
David and Goliath Commitments:
UC Computation for Asymmetric Parties

Using Tamper-Proof Hardware

Tal Moran and Gil Segev

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel.

Email: {tal.moran,gil.segev}@weizmann.ac.il

Abstract. Designing secure protocols in the Universal Composability
(UC) framework confers many advantages. In particular, it allows the
protocols to be securely used as building blocks in more complex pro-
tocols, and assists in understanding their security properties. Unfortu-
nately, most existing models in which universally composable computa-
tion is possible (for useful functionalities) require a trusted setup stage.
Recently, Katz [Eurocrypt ’07] proposed an alternative to the trusted
setup assumption: tamper-proof hardware. Instead of trusting a third
party to correctly generate the setup information, each party can create
its own hardware tokens, which it sends to the other parties. Each party
is only required to trust that its own tokens are tamper-proof.
Katz designed a UC commitment protocol that requires both parties to
generate hardware tokens. In addition, his protocol relies on a specific
number-theoretic assumption. In this paper, we construct UC commit-
ment protocols for “David” and “Goliath”: we only require a single party
(Goliath) to be capable of generating tokens. We construct a version of
the protocol that is secure for computationally unbounded parties, and a
more efficient version that makes computational assumptions only about
David (we require only the existence of a one-way function). Our proto-
cols are simple enough to be performed by hand on David’s side.
These properties may allow such protocols to be used in situations which
are inherently asymmetric in real-life, especially those involving individ-
uals versus large organizations. Classic examples include voting protocols
(voters versus “the government”) and protocols involving private medical
data (patients versus insurance-agencies or hospitals).

1 Introduction

Designing secure protocols that run in complex environments, such as those typi-
cally found in real-world applications, is a very challenging task. The design must
take into account that such protocols may be executed concurrently with multi-
ple other copies of the same protocol (e.g., many voters voting at the same time)
or with different protocols (e.g., performing an electronic bank transaction in re-
sponse to the results of an on-line auction). The Universal Composability (UC)

framework was introduced by Canetti [5] to model the security of cryptographic
protocols when executed in such environments. Protocols proven secure within
the UC framework are, in particular, secure even under arbitrary composition.

Unfortunately, it turns out that unless a majority of the participating parties
are honest (which can never be assumed when there are only two participants),
almost no useful functionality can be securely realized in this framework [7, 8]. On
the positive side, however, Canetti and Fischlin [7] managed to circumvent these
impossibility results by assuming a strong form of setup – a common reference
string (CRS). This suffices for realizing any (well-formed) functionality in the
UC framework while tolerating any number of dishonest parties [9].

The main drawback of assuming the availability of a CRS is that this requires
trust in the party that constructs the CRS, and there are no security guarantees
if the CRS is set in an adversarial manner. This state of affairs motivated the
research of alternative setup assumptions that can circumvent the impossibility
results, and imply the feasibility of securely realizing natural functionalities in
the UC framework. A variety of alternative setup assumptions have already been
explored, such as public-key registration services [1, 6], signature cards [19] and
a variation of the CRS assumption in which multiple strings are available [18].

The above mentioned setup assumptions still require trust in at least some
parties in the system. Recently, Katz [20] proposed an alternative assumption
that eliminates the need for such trusted parties. Katz suggested basing UC
computations on a physical assumption: the existence of tamper-proof hard-
ware. Under this assumption, an honest party can construct a hardware token
TF implementing any polynomial-time functionality F , but an adversary given
the token TF can do no more than observe the input/output characteristics
of this token. Katz showed that such a primitive can be used, together with
standard cryptographic assumptions, to realize the ideal multiple commitment
functionality in the UC framework while tolerating any number of dishonest
parties, and hence to realize general UC multi-party computation [9].

1.1 Our Contributions

We revisit Katz’s proposal of basing universally composable computations on
tamper-proof hardware. More specifically, we focus on realizing the ideal com-
mitment functionalities (which suffice for realizing general UC multi-party com-
putation [9]). In this work, we construct UC commitment protocols using tamper-
proof hardware tokens that have several advantages over Katz’s protocol:

David and Goliath: asymmetric assumptions suffice. Katz’s commitment
protocol is symmetric with respect to the assumptions about the two parties:
both parties must create a hardware token, and both must assume that their to-
ken is proof against tampering by the other party. In many situations, however,
the two participating parties are not symmetric. For example, in a voting sce-
nario, voters may not be able to create their own hardware, or may not trust that
hardware they create (or buy) is truly “tamper-proof” against the government
(the other party in a voting protocol).

Our commitment protocols only require a single party (Goliath) to generate
a token. The other party (David) must ensure the token cannot communicate
with Goliath, but does not have to make any assumptions about the power of
Goliath. We construct different commitment protocols for Goliath as the sender
and for Goliath as the receiver.
Reducing the computational assumptions. In addition to relying on the
existence of tamper-proof hardware tokens, Katz’s protocol relies on a specific
number-theoretic assumption — the decisional Diffie-Hellman assumption. Katz
posed as an open problem to rely on general computational assumptions (under
the assumption that tamper-proof hardware exists). We answer this open prob-
lem and reduce the required computational assumptions. Our contributions in
this regard are as follows:

– We demonstrate that computational assumptions are not necessary in order
to realize the ideal functionality FCOM (this functionality allows a single
commitment for each hardware token) if we assume the existence of tamper-
proof hardware tokens. That is, our protocols that realize FCOM do not rely
on any computational assumptions. These protocols are also secure against
adaptive adversaries (although the proof for the adaptive case is deferred to
the full version of the paper).

– We demonstrate that the existence of one-way functions suffices in order to
realize the ideal functionality FMCOM (this functionality allows a polynomial
number of concurrent commitments using the same hardware token) if we
also assume the existence of tamper-proof hardware tokens.

– In keeping with the David and Goliath theme, even the protocols based on
one-way functions do not make assumptions about Goliath’s computational
power.

“Bare-handed” protocols. The protocols presented in this paper are highly
efficient, and in particular require David to perform only a few (elementary
and simple) operations, such as comparing two bit-strings or computing the
exclusive-or of two bit-strings (even in the protocol based on one-way functions).
When David is the receiver, these operations can be performed by “bare-handed”
humans without the aid of computers (when David is the sender, he may require a
calculator). Such a property is useful in many situations where computers cannot
be trusted or where “transparency” to humans is essential (which is the case,
for example, when designing voting protocols). In addition, the same efficiency
guarantees hold for the hardware tokens in the protocols that are secure against
computationally unbounded adversaries; such tokens may be constructed using
extremely constrained devices.

1.2 Related Work

Basing cryptographic protocols on physical assumptions. Basing cryp-
tographic protocols on physical assumptions is a common practice. Perhaps the
most striking example is the field of quantum cryptography, where the physics of

quantum mechanics are used to implement cryptographic operations – some of
which are impossible in the “bare” model. For example, Bennett and Brassard
[2] achieved information-theoretically secure key agreement over public channels
based only on assumptions about the physics of quantum mechanics.

Much work has been done on basing commitment schemes and oblivious
transfer protocols on the physical properties of communication channels, using
the random noise in a communication channel as the basis for security. Both
commitment schemes and oblivious transfer protocols were shown to be realiz-
able in the Binary Symmetric Channel model [13, 14], in which random noise
is added to the channel in both directions with some known probability. Later
works show that they can also be implemented, under certain conditions, in the
weaker (but more convincing) Unfair Noisy Channel model [15, 16], where the
error probability is not known exactly to the honest parties, and furthermore
can be influenced by the adversary.

The work of Katz [20] was inspired by works of Chaum and Pedersen [11],
Brands [4], and Cramer and Pedersen [12] that proposed the use of smartcards
in the context of e-cash. The reader is referred to [20] for a brief description of
their approach. More recently, Moran and Naor [21] demonstrated the possibil-
ity of implementing oblivious transfer, bit-commitment and coin flipping based
on “tamper-evident seals” that model very intuitive physical models: sealed en-
velopes and locked boxes.

Concurrent independent work. Independent of this paper, Chandran, Goyal
and Sahai [10] and Damg̊ard, Nielsen and Wichs [17] address the problem of bas-
ing universally composable computations on tamper-proof hardware, and con-
struct protocols realizing the ideal multiple commitment functionality FMCOM.

Chandran et al. [10] show that FMCOM can be realized based on tamper-proof
hardware tokens and one-way functions. The main advantage of their approach
is that their security proof does not rely on the simulator’s ability to rewind
hardware tokens. This gives their protocol security against reset attacks (where
the adversary can rewind the tokens). In particular, their protocol does not
require hardware tokens to keep state between invocations. In addition, their
protocol does away with the requirement that the parties know the code of the
token which they distribute (we note that this assumption is essential both to
Katz’s construction and to ours).

Damg̊ard et al. [17] focus on relaxing the “isolation” requirement and allow
the hardware tokens to communicate with the outside world as long as the
number of communicated bits in both direction is below some pre-determined
threshold (which is polynomial in the security parameter). With this relaxation
in mind, they realize FMCOM assuming the existence of one-way permutations and
a semantically-secure dense public-key encryption scheme with pseudorandom
ciphertexts.

The main advantage of our work over those of Chandran et al. [10] and
Damg̊ard et al. [17] is that in our constructions only one of the parties is required
to create its own hardware token. As argued above, this is desirable and often
essential in many scenarios. The constructions of Chandran et al. and Damg̊ard

et al. require that each party creates its own hardware token. That is, it is
assumed that both parties have the resources required to create hardware tokens.

1.3 Paper Organization

The remainder of this paper is organized as follows. For those not familiar with
the UC framework, we give some background in Section 2, as well as formal
definitions of the different commitment functionalities. In Section 3, we briefly
review the formal model for tamper-proof hardware tokens. In Section 4, we
describe our protocols for UC commitment where Goliath is the sender, and
sketch their proof of security. Section 5 does the same for the protocol in which
David is the sender. Finally, Section 6 contains a discussion and some open
problems.

2 The UC Commitment Functionalities

Many two-party functionalities can be easily implemented in a natural “secure”
manner using a trusted third party that follows pre-agreed rules. In proving that
a two-party protocol is secure, it is highly desirable to argue that the protocol
behaves “as if it was performed using the trusted third party”. The Univer-
sally Composability (UC) framework is a formalization of this idea. In the UC
framework, the trusted third party is called the ideal functionality. The ideal
functionality is described by an interactive Turing machine that can communi-
cate by authenticated, private channels with the participants of the protocol.
We refer the reader to [5] for a more detailed exposition.

In the UC framework two ideal commitment functionalities are considered:
functionality FCOM that handles a single commitment-decommitment process,
and functionality FMCOM that handles multiple such processes. The advantage
of FMCOM over FCOM in our setting is that protocols that securely realize FMCOM

may use the same hardware token for multiple commitments.
In this paper we consider an additional ideal commitment functionality, one

that handles a bounded number of commitment-decommitment processes. We
refer to this functionality as the ideal bounded commitment functionality FBCOM .
Formal descriptions of FCOM, FBCOM and FMCOM are provided in Figures 1, 2
and 3, respectively.

Functionality FCOM

1. Upon receiving (commit, sid, P, P ′, b) from P , where b ∈ {0, 1}, record the value
b and send (receipt, sid, P, P ′) to P ′ and the adversary. Ignore any subsequent
commit messages.

2. Upon receiving (open, sid, P, P ′) from P , if some value b was previously recorded
then send (open, sid, P, P ′, b) to P ′ and the adversary and halt. Otherwise halt.

Figure 1: The ideal commitment functionality.

Functionality FBCOM

FBCOM is parameterized by a bound n on the number of allowed commitment-
decommitment processes and an implicit security parameter k, and stores an internal
counter j initialized to 0.

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, if j < n then
set j ← j + 1, record (cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the
adversary. Ignore any subsequent (commit, sid, cid, P, P ′, ?) messages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previ-
ously recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise
halt.

Figure 2: The ideal bounded commitment functionality.

Functionality FMCOM

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, record
(cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the adversary. Ignore any
subsequent (commit, sid, cid, P, P ′, ?) messages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previ-
ously recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise
halt.

Figure 3: The ideal multiple commitment functionality.

3 Modeling Tamper-Proof Hardware

Our formulation of tamper-proof hardware tokens is based on the one provided
by Katz [20]. Katz defined an ideal “wrapper” functionality, FWRAP, which cap-
tures the intuitive idea that an honest party can construct a hardware token TF

implementing any polynomial-time functionality F , but an adversary given the
token TF can do no more than observe the input/output characteristics of this
token. An honest party, given a token T ′

F ′ by an adversary, has no guarantee re-
garding the function F ′ that this token implements (other than what the honest
user can deduce from the input/output of this device).

Figure 4 describes our formulation of the ideal functionality FWRAP. Infor-
mally, a party P is allowed to create a hardware token, which is then delivered
to P ′. We refer to P as the creator of the token, and to P ′ as the user of the
token. The hardware token encapsulates a Turing machine M which is provided
by the creator P . At this point, the functionality allows the user P ′ to interact
with the Turing machine M in a black-box manner. That is, P ′ is allowed to
send messages of its choice to M via the wrapper functionality, and receive the
corresponding answers.

As in Katz’s formulation, we assume that the tokens are partially isolated,
in the sense that a token cannot communicate with its creator. Our formulation
also allows the tokens to maintain state between invocations. Although tokens
created by honest parties are only required to maintain a limited state (such as
the current round number), we allow tokens created by adversarial parties to
maintain arbitrary state across invocations.

Functionality FWRAP

FWRAP is parametrized by a polynomial p(·) and an implicit security parameter k.

1. Upon receiving (create, sid, P, P ′, M) from P , where M is a description of a Turing
machine, do:
(a) Send (create, sid, P, P ′) to P ′.
(b) If no tuple of the form (P, P ′, ?, ?) is stored, then store (P, P ′, M,⊥).

2. Upon receiving (run, sid, P, msg) from P ′, do:
(a) If no tuple of the form (P, P ′, ?, ?) is stored, then halt. Otherwise, retrieve the

unique stored tuple (P, P ′, M, state).
(b) Run M(msg, state) for at most p(k) steps, and denote the result by

(out, state′). If M does not respond in the allotted time then set out = ⊥
and state′ = state.

(c) Send (sid, P, out) to P ′, store (P, P ′, M, state′) and erase (P, P ′, M, state).

Figure 4: The ideal FWRAP functionality.

4 Constructing Goliath Commitments

In this section we describe protocols that realize the ideal bounded commitment
functionality, FBCOM (see Figure 2), and the ideal multiple commitment func-
tionality, FMCOM (see Figure 3). In these protocols, only the sender creates a
hardware token (i.e., the sender is the powerful Goliath). Our protocol for real-
izing FBCOM does not rely on any computational assumptions, and our protocol
for realizing FMCOM relies on the existence of any one-way function. In specifying
the protocols we treat the hardware token as one of the parties in the protocol.
The code executed by the token (i.e., the description of the Turing machine M
sent to FWRAP) is implicitly described by the token’s role in the protocol.

Notation. For a bit m, we denote m
def
= m ◦ · · · ◦m ∈ {0, 1}k the k-bit string

consisting of k copies of m. We denote the bitwise complement of a string m by
m̄. The bitwise xor of two strings, a and b is denoted a ⊕ b, while the bitwise
and of a and b is denoted a� b.

4.1 Realizing the Ideal FBCOM Functionality

The intuition underlying our commitment protocol is that the hardware token
is already a form of commitment — the sender is committing to a program that

is hidden by the wrapping functionality, and cannot be changed once it is sent.
The sender “hides” the comitted value in the program. The problem is that the
receiver should not be able to extract the value before the opening phase. We
solve this by using the fact that the token cannot communicate with the sender;
the receiver sends the token a random challenge whose response depends on
the hidden value, but does not reveal it. Because the sender does not know the
challenge, he will be caught with high probability if he attempts to equivocate
in the opening phase.

A formal description of the protocol is provided in Figure 5, which is followed
by a sketch of its security proof.

Protocol BCOMGoliath

Joint input: a security parameter k, and a bound n on the number of allowed
commitment-decommitment processes.

Setup phase. The sender chooses n random pairs (ai, bi)
R← {0, 1}k × {0, 1}k and

creates a token with these parameters. The token also contains state in the form of a
counter j initialized to 0. The sender sends the token to the receiver.

Commit phase. Denote the sender’s input by (cid, m), and denote by i the number of
invocations of the commit phase so far between the sender and the receiver. We assume
w.l.o.g. that cid = i (otherwise, both sides can maintain a database that translates
between the two).

1. The sender computes xi ← ai ⊕ bi ⊕m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends
⊥ to the receiver and halts). It increments the counter j ← j + 1. The token
computes yi ← ai � ci ⊕ bi � c̄i and sends (i, yi) to the receiver (this is equivalent
to letting each bit of ci choose whether to send the corresponding bit of ai or the
corresponding bit of bi).

Opening phase.

1. The sender sends m and (i, ai, bi) to the receiver.
2. The receiver computes zi ← ai ⊕ bi and verifies that zi ⊕ xi = m and that ai �

ci ⊕ bi � c̄i = yi. If not, it outputs ⊥ and halts. Otherwise, it outputs m.

Figure 5: Protocol BCOMGoliath.

Security intuition. To see why the protocol is hiding, note that after the
commit phase the value a⊕ b remains uniformly distributed from the receiver’s
point of view, regardless of the value of m (since, for every index `, the receiver
can choose to learn either the `th bit of a or the `th bit of b, but not both).

The protocol is binding because in order to equivocate, the sender must
change at least 1

2k bits of a and b in the opening phase. Because the sender does
not know the challenge sent to the token, and hence does not know which bits

of a and b the receiver has already seen, if it tries to equivocate it will be caught
with overwhelming probability.

Proof sketch. For simplicity we sketch the proof of security only for the case
of a static adversary, as this case already captures the important ideas in the
proof. A complete proof for the case of an adaptive adversary will be provided
in the full version of this paper. In order to prove that the protocol realizes
FBCOM we need to construct a polynomial-time simulator S (an ideal adversary)
such that for any polynomial-time environment machine Z and real-world A, it
holds that Z cannot distinguish between the ideal world and the real world with
non-negligible advantage. In this sketch we focus on the two cases in which only
one of the parties is corrupted. The cases in which both parties are corrupted or
both parties are honest are dealt with in a straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of
all the real-world parties and functionalities: the sender, the receiver and FWRAP

(this includes a simulation of the hardware token). Unless explicitly specified by
the simulation protocols below, the simulated honest parties and FWRAP follow
the honest protocol exactly. S keeps a “simulated view” for each honest party,
consisting of the party’s input (in the sender’s case), its random coins, and the
transcript of messages that party received throughout the simulation. At some
points in the simulation, S may “rewrite” the simulated view of an honest party.
It makes sure the new simulated view is consistent with any messages previously
sent by that party to a corrupt party (note that FWRAP can never be corrupted,
so messages sent to FWRAP may be changed as well).

Corrupted receiver. In the setup phase S simulates the interaction between
FWRAP, the honest sender and the corrupt receiver. That is, it chooses n random
pairs (ai, bi) and sends to the simulated copy of FWRAP a description of the
Turing machine which was specified by the protocol.

Whenever S receives a message (receipt, i) from FBCOM , it chooses a random
bit m′

i and simulates the honest sender with input (i,m′
i) interacting with the

receiver and with the token. In this case it may be that S is simulating the honest
sender with the wrong input, that is, in the ideal world the sender committed to
mi which is different from m′

i. We claim, however, that the view of the simulated
receiver is independent of the committed bit and thus the view of A is identically
distributed in both cases. The view of the simulated receiver consists of xi =
ai⊕bi⊕m′

i and yi ← ai�ci⊕bi�c̄i. Each bit of yi reveals either the corresponding
bit of ai or the corresponding bit of bi. This implies that the value ai ⊕ bi

is uniformly distributed from the receiver’s point of view, and therefore xi is
uniformly distributed as well.

Whenever S receives a message (open, i,mi) from FBCOM there are two pos-
sible cases. In the first case, it holds that m′

i (the bit with which S simulated the
i-th commit stage) is the same as the revealed bit mi. In this case S simulates
the honest sender following the opening phase of the protocol. The simulation is
clearly perfect in this case. In the second case, it holds that m′

i 6= mi. If the simu-
lated receiver sent some ci to the token in the i-th commit phase, then S rewrites
the history of the simulated sender by replacing ai and bi with âi ← ai ⊕ c̄i and

b̂i ← bi ⊕ ci, and simulates the sender in the opening phase. Note that the new
values satisfy yi = ci� âi⊕ c̄i� b̂i and âi⊕ b̂i⊕xi = mi (and are uniformly dis-
tributed given this view), and therefore the simulation matches the real world.
If the receiver did not send ci to the token in the i-th commit phase, then S
internally rewinds the token to the point in which commit(i,m′

i) was invoked
and reruns the simulation from that point, replacing m′

i with mi and leaving
all other inputs and random coins without change. Since the token is just part
of the simulation of FWRAP, and S knows the code it is executing, it can effi-
ciently rewind it. Note that the messages seen by the receiver do not change and
therefore the simulation is correct.

Corrupted sender. In the setup phase S simulates FWRAP to A who sends a
description of a Turing machine M to FWRAP. S now has a description of M and
this will be used to rewind the simulated token at a later stage.

Whenever A initiates a new commit phase (say, the i-th commit phase), S
simulates the honest receiver in this execution. If the commit phase was suc-
cessful, then S needs to “extract” the bit mi to which the corrupted sender
committed to in order to instruct the sender in the ideal world to send this bit
to FBCOM . S rewinds the simulated token to the point in time before the honest
receiver sent the challenge ci to the token. S instead simulates sending (i, c̄i)
as the challenge. Denote the response y′i. Now S “guesses” the values ai and bi

using the original response yi and the new response y′i as follows: if the first bit
of ci was 1, then S sets the first bit of the guess for ai to be the first bit of yi,
otherwise it sets the first bit of the guess for bi to be the first bit of y′i. Similarly
S “guesses” all the bits of ai and bi. Denote by a′i and b′i these guesses. S sets m′

i

as the majority of the bit-string a′i ⊕ b′i ⊕ xi. S then instructs the ideal sender
to send (commit, i,m′

i) to FBCOM .
Whenever A initiates a new opening phase by sending (i, ai, bi) to the sim-

ulated receiver, S simulates the honest receiver in the opening phase. If yi =
ci � ai ⊕ c̄i � bi and xi ⊕ ai ⊕ bi = mi, where mi is the bit that S instructed
the ideal sender to send to FBCOM in the i-th commit phase, then S instructs
the ideal sender to send (open, i) to FBCOM . In this case we have that mi = m′

i

and therefore the simulation is perfect. If the latter verification step fails, then S
halts. The key point is that this happens only with negligible probability. That
is, the probability that the corrupted sender manages to reveal its commitment
to a bit different than m′

i is negligible.
In order to prove that the latter probability is indeed negligible, we consider

the following game between two provers and a verifier: The verifier chooses a
random bit c and sends it to the first prover. The first prover sends a bit y,
and the second prover sends the bits (a, b, a′, b′). The verifier accepts if a⊕ b =
¬(a′⊕b′) and y = a�c⊕b� c̄ = a′�c⊕b′� c̄. If the provers cannot communicate,
the verifier will accept with probability at most 1/2 since for a⊕ b = ¬(a′ ⊕ b′)
to hold, either a 6= a′ (in which case when c = 1 the verifier does not accept) or
b 6= b′ (in which case when c = 0 the verifier does not accept).

In our protocol, if we consider only a single bit from each of the strings
ai, bi, ci, xi and yi, we can think of the sender and receiver as playing this game:

the receiver is the verifier, and the sender and token are the two provers. The
sender “wins” (causes the receiver to accept) if it opens that bit of the commit-
ment to a different value than that “extracted” by the simulator in the commit
phase. In the real protocol’s commit phase, the game is played k times in par-
allel. Since the actual bit extracted by the simulator is the majority of the bits
extracted from each of the games, in order for the sender to successfully open
the commitment to a different bit, it must win in at least k/2 games. By the
Parallel Repetition Theorem [22], the probability that the verifier accepts is
exponentially small in the number of parallel repetitions.

4.2 Realizing the Ideal FMCOM Functionality

We show a simple variation of protocol BCOMGoliath that realizes the ideal FMCOM

functionality. In the setup phase of BCOMGoliath, the sender chooses several ran-
dom pairs (ai, bi) and creates a token with these parameters. The number of
commitments the protocol supports is therefore limited to the number of such
pairs. However, if we are willing to rely on computational assumptions, the pairs
(ai, bi) can be obtained as the output of a pseudorandom function on input i.

In the setup phase of the new protocol MCOMGoliath the sender chooses ran-
dom seeds a and b for a family of pseudorandom functions F = {fs}. The
protocol then proceeds exactly as BCOMGoliath with the pairs (fa(i), fb(i)). A
formal description of the protocol is provided in Figure 6.

In order to argue that protocol MCOMGoliath realizes FMCOM we first con-
sider the protocol BCOMGoliath when parametrized with n = 2k (recall that k
is the security parameter and n is the number of allowed commitments). With
these parameters, the setup phase of the protocol consists of the sender choosing
n = 2k random pairs (ai, bi), and the protocol allows the sender and the receiver
to perform 2k commitments – in particular it realizes FMCOM in the computa-
tional setting (ignoring the fact that the setup phase and the storage required
by the token are exponential). Now, we claim that no polynomial-time adver-
sary can distinguish between this protocol and the protocol MCOMGoliath with
non-negligible probability, as any such adversary can be used in a straightfor-
ward manner to distinguish a random function chosen from the family F from a
completely random function with non-negligible probability. Therefore, protocol
MCOMGoliath realizes the ideal FMCOM functionality.

Since this proof relies on the seeds of the pseudorandom functions remaining
secret from the adversary, it cannot be used to prove security against an adaptive
adversary. In particular, the token’s response in step 3 of the Commit phase may
form a commitment to the seeds (a, b), in which case MCOMGoliath is not secure
against an adaptive adversary.

5 Constructing David Commitments

In this section we describe a protocol that realizes the ideal commitment func-
tionality FCOM (see Figure 1) without any computational assumptions, where

Protocol MCOMGoliath

Joint input: a security parameter k, and a family F of pseudorandom functions
fs : {0, 1}k → {0, 1}k.

Setup phase. The sender chooses random seeds a and b for the family F and creates
a token with these parameters. The token also contains state in the form of a counter
j initialized to 0. The sender sends the token to the receiver.

Commit phase. Denote the sender’s input by (cid, m), and denote by i the number of
invocations of the commit phase so far between the sender and the receiver. We assume
w.l.o.g. that cid = i (otherwise, both sides can maintain a database that translates
between the two).

1. The sender computes xi ← fa(i)⊕ fb(i)⊕m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends ⊥ to
the receiver and halts). It increments the counter j ← j + 1. The token computes
yi ← fa(i) � ci ⊕ fb(i) � c̄i and sends (i, yi) to the receiver (this is equivalent to
letting each bit of ci choose whether to send the corresponding bit of fa(i) or the
corresponding bit of fb(i)).

Opening phase.

1. The sender sends m and (i, fa(i), fb(i)) to the receiver.
2. The receiver computes zi ← fa(i) ⊕ fb(i) and verifies that zi ⊕ xi = m and that

fb(i)� ci⊕ fa(i)� c̄i = yi. If not, it outputs ⊥ and halts. Otherwise, it outputs m.

Figure 6: Protocol MCOMGoliath.

only the receiver creates a hardware token (i.e., the sender is the limited David).
In specifying the protocol we again treat the hardware token as one of the pro-
tocol participants. The code executed by the token (i.e., the description of the
Turing machine M sent to FWRAP) is implicitly described by the token’s role in
the protocol.

The intuition behind the protocol is that David can perform a commitment
protocol with the token. Since there is no communication at all with Goliath,
the commitment would be perfectly hiding. In such a case, however, David could
postpone the interaction with the token to the opening phase (thus enabling him
to equivocate). To overcome this problem, David must prove to Goliath during
the commit phase that he has already interacted with the token. David does
this by giving Goliath a “password” that was contained in the token. However,
to prevent the token from using the password to give information about his
commitment, David first “tests” Goliath to ensure that he already knows the
password. In the opening phase, David sends Goliath a second password (that
does depend on the committed bit), which Goliath can verify.

A formal description of the protocol is provided in Figure 7, which is followed
by a sketch of its security proof. A complete proof will be provided in the full
version of the paper.

Protocol COMDavid

Joint input: a security parameter k.

Setup phase. The receiver chooses four random values s, t
R← {0, 1}k, u, v

R← {0, 1}k/2,
and creates a token with these parameters. The token contains a flag j initialized to 0.
The receiver sends the token to the sender.

Commit phase. Denote the sender’s input by m ∈ {0, 1}.

1. The sender chooses two random values a, b
R← {0, 1}k/2 and sends a to the token.

2. The token verifies that the internal flag j = 0 (otherwise it sends ⊥ to the sender
and halts). It sets j ← 1. The token computes x ← u · a + v (the computation is
in GF [2k/2]) and sends s, t and x to the sender.

3. The sender chooses a random challenge c
R← {0, 1}k and sends it the receiver, who

replies with y = s · c + t (the computation is in GF [2k]).
4. The sender verifies that y = s · c + t, and in this case the sender sends to the

receiver s, t, z = 〈a, b〉 ⊕m and b. If the verification fails then the sender halts.

Opening phase.

1. The sender sends m, a and x to the receiver.
2. The receiver verifies that x = u · a + v and that z ⊕ 〈a, b〉 = m. If not, it outputs
⊥ and halts. Otherwise, it outputs m.

Figure 7: Protocol COMDavid.

Proof sketch. We sketch the proof of security for the case of a static adversary.
In order to prove that the protocol realizes FCOM we need to construct simulator
S (an ideal adversary) such that for any polynomial-time environment machine
Z and real-world adversary A, it holds that Z cannot distinguish between the
ideal world and the real world with a non-negligible advantage. We note that our
simulator in this proof runs in expected polynomial time (whereas the simulators
in the previous section run in strict polynomial time). In this sketch we focus
on the two cases in which only one of the parties is corrupted. The cases in
which both parties are corrupted or both parties are honest are dealt with in a
straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of
all the real-world parties and functionalities: the sender, the receiver and FWRAP.
Unless explicitly specified by the simulation protocols below, the simulated hon-
est parties and FWRAP follow the honest protocol exactly. S keeps a “simulated
view” for each honest party, consisting of the party’s input (in the sender’s case),
its random coins, and the transcript of messages that party received throughout
the simulation. At some points in the simulation, S may “rewrite” the simulated
view of an honest party. It makes sure the new simulated view is consistent with
any messages previously sent by that party to a corrupt party (note that FWRAP

can never be corrupted, so messages sent to FWRAP may be changed as well).

Corrupted receiver. In the setup phase S simulates FWRAP to A who sends (on
behalf of the simulated receiver) a description of a Turing machine M to FWRAP.
S now has a description of M and this will be used to rewind the simulated
token at a later stage.

When S receives a message (receipt) from FCOM, it chooses a random bit m′

and simulates the honest sender with input m′ interacting with the receiver and
with the token. In this case it may be that S is simulating the honest sender with
the wrong input, that is, in the ideal world the sender committed to m which is
different from m′. We claim however, that the view of the simulated receiver is
statistically-close to be independent of the committed bit.

The view of the simulated receiver consists of the challenge c, and of s, t, z =
〈a, b〉 ⊕ m′ and b. First, note that if the sender halts before sending the last
message of the commit phase, the receiver’s view is completely independent of
the input bit (since it only affects the last message). So we only need to show
that the view is statistically close to independent of m′ conditioned on the sender
completing the commitment phase successfully.

Since b is only sent in the last message, we can think of it being chosen
then. Informally speaking, if there are many values of a for which the token
returns some specific s and t, then by choosing b at random, with overwhelming
probability 〈a, b〉 = 0 for approximately half of them. Therefore z = 〈a, b〉 ⊕m′

will be almost uniformly distributed, and hence almost independent of m′. If, on
the other hand, there are only a few values of a for which the token returns some
specific s and t, then the probability that the receiver given a random challenge
c can predict s · c + t (and thus allow the sender to complete the commit phase)
is negligible.

Whenever S receives a message (open,m) from FBCOM there are two possible
cases. In the first case, it holds that m′ (the bit with which S simulated the
commit stage) is the same as the revealed bit m. In this case S simulates the
honest sender following the opening phase of the protocol. The simulation is
clearly perfect in this case. In the second case, it holds that m′ 6= m. Denote by
a the value that the simulated sender sent to the token in the simulated commit
stage. The goal of the simulator is to rewind the simulated token and feed it
with random values a′ satisfying 〈a′, b〉 ⊕ z = m′ until either 2k iterations have
passed or until the token outputs (s′, t′, x′) where s′ and t′ are the same s and
t that the token output when it was given a. If more than 2k iterations have
passed, then S fails and halts. Otherwise, S simulates the honest sender in the
opening phase by sending a′, x′ and m′. Clearly, if S does not halt and manages
to find such a′, then the simulation is correct. In what follows we argue that the
expected running time of the simulator is polynomial in the security parameter
k.

We show that for any set of random coins of the corrupted receiver, the ex-
pected running time of S is upper bounded by a (fixed) polynomial. Fix the
random coins of the receiver, then the receiver and the token define two func-
tions: the token defines the function T (a) = (s, t, x) and the receiver defines the
function y(c). Then the expected number of iterations performed by S is given
by

E [Iterations] =
∑
s,t,c

Pra [s, t] · Prc [c] · E [Iterations|s, t, c] .

Notice that if the tuple (s, t, c) is not consistent, in the sense that s · c+ t 6= y(c),
then the simulator halts. In addition, conditioned on s and t, the expected num-
ber of iterations is independent of c and is equal 1/Pra [s, t] (here we ignore the
requirement that 〈a′, b〉 ⊕ z = m′, since b was chosen after s and t were deter-
mined, and therefore this requirement will only multiply the expected running
time by some constant). Therefore,

E [Iterations] = 2−k ·
∑

consistent (s,t,c)
s.t. Pr[s,t]>0

Pra [s, t] · 1
Pra [s, t]

= 2−k ·
∑

c

|{(s, t) : Pra [s, t] > 0 and (s, t, c) is consistent}| .

We conclude the argument by showing that the above sum is at most O(2k) which
implies that E [Iterations] is constant. Consider the bipartite graph G = (L,R,E)
defined as follows. The left set L is the set of all pairs (s, t) for which Pra [s, t] > 0.
Notice that since a ∈ {0, 1}k/2 then |L| ≤ 2k/2. The right set R is the set of
all possible c values, i.e., the set {0, 1}k. Finally, an edge ((s, t), c) exists if the
tuple (s, t, c) is consistent, i.e., satisfies s · c+ t = y(c). The above sum is exactly
the number of edges in the graph: for every c ∈ R we count the number of
incoming edges ((s, t), c). The useful property of this graph is that it does not
contain any cycles of length 4: it is straightforward to verify that there cannot
be two different left-side vertices (s1, t1) and (s2, t2), and two different right-side

vertices c1 and c2 that form a cycle of length 4). We can thus use the following
theorem to conclude that the number of edges in the graph is at most O(2k):

Theorem 1 ([3], Chapter 6, Theorem 2.2). Let Z(m,n; s, t) be the minimal
number such that any bipartite graph with vertex parts of orders m and n and
Z(m,n; s, t) edges must contain as a subgraph Ks,t (the complete bipartite graph
with vertex parts of orders s and t). Then

Z(m,n; s, t) < (s− 1)1/t(n− t + 1)m1−1/t + (t− 1)m .

Note that K2,2 is a cycle of length 4, hence the number of edges in the graph is
bounded by Z(2k, 2k/2; 2, 2) < (2k/2 − 1)(2k)1/2 + 2k < 2k+1.

Corrupted sender. In the setup phase S simulates the interaction between
FWRAP, the corrupted sender and the honest receiver. That is, it chooses (on
behalf of the receiver) random values s, t, u and v, and sends to the simulated
copy of FWRAP a description of the Turing machine which was specified by the
protocol.

Whenever A initiates a commit phase, S simulates the honest receiver in this
execution. If the commit phase was successful, then S needs to “extract” the bit
m to which the corrupted sender is committed in order to instruct the sender in
the ideal world to send this bit to FCOM. If the corrupted sender sent a value a
to the simulated token, then S computes m′ = 〈a, b〉⊕z and instructs the sender
in the ideal world to send (commit,m′) to FCOM. if the sender did not send any
value to the token, S chooses a random bit m′ and instructs the sender in the
ideal world to send (commit,m′) to FCOM.

Whenever A initiates a new opening phase by sending (a, x, m) to the sim-
ulated receiver, then S simulates the honest receiver in the opening phase. If
x = u · a + v and z ⊕ 〈a, b〉 = m, where u, v, z and b are the values from the
commit phase, and m = m′ where m′ is the bit that the ideal sender sent to
FCOM in the commit phase, then S instructs the ideal sender to send (open) to
FCOM. In this case the simulation is perfect. If the latter verification step fails,
then S halts. The key point is that this happens only with negligible proba-
bility. That is, the probability that the corrupted sender manages to reveal its
commitment to a bit different than m′ is negligible. This is because in order to
open his commitment to a different bit, the sender must send some a′ 6= a in the
opening phase. However, to successfully pass verification, the sender must guess
the value for u · a′ + v (having seen, at most, u · a + v). Since these values are
independent, the sender guesses correctly with negligible probability.

6 Discussion and Open Problems

Multiple commitment functionality for David. Our protocol for commit-
ment when David is the sender only realizes the FCOM functionality. Unfortu-
nately, this is an inherent limitation in the protocol rather than an artifact of the
proof; when commit is invoked multiple times using the same hardware token,

the token’s messages when opening a commitment can reveal information about
other commitments (that have not yet been opened). Constructing an FMCOM

functionality for David is an interesting open problem.
We note that the protocol can be composed serially using a single token (as

long as every commitment is opened before the next one is invoked). Using the
same idea as we did in Goliath’s commitment protocol, we can then replace the
random values with a pseudorandom function to extend the functionality to any
polynomial number of serial invocations (this means that the actual number of
hardware tokens needed depends only on the maximum number of concurrent
commitments).
Human-compatible commitment for David. David’s commitment protocol
(cf. Figure 7) requires David to perform a multiplication and an addition oper-
ation in a large finite field. While this may be possible to do on paper (or with
a calculator), it would be useful to find a protocol that can be performed using
simpler operations (as is the case with Goliath’s commitment protocols).
Strict polynomial-time simulation for David’s commitment. The simu-
lator for David’s commitment protocol, unlike Goliath’s, runs in expected poly-
nomial time when Goliath is corrupted (rather than strict polynomial time). Al-
though we prove this protocol is secure even for a computationally unbounded
Goliath, it is still an interesting question whether a protocol can be constructed
with a strict polynomial-time simulator.
Relaxing the physical assumption to tamper-evident hardware. Katz’s
protocol can be implemented using tamper-evident, rather than tamper-proof
hardware, if the tokens are returned to their creators after the setup phase.
Our bounded commitment protocol can also use this relaxed assumption; since
the queries to the token do not depend on the bit to be committed, they can
be made ahead of time and the token returned to its owner. This method will
not work if the number of commitments is not known ahead of time. Finding a
David/Goliath protocol for FMCOM based on tamper-evident rather than tamper-
proof hardware is an interesting problem.

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In Proceedings of the 45th Annual Symposium
on Foundations of Computer Science, pages 186–195, 2004.

2. C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, pages 175–179, 1984.

3. B. Bollobas. Extremal Graph Theory. Courier Dover Publications, 1978.
4. S. Brands. Untraceable off-line cash in wallets with observers. In Advances in

Cryptology - CRYPTO ’93, pages 302–318, 1993.
5. R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145, 2001. An updated version is available from the
Cryptology ePrint Archive, Report 2000/067.

6. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In Proceedings of the 4th Theory of Cryptography Conference,
pages 61–85, 2007.

7. R. Canetti and M. Fischlin. Universally composable commitments. In Advances
in Cryptology - CRYPTO ’01, pages 19–40, 2001.

8. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. Journal of Cryptology,
19(2):135–167, 2006.

9. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In Proceedings of the 34th Annual ACM
Symposium on the Theory of Computing, pages 494–503, 2002.

10. N. Chandran, V. Goyal, and A. Sahai. Improved UC secure computation using
tamper-proof hardware. Cryptology ePrint Archive, Report 2007/334, 2007.

11. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology - CRYPTO ’92, pages 89–105, 1992.

12. R. Cramer and T. P. Pedersen. Improved privacy in wallets with observers. In
Advances in Cryptology - EUROCRYPT ’93, pages 329–343, 1993.

13. C. Crépeau. Efficient cryptographic protocols based on noisy channels. In Advances
in Cryptology - EUROCRYPT ’97, pages 306–317, 1997.

14. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In Proceedings of the 29th Annual Symposium on Foundations of
Computer Science, pages 42–52, 1988.

15. I. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and obliv-
ious transfer. In Proceedings of the 1st Theory of Cryptography Conference, pages
355–373, 2004.

16. I. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Advances in
Cryptology - EUROCRYPT ’99, pages 56–73, 1999.

17. I. Damg̊ard, J. B. Nielsen, and D. Wichs. Universally composable multiparty
computation with partially isolated parties. Cryptology ePrint Archive, Report
2007/332, 2007.

18. J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In Advances
in Cryptology - CRYPTO ’07, pages 323–341, 2007.

19. D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally composable zero-
knowledge arguments and commitments from signature cards. In Proceedings of
the 5th Central European Conference on Cryptology, 2005.

20. J. Katz. Universally composable multi-party computation using tamper-proof
hardware. In Advances in Cryptology - EUROCRYPT ’07, pages 115–128, 2007.

21. T. Moran and M. Naor. Basing cryptographic protocols on tamper-evident seals.
In Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming, pages 285–297, 2005.

22. R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–
803, 1998.

