rate zero knowledge proofs
for circuit satisfiability [9]. The constructions of these dedicated ramp schemes
rely on the theory of error correcting codes as well as arithmetic geometry,
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and allow for the field of definition to be fixed, while offering almost optimal
corruption tolerance. This is to be contrasted with Shamir’s scheme, where the
field size is linear in the size of the network.

In this work we introduce a novel paradigm for the construction of ramp
schemes with strong multiplication [5] that allows the secret to be chosen in an
extension field, whereas the shares lie in a base field. Our paradigm is based on
selection of certain suitable rational subcodes of error correcting codes defined
over extension fields.

Applied to the setting of Shamir’s scheme, for example, this comes down to
choosing random polynomials f subject to the constraints that f(0) is equal to
the secret s lying in an extension field L, while the shares f(P ) lie in a subfield
K. In particular, this appears to be a novel way of turning Shamir’s scheme into a
ramp scheme with strong multiplication. When applied to the setting of Shamir’s
scheme, for example, this leads to a ramp scheme with strong multiplication
from which protocols can be constructed for atomic secure multiplication with
communication equal to a linear number of field elements in the size of the
network. This is also achieved by the results from Cramer, Damgaard and de
Haan from EUROCRYPT 2007. However, our new ramp scheme has an improved
privacy bound (an additive factor linear in the degree of the field extension) that
is essentially optimal and it leads to a significant mathematical simplification of
the earlier results on atomic secret multiplication.

As a result, by considering high degree rational points on algebraic curves,
this can now be generalized to algebraic geometric ramp schemes with strong
multiplication over a constant size field, which in turn leads to low communica-
tion atomic secure multiplication where the base field can now be taken constant,
as opposed to earlier work. This introduces a second scheme with strong multi-
plication over a constant-sized field, where the previous known such scheme due
to Chen and Cramer [2] could be used to perform multiple multiplications in
parallel at the cost of one.

For both these algebraic geometric schemes we additionally propose new
general zero-error multiparty computation protocols secure against a malicious
adversary, with corruption tolerance t = Ω(n), and where each multiplication
in the protocol requires communication of O(n3) base field elements to perform
a multiplication involving up to Ω(n) base field elements. This matches the
communication cost of the low-cost protocol for the special case presented in [4],
but requires the use of more involved techniques due to the lack of structure in
these general schemes.

2 Prior Work

We first formally define the concept of ramp scheme, which is essentially a non-
perfect secret sharing scheme. Ramp schemes are useful because they can achieve
a high information rate, i.e., the size of the shares can be much smaller than
the size of the secret. We then proceed with a brief reiteration of two strongly
multiplicative variants of such ramp schemes, which were presented in [7] and



[4]. Both of these ramp schemes are ideal and have a high information rate.
In particular they involve secret vectors that consist of k field elements while
producing shares that consist of a single field element.

2.1 Ramp Schemes

Let P = {p1, . . . , pn} be a set of players and A and Γ be two subsets of 2P such
that Γ ∩ A = ∅. We define a ramp scheme over the field Fq as follows.

Let a d× e matrix M over Fq and a mapping φ : {1, . . . , d} → {1, . . . , n} be
given. Given a subset A of P we denote by MA the set of the rows Mj of M such
that φ(j) ∈ A.

Definition 1 The matrix M defines a ramp scheme if the following two con-
ditions hold:

1. For any A ∈ A, and any k elements w1, . . . , wk ∈ Fq, there exists a vector
v ∈ KerMA such that its first k coordinates are w1, . . . , wk.

2. For any B ∈ Γ , the ith unit vector εi ∈ Fe
q is in the image of MT

B for all
i ∈ {1, . . . , k}.

We say that A and Γ are the adversary structure and access structure of the
scheme, respectively.

To share a secret vector (s1, . . . , sk) with the scheme above, a dealer chooses
a random vector v ∈ Fe

q such that its first k coordinates are (s1, . . . , sk) and
sends to player pj the elements Miv for which φ(i) = j. Condition 1 implies that
any set of players in the adversary structure can get no information about the
secrets, while condition 2 ensures that any set of players in the access structure
can reconstruct the secret vector using their shares. Note that the definition
in [4] specifies a special case of this definition, where the access and adversary
structure are defined by two (different) thresholds.

In the following, let � : Fk
q×Fk

q → Fk
q be a symmetric non-degenerate bilinear

map. We define multiplication of secret shared vectors s, t ∈ Fk
q to be via this

map, which we denote by s� t.

Definition 2 A ramp scheme is multiplicative if for any i ∈ {1, . . . , k}, there
exist λ(i)

1 , . . . , λ
(i)
d ∈ Fq such that for any two secret vectors s and t with sets of

shares (a1, . . . , ad) and (b1, . . . , bd), we have that (s� t)i =
∑d

j=1 λ
(i)
j ajbj.

Definition 3 A ramp scheme is strongly multiplicative if it is multiplicative on
any subset of players for which the complement is in the adversary structure. In
other words, given any A ∈ A, for any i ∈ {1, . . . , k} and any j so that φ(j) ∈ Ā
there exists a λ(i)

j in Fq such that for every two secret vectors s and t with sets of

shares (a1, . . . , ad) and (b1, . . . , bd), we have that (s� t)i =
∑

j:φ(j)∈Ā λ
(i)
j ajbj.



2.2 Parallel Secure Computation

The first ramp scheme we discuss is due to Franklin and Yung [7]. It has the
advantage that, at the price of an additive factor k in the corruption tolerance,
we can perform multiplication for k elements in parallel at the cost of a single
multiplication.

The ramp scheme works as follows. Let t and k be such that t+ k− 1 < n/2
and assume that the finite field Fq is such that |Fq| ≥ n + k. Let the sets
{x1, . . . , xn} and {e1, . . . , ek} be two disjoint sets of distinct elements from Fq.
Now for a vector a = (u1, . . . , uk) of secret elements from Fq, we select a random
polynomial f(X) ∈ Fq[X] of degree at most t + k − 1 such that f(ej) = uj for
j = 1, 2, . . . , k and define the shares to be aj = f(xj) for j = 1, 2, . . . , n.

Clearly, t+ k shares or more jointly determine f and hence the secret vector
a, so the access structure includes all player sets of size at least t + k. As to
privacy, it is a straightforward consequence of Lagrange-interpolation that t or
fewer shares jointly give no information on the secret vector, so the adversary
structure includes all player sets of size at most t. We can sum these properties
up by calling the resulting scheme a (t, t+k)-ramp scheme, with secrets of length
k.

Assume that we additionally performed this sharing with a polynomial g(X)
for a secret vector b = (v1, . . . , vk). Since for j = 1, 2, . . . , k it holds that
(fg)(ej) = ujvj and furthermore (fg)(xi) = f(xi)g(xi) for i = 1, 2, . . . , n, it
follows from Lagrange’s interpolation theorem that the scheme is multiplicative.
Therefore, we can use the generic method described in [4] to bootstrap a protocol
for parallel multiplication from this scheme. For additional details, see [7] or [4].

2.3 Extension Field Multiplication

The other relevant ramp scheme can be found in [4]. With this ramp scheme
it is possible to perform multiplications in a finite field using only communica-
tion and operations over a subfield, reducing the communication cost of every
single multiplication by a multiplicative factor. For the technique to be used it
is required that the finite field has a sufficiently large extension degree k over
a subfield. Furthermore, the corruption tolerance needs to be decreased by an
additive factor 2k.

The scheme works as follows. Let t and k be such that t + 2k − 2 < n/2.
A finite field Fqk = Fq(α) is selected such that |Fq| > n. Let x1, . . . , xn be
distinct non-zero elements from Fq, let a = u0 + u1α + . . . + uk−1α

k−1 ∈ Fqk

be a secret element and define u(X) = u0 + u1X + . . . + uk−1X
k−1 ∈ Fq[X].

Choose a random polynomial r(X) ∈ Fq[X] of degree at most t − 1 and define
f(X) = u(X) + r(X) ·X2k−1 ∈ Fq[X].

Clearly, since f has degree t+2k−2, it is clear that t+2k−1 shares or more
jointly determine f and hence the secret vector a. As to privacy, let u′(X) ∈
Fq[X] of degree at most k− 1 be arbitrary and let r′(X) be the polynomial that
evaluates to r(xi) + (u(xi)− u′(xi))/x2k−1

i for t points xi. Then the polynomial
f ′(X) = u′(X) + r′(X) ·X2k−1 is consistent with the evaluation of f in these t



points, but the secret corresponds with u′(X) here. So it is a (t, t+2k−1)-ramp
scheme, with secrets of length k.

Now, when we multiply two such polynomials f(X) = u(X) + r(X) ·X2k−1

and g(X) = v(X) + r′(X) · X2k−1, the product polynomial fg has as its first
2k − 1 coefficients homogeneous sums sk =

∑
i+j=k uivj of coefficients in u(X)

and v(X). It is shown in [4] that this suffices for calculating the coefficients of
the secret product in Fqk via linear functions on the local products of the shares.
Therefore, this scheme is also multiplicative and can be used to perform the
secure multiplication over Fqk using shares in Fq. For additional details see [4].

Note that in order to share a secret of length k, the scheme introduces a gap
between the privacy and reconstruction thresholds of size 2k − 1, whereas the
scheme due to Franklin and Yung only requires a gap of size k. In Section 3 we
introduce an improved version of this scheme that matches the latter thresholds.

3 An Initial Observation

A closer examination of the scheme in [4] shows that it uses a secret sharing
polynomial that has a fixed k-size gap between the lower degree coefficients that
relate to the secret and the higher degree coefficients that introduce random-
ness. In fact, this explains the disparity between the parameters of the schemes
described in Sections 2.2 and 2.3.

The observation described in this section allows to remove this disparity
and leads to a scheme with tight parameters that is additionally much easier to
describe than the scheme from Section 2.3, while it achieves the same effect. Due
to its more natural structure, it additionally generalizes over algebraic geometric
curves as demonstrated in Section 4. This leads to low communication atomic
secure multiplication protocols where the base field can now be taken constant
as opposed to linear in the number of players as required by the approach in [4].

The proposed scheme is based on the following theorem, which generalizes
Lagrange’s interpolation theorem to a setting where the evaluation points are
taken from different extension fields of a perfect base field K while the secret
sharing polynomial is taken from K[X]. The idea is that the evaluation points
get assigned different weights, depending on the extension degree of the smallest
extension field of K in which they occur.

Theorem 1 Let K be a perfect field, and let K denote an algebraic closure of
K. Fix distinct a1, . . . , al ∈ K such that there is no pair ai, aj (i 6= j) where aj is
a Galois-conjugate (over K) of ai. For i = 1, . . . , l, let ni denote [K(ai) : K], the
degree of K(ai) over K as a field extension, and let N denote

∑l
i=1[K(ai) : K].

Then, for each b1, . . . , bl with bi ∈ K(ai) (i = 1, . . . , l), there exists a unique
polynomial f(X) ∈ K[X] such that deg (f) < N and f(ai) = bi, i = 1, . . . , l.

Proof. Let K[X]<N denote the polynomials in K[X] of degree smaller than
N . Consider the map

φ : K[X]<N −→
l⊕

i=1

K(ai), f 7→ (f(a1), . . . , f(al)).



We want to show that φ is an isomorphism of K-vector spaces. Since the dimen-
sions on both sides are equal, it is sufficient to argue that φ is injective. Indeed,
suppose g maps to 0. Then, for i = 1, . . . , l, g(ai) = 0. Since g ∈ K[X], g must
be a multiple of the minimal polynomial h of ai in K[x]. The Galois-conjugates
of ai are the roots of h and hence they are roots of g. Because the field is perfect,
h is separable, i.e. all the roots of h are different, and the number of these roots
is equal to ni, so the number of conjugates of ai is ni. Note that ai and aj are
not Galois conjugates for any i, j so g has at least

∑l
i=1 ni = N zeroes in K.

Thus, viewing g as an element of K[X], we conclude that g ≡ 0. 4
The new scheme works as follows. Let t and k be such that t+ k − 1 < n/2.

A finite field Fqk = Fq[α] is selected such that |Fq| ≥ n. Let x1, . . . , xn be
distinct (not necessarily non-zero) elements from Fq and select e ∈ Fqk such
that [Fq(e) : Fq] = k. The secret sharing is now performed as follows. For a
secret element a ∈ Fqk , we choose a random polynomial f(X) ∈ Fq[X] of degree
at most t+k−1 such that f(e) = a. The shares are again f(x1), f(x2), . . . , f(xn).

Theorem 2 The previous scheme has (t+ k)-reconstruction and t-privacy.

Proof. Reconstruction: Given the value of f in t + k points xi1 , . . . , xit+k
,

we can apply the previous theorem with l = t + k, aj = xij
(so nj = 1 and

N = t + k), to see that these shares determine the polynomial and hence the
secret.

Privacy: Given the value of f in t points xi1 , . . . , xit take in the previous
theorem l = t + 1, aj = xij for j = 1, . . . , l − 1 and al = e. Then nj = 1
for j = 1, . . . , l − 1 and nl = k, so N = t + k. The theorem shows that for
every possible choice of the secret a ∈ Fqk , there exists a unique polynomial of
degree less than t + k such that f(e) = a and f evaluates to the known values
in xi1 , . . . , xit

. 4

3.1 Multi-Party Computation Secure Against an Eavesdropping
Adversary

We can now use this scheme to perform secure multi-party computation of el-
ements in Fqk using communication and operations over the base field Fq. In
particular, when k = O(n), this results in a secure multiplication protocol for
which O(n2) field elements in Fq need to be communicated, while the multipli-
cation is between elements in Fqk . This corresponds with a communication of
only O(n) field elements in Fqk .

The secure multiplication works as follows. Assume that t + k − 1 < n/2
and that secrets a ∈ Fqk and b ∈ Fqk have been secret shared, resulting in
shares a1, a2, . . . , an and b1, b2, . . . , bn. Due to Theorem 1 applied to the product
polynomial fg there exist constants λ1, λ2, . . . , λn ∈ Fqk such that f(e)g(e) =∑n

i=1 λif(xi)g(xi). Writing this out over the basis {1, α, . . . , αk−1} we find co-
efficients λ(j)

i ∈ Fq such that πj(f(e)g(e)) =
∑n

i=1 λ
(j)
i f(xi)g(xi), where πj is

the map that maps an element
∑k−1

j=0 wj+1α
j to the coefficient wj . Now every



player pi reshares the element
∑k−1

j=0 λ
(j+1)
i f(xi)g(xi)αj , and it is easy to see

that due to the linearity of the scheme the players can then locally sum up their
new shares to obtain a share in f(e)g(e).

4 Algebraic Geometric Ramp Schemes

Algebraic geometric ramp schemes were first proposed in [2] and later in [3],
although the latter scheme is not multiplicative. Here we present a new algebraic
geometric ramp scheme, which can be seen as a generalization of the scheme in
[4], in the sense that it also allows to perform multiplication over a finite field
based on operations in a subfield.

Applying some of the algebraic geometric coding techniques of [2] and using
the curves introduced by Garćıa and Stichtenoth [8], we can for instance obtain
families of curves from which we can define strongly multiplicative ramp schemes
with corruption tolerance t with (1/3−ε)n < t < n/3 for any ε > 0 over constant-
sized fields. In particular this implies that we can work with fixed-size shares,
i.e., schemes where the share size is independent of the number of players, which
was impossible to achieve with the scheme from [4].

We next describe the ramp scheme of [2] and introduce our new algebraic
geometric ramp scheme where the dealer uses a high degree rational point on
the curve to allocate the secret. Furthermore, we provide proofs that demon-
strate both schemes are (strongly) multiplicative given a large enough number
of participating players and additionally show how to compute the coefficients
corresponding with the (strong) multiplication property.

4.1 Preliminaries

A very nice overview of most of the algebraic geometry theory that is required
to describe the results in this paper can be found in [2]. Here we briefly reiterate
the key ingredients and in addition introduce the notion of differential form.

Let Fq be a finite field with algebraic closure Fq and let C be an absolutely
irreducible, projective smooth curve defined over Fq with genus g. The function
field Fq(C) contains elements, called rational functions, which can be seen as
maps from the curve C to Fq. The non-zero rational functions have the property
that they can have at most a finite number of poles and zeroes, where the
number of poles equals the number of zeroes when both are counted with the
correct multiplicities.

A divisor is a formal sumD =
∑

P∈C aP ·P with aP ∈ Z for which the support
supp(D), i.e., the set of points P for which aP is nonzero, is finite. Given two
divisors D =

∑
P∈C aP ·P and D′ =

∑
P∈C a

′
P ·P , we say that D ≥ D′ if aP ≥ a′P

for all the points P on the curve. The degree of a divisor D =
∑

P∈C aP · P is
the sum of its coefficients, i.e., deg(D) =

∑
P∈C aP .

Every rational function f ∈ Fq(C) defines a divisor (f) =
∑

P∈C νP (f) · P ,
where νP can be seen as a function that counts the number of zeroes or poles of



f with the correct multiplicity for every point P . Clearly, deg(f) = 0 for every
f ∈ Fq(C).

The set Ω(C) contains all rational differential forms on C.5 Every differential
form η ∈ Ω(C) defines a divisor (η), where every pair of such differential forms
η, η′ ∈ Ω(C) gives rise to linearly equivalent divisors, i.e., (η′) = (η) + (f) for
some f ∈ Fq(C). Any such divisor K defined by a differential form is called a
canonical divisor. For any canonical divisor K, we have that deg(K) = 2g − 2.

The residue maps ResP : Ω(C) → Fq assign to every differential form η ∈
Ω(C) an evaluation in the point P ∈ C, where ResP (η) = 0 if η does not have
a pole in P and ResP (η) 6= 0 if η has a pole in P of multiplicity one. As with
divisors based on rational functions, the multiplicity of a zero or pole in η can be
read off from the coefficient at P in the formal divisor sum (η) =

∑
P∈C aP · P .

Furthermore, the Residue Theorem states that for any η ∈ Ω(C) we have that∑
P∈C ResP (η) = 0.
For any divisor D, the corresponding Riemann-Roch space L(D) is defined

by L(D) = {f ∈ Fq(C) | (f) + D ≥ 0}. This is a vector space over Fq and
its dimension is denoted `(D). For any canonical divisor K we have `(K) = g,
and for any divisor D with deg(D) < 0 we have that `(D) = 0. More generally,
the Riemann-Roch Theorem states that for any divisor D we have that `(D) =
`(K−D)+deg(D)−g+1. This implies in particular that `(D) = deg(D)−g+1
when deg(D) > 2g − 2.

Similarly, we can for any divisor D define the space Ω(D) by

Ω(D) = {ω ∈ Ω(C)\{0} | (ω) +D ≥ 0} ∪ {0}.

There exists an isomorphism L(K + D) ' Ω(D) via the map f 7→ fη, where
(η) = K, which allows us to apply the Riemann-Roch Theorem to calculate the
dimension of Ω(D).

An Fq-rational point on C is a point that can be represented using coordinates
in Fq. An Fq-rational divisor is a divisor for which the support is invariant under
the Galois group Gal(Fq/Fq). Note that such a divisor can have support outside
of the Fq-rational points on C. The Riemann-Roch space of an Fq-rational divisor
admits a basis defined over Fq, and we can consider the Fq-linear span of this
basis. We refer to functions in such an Fq-linear span as Fq-rational functions.
Similarly, we can define the subset of Fq-rational differential forms in a set Ω(C).
In the sequel all rational functions and differential forms are Fq-rational, unless
otherwise specified.

4.2 Interpolation in Riemann-Roch spaces

The following result is the algebraic geometry counterpart of Theorem 1 corre-
sponding with an arbitrary algebraic curve C.

5 Rather than formally defining differential forms here, we restrict the description to
an overview of their relevant properties. For a formal description of differential forms,
the interested reader is referred to [11].



Theorem 3 Let P1, . . . , Pl be points on the curve C such that Pi and Pj are not
conjugate for any i 6= j. For i = 1, . . . , l let ni be the smallest number such that
Pi is Fqni -rational and define N =

∑l
i=1 ni. Let G be a rational divisor such

that supp G
⋂
{P1, . . . , Pl} = ∅. Then:

1. If N ≥ deg(G) + 1, for any (y1, . . . , yl) with yi ∈ Fqni there exists at most
one f ∈ L(G) such that f(Pi) = yi for all i = 1, . . . , l

2. If N ≤ deg(G) − 2g + 1, for any (y1, . . . , yl) with yi ∈ Fqni there exists at
least one f ∈ L(G) such that f(Pi) = yi for all i = 1, . . . , l. Furthermore,
the number of such rational functions is the same for any (y1, . . . , yl).

Proof. Let φ : L(G) →
⊕l

i=1 Fqni , defined by f 7→ (f(P1), . . . , f(Pl)). For
i = 1, . . . , l, let P (0)

i = Pi, . . . , P
(ni−1)
i be the ni conjugates of Pi under the

Frobenius automorphism over Fq. Observe that
∑ni−1

j=0 P
(j)
i is a rational point,

as any element of the group Gal(Fq/Fq) permutes the conjugates of Pi. Call
A = G −

∑n
i=1(

∑ni−1
j=0 P

(j)
i ). Then Ker(φ) = L(A). Observe that deg(A) =

deg(G)−N . Then

1. If N ≥ deg(G) + 1, deg(A) < 0 and `(A) = 0. Hence φ is injective, which
proves the property.

2. If N ≤ deg(G)− 2g + 1, then deg(A) ≥ 2g − 1 and we can invoke Riemann-
Roch theorem to conclude that l(A) = deg(A)−g+1 = deg(G)−N−g+1 =
l(G) − N . We know that dim(Imφ) = dim(L(G)) − dim(Kerφ) = l(G) −
l(A) = N . Therefore φ is surjective.

4

4.3 An Algebraic Geometric Ramp Scheme with Parallel
Multiplication [2]

Let D = {Q1, . . . , Qk, P1, . . . , Pn} be a set of Fq-rational points on the curve C
and G be an Fq-rational divisor of degree 2g + t + k − 1 with support disjoint
from D. Note that since G can have support outside the Fq-rational points, it is
possible to include all Fq-rational points on C in D. Every point Pi corresponds
to a player pi and every point Qj corresponds to the jth position of a secret
vector, as follows. To share the secret vector (s1, . . . , sk) ∈ Fk

q the dealer takes a
random rational function f ∈ L(G) such that f(Qi) = si for all i = 1, . . . , k and
sends player pi the value f(Pi) ∈ Fq as his share.

The scheme described above fits into the formal matricial definition of ramp
scheme given in Section 2.1, which is useful for the following sections. Let
{f1, . . . , fu} be a basis of L(G) such that fi(Qj) = 1 if i = j and fi(Qj) = 0 if
i 6= j, for i = {1, . . . , u} and j = {1, . . . , k}. It is easy to see that we can always
choose such a basis due to Theorem 3. Indeed, we have that k < deg(G)−2g+1 =
t + k + 1 so the theorem ensures the existence of such fi for i = 1, . . . , k. Now
simply take {fk+1, . . . , fu} as a basis of L(G −

∑k
i=1Qi), which has dimension

u− k according to the Riemann-Roch Theorem.



Next, define the matrix M whose (i, j) entry is fj(Pi). If we take a vector
v = (s1, . . . , sk, rk+1, . . . , rn) and multiply any row of Mi by v, we obtain the
value g(Pi), where g =

∑k
j=1 sjfj +

∑n
j=k+1 rjfj . It holds that g(Qi) = si for

any i = 1, . . . , k.

Theorem 4 The description above defines a ramp scheme with t-privacy and
(2g + t+ k)-reconstruction.

Proof. It can be easily seen as a special case of Theorem 3 that any rational
function in L(G) is uniquely determined by its evaluations in deg(G)+1 rational
points (this is exactly Lemma 1 of [2]). In our case, deg(G) = 2g + t+ k − 1 so
any 2g + t+ k players can reconstruct the rational function and thus the secret
vector.

Next we prove privacy. Let A be any set of t players. We only need to argue
that for any secret vector s = (s1, . . . , sk) ∈ Fk

q there exists a rational function
f such that f(Qi) = si and the evaluation of f in the points corresponding to
the players in A is zero. Theorem 3 shows us that this is true because t + k =
deg(G)− 2g + 1.

4

4.4 A New Algebraic Geometric Ramp Scheme with Extension
Field Multiplication

Let D = {P1, . . . , Pn} again be a set of Fq-rational points on the curve C such
that supp(G)

⋂
D = ∅, and additionally let Q be a point on the curve outside

the support of G that is Fqk -rational and not Fqd-rational for any integer d < k.
Let {e1, e2, . . . , ek} be a basis of Fqk over Fq. To share the secret vector

(s1, . . . , sk), the dealer selects a random rational function f ∈ L(G) such that
f(Q) = s1e1 + . . .+ skek ∈ Fqk , and sends player pi the value f(Pi) ∈ Fq as his
share.

We can also represent this ramp scheme by a matrix. In this case we take
a basis {f1, . . . , fu} of L(G) such that fi(Q) = ei for i = 1, . . . , k and fi(Q) =
0 for i = k + 1, . . . , n. It can again be shown that such a basis exists using
Theorem 3. We have only one point of degree k and k ≤ deg(G) − 2g + 1, so
we know such fi exist for i = 1, . . . , k, and we can take {fk+1, . . . , fu} a basis
of L(G−Q−

∑k−1
i=1 Qi), where Q1, Q2, . . . , Qk−1 are the conjugate points of Q

under the Frobenius automorphism over Fq.
Let M be the matrix M whose (i, j) entry is fj(Pi). As before, if we take

a vector v = (s1, . . . , sk, rk+1, . . . , rn) and multiply any row of Mi by v, we
obtain the value g(Pi), where g =

∑k
j=1 sjfj +

∑n
j=k+1 rjfj and it holds that

g(Q) =
∑k

i=1 siei.

Theorem 5 The description above defines a ramp scheme with t-privacy and
(2g + t+ k)-reconstruction.

Proof. As before, both properties are a direct consequence of Theorem 3.
4



4.5 Multiplication

Both of the schemes thus described introduce their own form of multiplication.
For the parallel multiplication scheme, given two vectors s = (s1, s2, . . . , sk) and
t = (t1, t2, . . . , tk), we can define the product s� t = (s1t1, s2t2, . . . , sktk).

For the extension field multiplication scheme, given any two vectors s =
(s1, s2, . . . , sk) and t = (t1, t2, . . . , tk), representing the elements s = s1e1 +
s2e2+ . . .+skek ∈ Fqk and t = t1e1+t2e2+ . . .+tkek ∈ Fqk , the product of these
two elements in the field Fqk is some element u = u1e1 +u2e2 + . . .+ukek ∈ Fqk

for some ui ∈ Fq. We can therefore define the product of s and t as s � t =
(u1, u2, . . . , uk).

We next prove that, given enough players, the two schemes are multiplicative
and strongly multiplicative with regard to their respective multiplications.

Theorem 6 The parallel multiplication scheme is multiplicative when n ≥ 2t+
4g + 2k − 1 and strongly multiplicative when n ≥ 3t+ 4g + 2k − 1.

Proof. We need to show that for any i = 1, . . . , k there are coefficients
λ

(i)
1 , . . . , λ

(i)
n such that for any f, g ∈ L(G), f(Qi)g(Qi) =

∑n
j=1 λ

(i)
j f(Pj)g(Pj).

Note that if f and g are in L(G) their product is in the space L(2G).
According to Theorem 3 we have that if deg(2G) + 1 ≤ n the mapping

φ : L(2G) →
⊕n

j=1 Fq defined by h 7→ (h(P1), . . . , h(Pn)) is linear and injective,
so it has an inverse and it is also linear. Furthermore, the maps ψi : L(2G) → Fq

defined by h 7→ h(Qi) are also linear for any i ∈ {1, . . . , k}. So the composition of
φ−1 and any ψi is linear. Therefore fg(Qi) is a linear combination of f(Pj)g(Pj)
for any f and g in L(G). Finally observe that the condition deg(2G) + 1 ≤ n
holds whenever 4g + 2t+ 2k − 1 ≤ n. 4

Similar to the simpler finite field setting the coefficients λ(i)
j can be explicitly

determined. We now describe how to obtain these using the Residue Theorem
(see [11]).

Determining the coefficients λ
(i)
j . A consequence of the Residue Theorem

is that for any function ϕ in L(2G) and any differential ω in Ω(Qi +
∑n

j=1 Pj −
2G) the relation 0 =

∑n
j=1 resPj (ϕω) + resQi(ϕω) =

∑n
j=1 ϕ(Pj)resPj (ω) +

ϕ(Qi)resQi
(ω) holds. Therefore, if there exists a nonzero element ω in Ω(Qi +∑n

j=1 Pj − 2G), applying the theorem for the rational function fg gives a lin-
ear relation between the values fg(Qi) and fg(Pj) for j = 1, . . . , n for some
coefficients which do not depend on f and g. If we can additionally ensure
that the coefficient resQi(ω) is non-zero, then we have a relation of the form

fg(Qi) =
∑n

j=1−
resPj

(ω)

resQi
(ω)fg(Pj). Thus, λ(i)

j = − resPj
(ω)

resQi
(ω) and we are done.

It is a known fact that we can define an isomorphism of Fq-vector spaces
φ : L(K +Qi +

∑n
j=1 Pj − 2G) → Ω(Qi +

∑n
j=1 Pj − 2G) defined by φ(h) = hη

where K is a canonical divisor and η is a differential such that div(η) = K. It
suffices to find an element h in L(K+Qi +

∑n
j=1 Pj−2G) with a first order pole

in Qi. Hence, we have to show that there exists an element in the difference of



the spaces L(K +Qi +
∑n

j=1 Pj − 2G) and L(K +
∑n

j=1 Pj − 2G). Applying the
Riemann-Roch theorem for n ≥ 2t + 4g + 2k − 1 shows us that the dimensions
of these spaces differ and the result follows.

Theorem 7 The extension field multiplication scheme is multiplicative when
n ≥ 2t+ 4g + 2k − 1 and strongly multiplicative when n ≥ 3t+ 4g + 2k − 1.

Proof. Now we need to show that for any i = 1, . . . , k there exist co-
efficients λ(i)

1 , . . . , λ
(i)
n in Fq such that for any f, g ∈ L(G), πi(f(Q)g(Q)) =∑n

j=1 λ
(i)
j f(Pj)g(Pj). An argument similar to that in Theorem 6 shows that,

for n ≥ 2t + 4g + 2k − 1, there exist elements rj ∈ Fqk such that f(Q)g(Q) =∑n
j=1 rjf(Pj)g(Pj). Now, note that rj =

∑k
i=1 λ

(i)
j ei, which gives us the desired

result. 4

5 Multi-Party Computation Secure Against An Active
Adversary

In the sequel we present the techniques that can be used to construct multi-
party computation protocols secure against an active adversary for the algebraic
geometric ramp schemes presented earlier. Due to the lack of structure in these
schemes compared to the simpler polynomial-based approaches we need to in-
troduce some new techniques here. Most of these techniques revolve around the
construction of some specialized variants of VSS, which are then employed to
ensure that the players honestly participate in the protocol.

6 A VSS Protocol for the Algebraic Geometric Schemes

When the number of players is sufficiently large, we can perform efficient recon-
struction of the secret in the presence of corrupted shares. This is due to the
strong relation between our schemes and Goppa error correction codes [11]. In
both schemes, the set of possible share vectors forms a Goppa code over Fq of
length n (the number of players) with minimum distance larger than or equal
to n− deg(G). We know that a code with minimum distance d allows for recon-
struction of a codeword in the presence of t errors, provided that 2t + 1 ≤ d.
Furthermore, it is known how to efficiently correct such errors for Goppa codes.
We have the following property:

Property 1 Assume that a honest dealer shares a secret vector with one of the
algebraic geometric ramp schemes in the previous section. If n ≥ 3t + 2g + k,
honest players can efficiently reconstruct the secret vector even when up to t
corrupted players provide incorrect shares.

Note that this bound is weaker than that required for strong multiplicativity
for any of the two schemes in Section 4.



We now describe the general procedure used to verifiably secret share a vec-
tor with a ramp scheme. Recall that in the usual definition of a verifiable secret
sharing (VSS), the VSS ensures that at the end of the sharing either all honest
players hold consistent shares in a value s or the dealer is disqualified. Addi-
tionally, when the dealer is not disqualified, it is guaranteed that the players
can uniquely reconstruct the secret s by pooling their shares in s, even when
some of the dishonest players provide an incorrect share. We follow this standard
definition of VSS, except that we allow the secret to be a vector.

6.1 Definitions and Notation

We need to introduce some new notation. Given an Fq-vector space V with base
{v1, . . . , vu}, consider the tensor product V ⊗V . The elements in the space V ⊗V
are formal sums

∑
i,j aij(vi ⊗ vj) with aij ∈ Fq. The symmetric tensor S2(V )

is defined to be the subspace consisting of all the elements in V ⊗ V such that
aij = aji for all i, j ∈ {1, . . . , u}.

We define now the space S2(L(G)). Given an element F in this space, we can
evaluate it in any pair (P,Q) of points on the curve, where if F =

∑
i,j aij(fi⊗fj)

we have F (P,Q) =
∑

i,j aij(fi(P )fj(Q)). Now, if Pi is the point corresponding
to the player pi, we define Fi to be the rational function in L(G) such that
Fi(P ) = F (Pi, P ).

For the parallel multiplication scheme from Section 4.3 we define F0 to be
the rational function defined by F0(P ) = F (Q1, P ). Furthermore, for the exten-
sion field multiplication scheme from Section 4.4, let F0 be the rational function
defined as follows. Take the function F ′

0(Y ) = F (Q,Y ) =
∑

i,j aijfi(Q)fj(Y )
in the variable Y that runs over the points on the curve. Note that the coef-
ficients aijfi(Q) belong to Fqk . Now we can define the rational function F0 =∑

i,j π1(aijfi(Q))fj , where the function π1 is the projection function that has
been described in Section 3.1. We now have the following symmetry property,
which is easily verified.

Proposition 1 We have that Fi(Pj) = Fj(Pi) and Fi(Q1) = F0(Pi) for the
parallel multiplication scheme (respectively, π1(Fi(Q)) = F0(Pi) for the extension
field multiplication scheme) for any F ∈ S2(L(G)) and i, j ∈ {1, . . . , n}.

6.2 The VSS Scheme

Conceptually, the rational function F0 plays the same role in the VSS as the
secret sharing polynomial does for Shamir’s scheme. We now describe how to
perform the VSS for the two algebraic geometric schemes.

First, given a secret vector (s1, s2, . . . , sk) and a divisor D (for our purposes
D is always G or 2G) we define the set S(s1,...,sk)(D) = {f ∈ L(D) : f(Ql) =
sl ∀l = 1, . . . , k} for the parallel multiplication scheme and S(s1,...,sk)(D) = {f ∈
L(D) : f(Q) = s1e1 + s2e2 + · · · + skek} for the extension field multiplication
scheme. The set S(s1,...,sk)(D) forms the sets of rational functions from which F0

can be drawn when the secret vector is (s1, . . . , sk).



Let us also define S(s1,...,sk)(D) = {F ∈ S2(L(D)) : F0 ∈ S(s1,...,sk)(D)} for
any of both schemes. If the dealer now wants to VSS a vector (s1, s2, . . . , sk)
he must first select a uniformly random element F in S(s1,...,sk)(G) and then
send player pi the rational function Fi ∈ L(G) for i = 1, 2, . . . , n. After this
the players execute a number of steps to ensure the consistency of the data
that they received from the dealer. These steps are very similar to those for the
Shamir-based VSS described in [5] and we do not enumerate them here. The
value Fi(Q1) = F (Pi, Q1) = F0(Pi) (respectively π1(Fi(Q)) = F0(Pi)) should be
seen as player pi

′s share in the parallel multiplication scheme (respectively the
extension field multiplication scheme).

We next prove that this VSS scheme can always be applied and that it pro-
vides privacy in the presence of any adversary controlling up to t players. Unique
reconstruction of the secret for the honest players follows from an argument sim-
ilar to that for the Shamir-based VSS scheme and is omitted here.

For the privacy statement, we first assume without loss of generality that the
rational share functions Fi that adversarial players receive are all zero. For any
subset B ⊂ {P1, . . . , Pn} with |B| = e ≤ t, we define the sets WB(D) = {f ∈
L(D) : f(Pj) = 0 ∀j ∈ B} and WB(D) = {F ∈ S2(L(D)) : Fj = 0 ∀j ∈ B}
respectively denoting the potential secret sharing functions and rational share
functions corresponding to this assumption. Note that in particular when e = 0,
we have WB(D) = L(D) and WB(D) = S2(L(D)).

For the privacy statement to hold, we mainly need to prove that we have
|S(s1,...,sk)(G) ∩ WB(G)| = |S(s′

1,...,s′
k)(G) ∩ WB(G)| for any two secret vectors

(s1, . . . , sk) and (s′1, . . . , s
′
k). To prove that the VSS can always be applied we

need to prove that |S(s1,...,sk)(G)| > 0 for any secret vector (s1, . . . , sk). Both
statements can be deduced from the following theorem:

Theorem 8 For any adversary set B and any secret vector (s1, . . . , sk), the
mapping S(s1,...,sk)(G) ∩WB(G) → S(s1,...,sk)(G) ∩WB(G) given by F 7→ F0 is
surjective.

Proof. We here give the proof for the parallel multiplication scheme. The
proof for the extension field multiplication scheme is very similar and therefore
omitted here.

Let f be an element of S(s1,...,sk)(G) ∩ WB(G). If s1 6= 0 then take F =
1
s1

(f ⊗ f). We have that Fj = 1
s1
f(Pj)f = 0 for any player pj ∈ B because

f ∈WB(G), so F ∈ WB(G). Moreover F0 = 1
s1
f(Q1)f = f .

If s1 = 0 then select an h ∈ L(G) such that h(Q1) = 1 and h(Pj) = 0 for all
j ∈ B. Such h exists due to the privacy properties of the parallel multiplication
scheme described in Section 4.3. Now define F = f ⊗ h + h ⊗ f . We have
F0 = h(Q1)f + f(Q1)h = f and Fj = h(Pj)f + f(Pj)h = 0 ∀ Pj ∈ B. This
completes the proof. 4

If we take B = ∅, Theorem 8 implies that we can always VSS a secret vector
since it was already clear from Sections 4.3 and 4.4 that we can always secret
share a secret vector. As for the privacy property, observe that as a consequence
of the surjectivity of the mapping, for any set B in the adversary structure and



any secret vector (s1, . . . , sk) we know that S(s1,...,sk)(G)∩WB(G) is non-empty.
Now, given the secret vectors (s1, . . . , sk) and (s′1, . . . , s

′
k), take any element F in

S(s′
1−s1,...,s′

k−sk)(G)∩WB(G). We have that addition by the function F induces
a bijective mapping between the sets S(s1,...,sk)(G)∩WB(G) and S(s′

1,...,s′
k)(G)∩

WB(G).
It can be seen, using Property 1 and the proof for the consistency checks

in [5], that the VSS protocol additionally guarantees consistency between the
shares of the honest players whenever n ≥ 3t+ 2g + k.

7 Low Complexity MPC for Algebraic Geometric Ramp
Schemes

In this section we demonstrate multi-party computation protocols secure against
an active adversary based on the algebraic geometric ramp schemes from Sec-
tion 4, where we assume that n is sufficiently large so that we can perform
efficient reconstruction of the secret vectors for rational functions in L(2G) and
we are also able to perform VSS over L(2G). Concretely, this is ensured when
n ≥ 4t+ 4g + 2k − 1.

The protocols in this section require the communication of O(n3) field ele-
ments while operating on vectors consisting of k elements, which matches that
attained for the special case detailed in [4]. However, since we lack the convenient
structure that the polynomials provided in [4], we required some new specialized
forms of VSS to ensure that the players honestly follow the protocol. Below, we
provide the details of the special types of VSS that we require.

7.1 Tailored VSS

It is possible to place some restrictions on the randomly selected element F ∈
S2(L(2G)) that is used for the VSS in order to ensure to the players that the
VSS’ed secret vector is of a special form. Here two types of structural restrictions
are relevant for our results; one where some positions in the secret vector are
fixed to zero and one where all positions in the secret vector contain the same
value. We also look at the combination of these two types, where all-zero vectors
replace the secret vectors. This particular variant is used to a create a “one-
time-pad” that is used to securely verify the equality of the secret vectors in two
secret sharings, and is invoked in a slightly different manner as explained below.

We additionally note the following about the special types of VSS before
providing the details in the following sections. In Section 7.2, whenever the
secret vector is non-zero, the special types of VSS are used to generate rational
functions in L(G). On the other hand, when the special VSS is used to generate
a one-time-pad, the resulting rational functions are in L(2G). Note that, since
L(G) ⊂ L(2G), we can use a basis for L(2G) of the form f1, f2, . . . , fu′ , where
the rational functions f1, f2, . . . , fu form the selected basis for L(G). Note also
that S2(L(G)) can be embedded in S2(L(2G)) in the natural way.



Fixing zeros and producing repetition The restriction is imposed as follows
for the case where we introduce zero’s in the vector such that the first position of
the vector remains non-zero. Let I ⊂ {1, . . . , k} be a set consisting of positions
in the vector that should be zero. Let {uv} be a base of L(2G) of the appropriate
form as described in Sections 4.3 and 4.4 and VI(2G) ⊂ L(2G) be spanned by
{uv}v/∈I . Then VI(2G) consists of all functions of L(2G) which are zero in Qj

for j ∈ I. Analogously define VI(2G) = {F ∈ S2(L(2G)) : Fj(Ql) = 0 ∀j =
0, . . . , n, l ∈ I}, which can be seen as a bivariate version of this set. If we now
VSS using elements in VI(2G) not only does the secret rational function belong
to VI(2G), but so do all rational functions that are received as shares by the
players.

We need a similar kind of restriction for the generation of one-time-pads in
L(2G) by a certain player pi, except that in this case we will require that all the
elements of VI(2G) have their first coordinate equal to zero. Therefore given an
F ∈ VI(2G), we have that F0 = 0 and this cannot be used as a one-time-pad due
to it’s lack of randomness. We propose to use the rational function Fi that player
pi receives as his share instead, where the evaluations Fj(Pi) = Fi(Pj) of the
players pj act as the shares in Fi.6 It remains to show that we can always VSS a
random but restricted rational function Fi in this way, and that this procedure
does not leak additional useful information to the adversary. The first property
is a consequence of the following theorem.

Theorem 9 Let B be a set in the adversary structure. The mapping VI(2G) ∩
WB(2G) → VI(2G) ∩WB(2G) given by F 7→ Fi is surjective.

The proof is very similar to that of Theorem 8 and omitted here due to space
considerations. As a consequence of this theorem, given any rational function
f ∈ VI(2G) there exists at least one F ∈ VI(2G) such that Fi = f . Moreover,
the VSS does not add new information to the adversary about Fi, as shown in
the following theorem.

Theorem 10 Let B be a set in the adversary structure and F any uniformly
randomly selected element of VI(2G) under the restrictions given above. Then,
the values (Fj)j∈B add no further information about Fi to the information given
by Fi(Pj).

Proof. It suffices to prove that for every rational function f ∈ VI(2G) such
that f(Pj) = 0 for all j ∈ B, we can find an F in VI(2G) such that Fj = 0 for
all j in B and Fi = f . This is again a consequence of Theorem 9. 4

The repetitive type of structural restriction is only needed for the parallel
multiplication scheme and consist of the following. A player wants to VSS a
vector (s, s, . . . , s) of k equal elements in such a way that the coefficients of the

6 This is not known to be possible in the space L(G) as defined here, but any encom-
passing space L(G′) of larger dimension with supp(G′)∩D = ∅ suffices. In particular
this can be done in the space L(2G).



rational share functions F1, F2 and Fn at the basis elements f1, . . . , fk are also
equal.

Let us define the sets Rs(D) = {F ∈ S2(L(D)) : F0(Q1) = · · · = F0(Qk) =
s and Fj(Q1) = · · · = Fj(Qk) ∀j = 0, . . . , n} and Rs(D) = {f ∈ L(D) : f(Q1) =
· · · = f(Qk) = s}. Privacy and existence can, similar to before, be deduced from
the following theorem.

Theorem 11 The mapping Rs(G)∩WB(G) → Rs(G)∩WB(G) given by F 7→ F0

is surjective for any s ∈ Fq.

We omit the proof, as it is very similar to that of Theorems 8 and 9.

Creating a default sharing for (λ(1)
i , λ

(2)
i , . . . , λ

(k)
i ) Consider the vec-

tor λi = (λ(1)
i , λ

(2)
i , . . . , λ

(k)
i ). We here create a default ramp sharing of this

(public) vector that is used later on. To do so, we take the rational function
λi =

∑k
j=1 λ

(j)
i fj ∈ L(G), such that the share of player pj is λi(Pj). Note that

in the parallel multiplication scheme λi(Q`) = λ
(`)
i , while in the extension field

multiplication scheme λi(Q) =
∑k

l=1 λ
(`)
i e`. This sharing is later used to create

VSS’ed shares in the vector (λ(1)
i y, λ

(2)
i y, . . . , λ

(k)
i y) in the space L(2G) from a

VSS of y in the space L(G).

7.2 The MPC Protocols Secure Against an Active Adversary

As usual, addition and multiplication with a constant can be performed locally
by the players. Therefore, the main focus is on the initialization, secure multipli-
cation and reconstruction parts of the protocol. During the multiplication part
of the protocol, the special types of VSS that were introduced in Section 7.1
are used to force the dishonest players to follow the protocol honestly. Due to
this, the protocol can basically be seen as an application of the protocol secure
against an eavesdropping adversary enhanced with checking information that
ensures that players perform the correct steps. We now present the details of the
main protocol parts.

Initialization The dealer verifiably secret shares s, t ∈ Fk
q using uniformly

random elements F ∈ Ss, G ∈ St, resulting in rational functions fi := Fi

and gi := Gi for every player pi and secret sharing functions f0 := F0 and
g0 := G0. For the parallel multiplication scheme we denote fi0 := fi(Q1) and
gi0 := gi(Q1) and similarly for the extension field multiplication scheme we
denote fi0 := π1(fi(Q)) and gi0 := π1(gi(Q)) for i, j = 1, 2, . . . , n.

Using this notation it is to be understood that fi0 is the actual share of player
pi in the scheme based on F and similarly for the gi0 and G. Furthermore, for
both schemes we denote fij := fi(Pj) and gij := gi(Pj) for i, j = 1, 2, . . . , n,
where the share fij can be seen as the share of player pi in the rational function
Fj held by player pj . We also use this convention of using lower case letters to
denote the shares and rational functions for the other VSSes introduced in the
protocols below.



Multiplication The following two protocols describe the main parts of the mul-
tiplication protocol for the parallel multiplication scheme. After proving their
properties, we then sketch the changes required for the extension field multipli-
cation scheme. The general structure of the multiplication protocol is as follows.
First, every player pi simultaneously:

1. Reshares the product aibi of his shares ai and bi in the VSS of the secret
vectors that are to be multiplied in a special format depending on the scheme
involved.

2. Reshares his contribution λiaibi = (λ(1)
i aibi, λ

(2)
i aibi, . . . , λ

(k)
i aibi) in the

output of the multiplication, where the validity of this resharing is verified
using the special resharing created in the previous step.

After this the players can add up their shares in the contributions λiaibi of
the players to obtain shares in the product s � t =

∑n
i=1 λiaibi. Below these

subprotocols are listed for the respective secret sharing schemes.

Protocol 1: (Parallel multiplication) Resharing the input of player pi

Input: Two VSSes with elements F,G ∈ S2(L(G)).
Output: A VSS with D ∈R Rs(G) with s = fi0gi0 or a disqualification for player
pi.
Protocol:

1. Player pi VSSes D ∈R Rs(G).
2. Player pi VSSes S ∈R V{1}(2G).
3. The players publicly verify that s − d0(Q1) + si0 = 0. If not, player pi is

disqualified.

Protocol 2: (Parallel multiplication) Computing contribution player
pi

Input: A VSS with D ∈ Rs(G).
Output: A VSS with Hi ∈R S(λis)(G) or a disqualification for player pi.
Protocol:

1. The players locally generate shares λj in the default sharing of λi.
2. Player pi VSSes Hi ∈R S(λis)(G).
3. Player pi VSSes T ∈R V{1,2,...,k}(2G).
4. The players verify that [λ0d0 − hi

0 + ti](Q`) = 0 for ` = 1, 2, . . . , k. If not,
player pi is disqualified.

We now prove that Protocol 1 is private and correct. Since the privacy and
correctness proofs for the other protocols are very similar, these are omitted.

Theorem 12 At the end of Protocol 1, either player pi has been disqualified, or
the output is a sharing of the correct form.

Proof. The main claim to be verified is that d0(Q`) = fi(Q1)gi(Q1) for
j = 1, 2, . . . , k if player pi is not disqualified at the end of the protocol. We have
fi(Q1)gi(Q1)− d0(Q1) + si(Q1) = 0 iff fi(Q1)gi(Q1) = d0(Q1).



Due to the applications of VSS, every player pj holds a value [figi−d0+si](Pj)
in the rational function [figi − d0 + si]. The rational function [figi − d0 + si]
and the evaluations held by the players now define a ramp sharing scheme over
L(2G) and from our assumptions on the number of players, we know that the
players can efficiently and correctly reconstruct the value [figi − d0 + si](Q1)
from the pooling of their shares. Due to the special VSS structure used for S,
the claim now follows. 4

Theorem 13 If player pi is honest, pooling the shares fijgij−d0(Pj)+sij leaks
no additional information on figi or d0.

Proof. Due to the privacy properties of the secret sharing scheme we can
first assume wlog that the shares (dj)j∈A, (fijgij)j∈A, (sij)j∈A of the adversary
in the three sharings are all equal to zero. The adversary knows a priori that
figi ∈ L(2G) ∩WB(2G), si ∈ V{1}(2G) ∩WB(2G) and d0 ∈ Rs(G) ∩WB(G) for
some s he does not know. He also knows that figi−d0 ∈ V{1}(2G)∩WB(2G). We
must prove that pooling the shares, and therefore learning the rational function
h = figi − d0 + si, adds no further information to this knowledge.

To do so we prove that for any d ∈ Rs(G) ∩WB(G), and f, g ∈ L(G) such
that fg ∈ L(2G) ∩WB(2G) and fg(Q1) = i(Q1), there exist F,G ∈ S2(L(G)),
I ∈ Rs(G) ∩WB(G) and S ∈ V{1}(2G) ∩ WB(2G), such that si0 = 0, fi = f ,
gi = g, d0 = d and figi − d0 + si = h. As a particular case of Theorem 8 we
can see that there exist F,G ∈ S2(L(G)) and D ∈ Rs(G) ∩ WB(G) such that
fi = f , fi = g, d0 = d. Finally take z = h−figi +d0 which is a rational function
in V{1}(2G) ∩WB(2G). As a consequence of Theorem 9 we can show that there
exists S ∈ V{1}(2G) ∩WB(2G) with si = z and that completes the proof.

4

We now briefly describe the adjustments that need to be made to the proto-
cols above in order to obtain equally efficient secure protocols for the extension
field multiplication. The most important modification is that whereas in the pre-
viously listed protocols every player pi VSSes the product s of his local shares
using an element in Rs(G), for the extension field multiplication scheme the VSS
needs to use an element in S(s,0,...,0). The reason for this is that in the second
protocol this allows multiplication with the public sharing for λi in order to
locally create a VSS of λis in L(2G), similar to what is done in Protocol 2. The
second change, which is also required due to the differing structures of the two
schemes, is that in the second scheme the coefficients of the secret vector are ac-
cessed via the projection maps π1, π2, . . . , πk, which requires small adjustments
in the final verification steps of the two protocols.

Share construction Every player pj locally sums his rational function shares
Hi

j , resulting in a rational function share Hj =
∑n

i=1H
i
j in the product s� t.



7.3 Complexity Analysis of the Multiplication Protocol

During the multiplication protocol every player performs a constant number of
VSSes, where every VSS requires O(n2) communication. Therefore, the multi-
plication part requires O(n3) communication for k elements.
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