
Commuting Signatures and Verifiable Encryption

Georg Fuchsbauer⋆

Dept. Computer Science, University of Bristol, UK
georg@cs.bris.ac.uk

Abstract. Verifiable encryption allows one to encrypt a signature while preserv-
ing its public verifiability. We introduce a new primitive called commuting sig-
natures and verifiable encryption that extends this in multiple ways, such as en-
abling encryption of both signature and message while proving validity. More
importantly, given a ciphertext, a signer can create a verifiably encrypted signa-
ture on the encrypted (unknown) message, which leads to the same result as first
signing the message and then verifiably encrypting the message/signature pair;
thus, signing and encrypting commute. Our instantiation is based on the recently
introduced automorphic signatures and Groth-Sahai proofs, which we show to
be homomorphic. We also prove a series of other properties and provide a novel
approach to simulation.
As an application, we give an instantiation of delegatable anonymous credentials,
a primitive introduced by Belenkiy et al. Our construction is arguably simpler
than theirs and it is the first to provide non-interactive (and thus concurrently
secure) issuing and delegation protocols, which are significantly more efficient.
Moreover, the size of our credentials and the cost of verification are less than half
of those of the previous instantiation. All our constructions are proven secure in
the standard model under known non-interactive assumptions.

Keywords: Verifiably encrypted signatures, blind signatures, anonymous creden-
tials, Groth-Sahai proofs.

1 Introduction

Verifiably encrypted signatures let us sign a message, encrypt the signature, and make
a proof asserting that the ciphertext contains a valid signature. Suppose the message is
only available as an encryption. We cannot make a signature on the plaintext, as this
would contradict the security of the encryption scheme.1 But could we instead, given a
ciphertext, produce a verifiable encryption of a signature on the plaintext?

We show that such a functionality is feasible and moreover give a practical instanti-
ation of it. We then use this new primitive to build the first non-interactively delegatable
anonymous credential scheme: given an encrypted public key, a delegator can make a
verifiably encrypted certificate for the key, which acts as a credential.

⋆ Work done while at École normale supérieure, Paris, France. The author has been supported
by the French ANR 07-TCOM-013-04 PACE Project, the European Commission through the
ICT Program under Contract ICT-2007-216676 ECRYPT II and EPSRC Grant EP/H043454/1.

1 Given two messages and the encryption of one of them, a signature on the plaintext could be
used to decide which one was encrypted.



Delegatable Anonymous Credentials. Access control that respects users’ privacy con-
cerns is a challenging problem in security. To gain access to resources, a participant
must prove to possess the required credential issued by an authority. To increase man-
ageability of the system, the authority usually does not issue credentials directly to each
user, but relies on intermediate layers in the hierarchy. For example, a system adminis-
trator issues credentials to webmasters for using his server; the latter may then create
forums and delegate rights to moderators, who can give posting privileges to users.

Web-based social network services are enjoying a huge popularity and represent
another area of application for credentials. Registered users can be given credentials
to access services, which they delegate to introduce and recommend friends and friend
of friends. The recent rise of concern about protection of privacy in such networks
motivates anonymous credentials: a user can obtain a credential and prove possession
of it without revealing neither her identity nor that of the user who delegated it to her.

In practice, (non-anonymous) delegation of rights is usually realized by certifying
(i.e., signing) the public key of the delegated user. Consecutive delegation leads to a
certification chain, consisting of public keys and certificates linking them, starting with
the original issuer of the credential. A user in the chain can delegate the credential by
signing the delegatee’s public key and appending the certificate to the credential.

Anonymous credentials [Cha85,Dam90,Bra99,LRSW00,CL01,CL04,BCKL08] aim
to provide a functionality similar to certificates without revealing information about the
user’s identity when obtaining or showing a credential. However, the goal of reconcil-
ing delegatability and anonymity remained elusive—until recently. Chase and Lysyan-
skaya [CL06] show theoretical feasibility of delegatable anonymous credentials, but
their size is exponential in the number of delegations. A breakthrough was then made
in [BCC+09], where Belenkiy et al. (BCCKLS) introduce a new approach using a non-
interactive zero-knowledge (NIZK) proof system [BFM88] with randomizable proofs:
anyone can transform such a proof into a new proof of the same statement that cannot
be linked to the original one. A credential is a proof of knowledge of a certification chain
that can be randomized before being delegated or shown, which guarantees anonymity
and unlinkability.

In their model, each user holds a secret key which can be used to produce multiple
unlinkable pseudonyms Nym. A user A can be known to user O as Nym(O)

A and to B as
Nym(B)

A . Given a credential issued by O for Nym(O)

A , A can transform it into a credential
from O for Nym(B)

A and show it to B. Moreover, A can delegate the credential to user
C, known to A as Nym(A)

C . C can then show a credential from O for Nym(D)

C to user D
(without revealing neither Nym(C)

A nor Nym(A)

C ), or redelegate it. Delegation preserves
anonymity, in that delegator and delegatee learn nothing more about each other than
their respective pseudonyms. This is formalized by requiring that there exist a simulator
that can produce pseudonyms and credentials for them without knowing any secrets.

In the instantiation of [BCC+09], delegation is fairly complex and interactive—in
contrast to non-anonymous credentials, where it suffices to know a user’s public key in
order to issue or delegate a credential to her. We bridge this gap by giving an instan-
tiation that enables non-interactive delegation: given a pseudonym Nym, a delegator
can produce a ready credential for the holder of Nym without any interaction. Note
that a non-interactive delegation protocol immediately yields security against concur-

2



rent attacks, where an adversary might simultaneously run protocols for delegating and
being delegated credentials with honest users. This was not considered in the BCCKLS
model.

Commuting Signatures. Our main building block for non-interactively delegatable
anonymous credentials is a new primitive we call commuting signature and verifiable
encryption (or commuting signature for short), which we sketch in the following and
formally define in Section 3. It combines a digital signature scheme, an encryption
scheme and a proof system with the following properties: given a verification key vk, a
messageM and a signatureΣ onM under vk, we can encrypt any subset of {vk,M,Σ}
and add a proof (which leaks no more information) that the plaintexts are a key, a mes-
sage and a valid signature—which makes the encryptions verifiable.

For consistency with the Groth-Sahai methodology [GS08], we also say commit-
ment instead of encryption, as their commitments to group elements, which we will
use, are extractable, i.e., we can recover the committed value (and thus “decrypt”) us-
ing an extraction key. An extractable commitment to a signature together with a proof of
validity is a proof of knowledge (PoK) of a signature, and at the same time a verifiably
encrypted signature (VES) [BGLS03,RS09].2

We denote committing to signatures by Com, committing to messages by ComM,
and proving validity by Prove. A proof for a committed signature is denoted by π̃, and
for a committed message by π̄. If both are committed, we write π, and if the verification
key is committed too, we write π̂ (“∼” for signature and “∧” for vk). Besides allowing
us to prove validity of committed values, a commuting signature scheme provides the
following functionalities, neither of which requires knowledge of the extraction key:

SigCom. Given a commitment CM to a message M and a signing key sk, SigCom
produces a commitment cΣ to a signature Σ on M under sk, and a proof π that the
content of cΣ is a valid signature on the content of CM .

AdCS . Given a commitment CM to M , a signature Σ on M and a proof π̄ of validity
ofΣ on the content of CM , we can make a commitment cΣ toΣ using randomness
ρΣ . Then AdCS (“adapt when committing to signature”) allows us to adapt π̄ to a
proof for CM and cΣ : given (CM , Σ, ρΣ , π̄) it returns a proof π that the content
of cΣ is a valid signature on the content of CM . AdDS (“adapt proof when de-
committing”) does the converse: given a committed message CM , a committed
signature cΣ together with the used randomness ρΣ , and a proof π for CM and cΣ ,
AdDS outputs a proof π̄ of validity of the signature Σ on the committed message.

AdCM. Analogously we define proof adaptation for the message. Given M , a commit-
ment cΣ to a signature on M and a proof of validity π̃, AdCM transforms the proof
to the case when the message is committed as well. AdDM is given commitments
CM to a message M and cΣ to a signature, the randomness ρM for CM and a
proof π. It adapts π to a proof π̃ that the content of cΣ is a valid signature on M .

AdCK. We can also adapt proofs when (de)committing to the verification key. Given
commitments CM and cΣ , a proof of validity π w.r.t. a verification key vk, and

2 While for VES, encryption suffices to be one-way (opacity means it is hard to extract a signa-
ture), we require verifiable encryptions of different signatures to be indistinguishable.

3



6

6
?

6

���������9
���������:

���������:
XXXXXXXz

XX
XXz

������������XXXXXXXXz
������������XXXXXXXXz

M, Σ

M

CM

CM , Σ, π̄

M, cΣ , π̃

CM , cΣ , π

Sign(sk, ·)

XX(sk, ·)

ComM,

Prove

ComM

Com,Prove

Com,AdCS

AdDS(ρΣ , ·)

ComM,

AdCM

AdDM(ρM , ·)

SigCom(sk, ·)

Fig. 1. Diagram representing a system of commuting signatures and verifiable encryption

randomness ρvk, AdCK outputs a proof π̂ that the content of cΣ is a signature on
the content of CM valid under vk given as a commitment cvk with randomness
ρvk. AdDK is given (vk, ρvk,CM , cΣ , π̂) and adapts the proof π̂ for (cvk,CM , cΣ),
where cvk commits to vk with randomness ρvk, to a proof for (vk,CM , cΣ).

We require that committing, signing and the above functionalities all commute with
each other, that is, it does not matter in which order they are executed; e.g., signing a
message, committing to the message and the signature, and proving validity yields the
same as committing to the message and then running SigCom. Thus, the diagram in
Figure 1 commutes. Note that due to the argument given in Footnote 1, there cannot
exist a functionality XX that is given a commitment CM to a message M and a secret
key sk, and outputs a signature Σ on M .

Besides verifiably encrypted signatures, commuting signatures imply blind signa-
tures, and moreover CL signatures [CL02] and P-signatures [BCKL08], both building
blocks for protocols providing privacy. They let a user obtain a signature on a commit-
ted value from a signer by running an issuing protocol. The user can then make a proof
of knowledge of that signature, which is verifiable given the commitment. SigCom pro-
vides a non-interactive issuing, which directly gives the user a (randomizable) proof of
knowledge of such a signature (see the full version [Fuc10]).

Instantiating Commuting Signatures. Blind signatures [Cha83,PS96] enable a user
to obtain a signature on a message in a way that the signer cannot link the resulting
message/signature pair to its issuing. In [Fuc09,AFG+10] the author gives an efficient
implementation with round-optimal issuing [Fis06], where after sending information
to the signer, the user can immediately derive the blind signature from the signer’s re-
sponse. In this scheme, the user randomizes the message, makes (extractable) commit-
ments to the message and the randomness, and adds a witness-indistinguishable (WI)
proof that the commitments contain the correct values.

The user sends these values to the signer, who learns nothing about the message
from them. The signer fabricates a “pre-signature”, which the user, knowing the values
used to randomize the message, can transform into a signature on the message. The ac-

4



tual blind signature is a WI proof of knowledge (PoK) of this signature, which prevents
the signer from linking it to the signing session. This PoK is instantiated with Groth-
Sahai (GS) commitments and proofs [GS08] for pairing-product equations (PPE), and
the message space consists of pairs of group elements.

We require a lot more: the signer, without knowing the randomness used to hide the
message, should not only make a commitment to a signature (which he cannot know—
Footnote 1) on an unknown message, but in addition give a proof that this signature is
valid. While the described blind signature scheme has the nice property that during is-
suing the user obtains an actual signature on the message, we show that its true potential
has not yet been exploited. We first observe that the values the user sends to the signer
for a blind signature can be seen as a commitment to the message. We then show that
they actually suffice for the signer to directly—without the help of the user—construct
a proof of knowledge of a signature on the message.

This is made possible by the specific structure of the signature, the fact that the
commitments are homomorphic and a series of properties of the proof system. We prove
that, besides being randomizable, Groth-Sahai proofs are homomorphic3 w.r.t. the state-
ment they prove (the product of two proofs is a proof for the product of the equations
they prove), they are independent of parts of the statement—in some cases even of the
committed value—, and there are ways to “blindly” transform a proof for one statement
into a proof for another statement.

Instantiating Delegatable Anonymous Credentials. Belenkiy et al. [BCC+09] show
that Groth-Sahai (GS) proofs can be randomized and combine them with an authenti-
cation scheme for secret keys to construct delegatable credentials. A pseudonym Nym
is a commitment to the user’s secret key and a credential is a proof of knowledge of an
authentication chain. To issue or delegate, the issuer and the user jointly compute a PoK
of an authenticator on the content of the user’s pseudonym. In the case of delegation, the
issuer prepends her own credential, after randomizing it. Their authentication scheme
must satisfy strong security notions (F-unforgeability and certification security), since
secret keys cannot be extracted from the commitments, and an adversary against it must
be allowed to ask for authenticators on as well as under the attacked key.

We avoid these notions and interactivity of delegation by following a more modular
approach replacing the authenticators on secret keys by commuting signatures on ver-
ification keys. The underlying signatures are automorphic [Fuc09], which means that
they are Groth-Sahai compatible and their verification keys lie in the message space—
which is a requirement for delegation. A credential is then a chain of verification keys
and certificates (as in the non-anonymous case), which are all given as commitments
completed with proofs of validity.

Commuting signatures enable non-interactive issuing and delegation: given a user’s
pseudonym NymU (i.e., a commitment to his verification key), the issuer can produce a
commitment cΣ to a signature on the value committed in NymU and a proof π of validity
using SigCom. In the case of issuing, the credential is (cΣ , π) and is verified by check-
ing π on the issuer’s public key, NymU and cΣ . In the case of delegation, the issuer also
randomizes her own credential credI , yielding a credential credI ′ on her pseudonym
NymI that is unlinkable to credI . Running AdCK, the issuer adapts the proof π (which

3 For linear equations the homomorphic property of GS proofs was also noted in [DHLW10].

5



is valid under her verification key) to a proof π̂ of validity of the signature contained in
cΣ on the content of the pseudonym NymU under the content of the issuer’s pseudonym
NymI . The credential for the user is then credI ′ ∥NymI ∥ (cΣ , π̂).
Comparing Our Results to Previous Ones. Replacing the authenticators from the
BCCKLS scheme with our automorphic signatures already more than doubles the effi-
ciency. In the full version [Fuc10] we revise the approach to achieving simulatability of
credentials. Groth and Sahai show how to simulate proofs of satisfiability of equations,
consisting of commitments and proofs for the committed values, which are produced by
the simulator. However, in order to simulate credentials for a given pseudonym, the sim-
ulator has to construct proofs for given commitments. Belenkiy et al. therefore double
some of the commitments and provide proofs of consistency. We show that our creden-
tials can be directly simulated even if some of the commitments are fixed beforehand.

Finally, our issuing (and delegation) protocol is significantly more efficient. While
in [BCC+09], the issuer and the user run a complex two-party protocol using homomor-
phic encryption and interactive ZK proofs, in our instantiation the issuer simply sends
a PoK of a signature. Both schemes are proven secure under the SXDH assumption
and different “hidden” variants of the strong Diffie-Hellman assumption [BB04] (which
are thus “q-type” assumptions): BB-CDH and BB-HSDH, introduced in [BCC+09], for
their scheme and ADH-SDH [AFG+10] for ours (see Section 4.1).

Automorphic signatures were combined with GS proofs in [AFG+10] to construct
anonymous proxy signatures (APS) [FP08]. They also allow one to prove rights in an
anonymous way, but there is no anonymity between the delegator and the delegated user.
If in our credential scheme we give the extraction key to a tracing authority, and define
a proxy signing algorithm similar to delegation but outputting a committed signature on
a clear message, we get an instantiation of APS with mutually anonymous delegation.

Subsequent to our work, Blazy et al. [BFPV11] defined a primitive similar to com-
muting signatures, called extractable signatures on randomizable ciphertexts. While
their instantiation solely relies on the decision linear assumption (DLIN) [BBS04], it is
only efficient for small message spaces due to bit-by-bit techniques.

2 Preliminaries

We briefly recall the definitions and security requirements for the relevant primitives
from the literature (and refer to the full version [Fuc10] for more details).

Commitments. We will use a (non-interactive) randomizable extractable commitment
scheme Com which is composed of the algorithms Setup, Com, RdCom, ExSetup,
Extr, and WISetup. By V we denote the space of “committable” values, by R the ran-
domness space and by C the space of commitments. On input the security parameter 1λ,
Setup and WISetup output a commitment key ck, and ExSetup outputs (ck, ek), where
ck is distributed as the output of Setup; ek is called the extraction key. On input ck, a
message M ∈ V and randomness ρ ∈ R, Com outputs a commitment c ∈ C.

The scheme is perfectly binding, i.e., for any ck ← Setup and any c ∈ C there
exists exactly one M ∈ V s.t. c = Com(ck,M, ρ) for some ρ. If (ck, ek) ← ExSetup
then Extr(ek, c) extracts that value M from c. The keys output by WISetup are compu-
tationally indistinguishable from those output by Setup and generate perfectly hiding

6



commitments: for any ck∗ ← WISetup, c ∈ C and M ∈ V , there exists a ρ ∈ R s.t.
c = Com(ck∗,M, ρ). Finally, we have RdCom(ck,Com(ck,M, ρ), ρ′) = Com(ck,M,
ρ+ ρ′); thus RdCom randomizes commitments.4

Proofs for Committed Values. We define a proof system that allows one to prove that
committed values satisfy an equation. The proofs are constructed from the committed
values and the used randomness, and they are witness indistinguishable, which means
they do not reveal which satisfying values were used. Given a proof for a set of com-
mitments, the proof can be adapted to a randomization of the commitments without
knowledge of the committed values.

A randomizable witness-indistinguishable proof system Proof for a commitment
scheme Com for a class E of equations consists of the algorithms Prove, Verify and
RdProof. On input ck, an equation E ∈ E , values M1, . . . ,Mn ∈ V satisfying E
and ρ1, . . . , ρn ∈ R, Prove outputs a proof π for the values Com(ck,M1, ρ1), . . . ,
Com(ck,Mn, ρn). On input ck, E, c1, . . . , cn and π, Verify outputs 0 or 1, indicating
rejection or acceptance of π. Every proof generated for commitments to values satisfy-
ing an equation is accepted by Verify. Given ck, c1, . . . , cn, a proof π for (c1, . . . , cn)
and E, and ρ′1, . . . , ρ

′
n ∈ R, algorithm RdProof outputs a proof for the randomiza-

tions c′i := RdCom(ck, ci, ρ′i); in particular, RdProof(ck,E, (c1, ρ′1), . . . , (cn, ρ
′
n), π)

is distributed as Prove(ck,E, (M1, ρ1 + ρ′1), . . . , (Mn, ρn + ρ′n)).
Soundness states that if there is a valid proof for a set of commitments for E ∈ E

then Extr extracts a set of values satisfying E. Witness indistinguishability is defined as
follows: if the commitment key is output by WISetup then a set of commitments and
a valid proof for them for an equation E reveals nothing, in an information-theoretical
sense, about the committed values, except that they satisfy E.

Signatures. A signature scheme Sig consists of the following algorithms: SetupS takes
as input the security parameter 1λ and outputs parameters pp, which define a message
spaceM. On input pp, KeyGenS outputs a pair (vk, sk) of verification and signing key.
For M ∈ M, Sign(sk,M) outputs a signature Σ, which is verified by Ver(vk,M,Σ).
If pp ← SetupS and (vk, sk) ← KeyGenS(pp) then Ver(vk,M, Sign(sk,M)) = 1 for
all M ∈ M. Strong unforgeability means that given vk and an oracle that queried on a
message Mi returns a signature Σi on Mi, it is infeasible to output a pair (M,Σ), s.t.
Ver(vk,M,Σ) = 1 and (M,Σ) ̸= (Mi, Σi) for all i.

We require that Sig be compatible with Com and Proof : the messages, verifica-
tion keys and signatures are composed of values in V (the value space of Com) and
the signature verification predicate is a conjunction of equations from E (the class of
equations for Proof ). We note that from a compatible triple (Com,Proof ,Sig) one
can easily construct a verifiably encrypted signature scheme; see [Fuc10].

For our application to delegatable credentials we require furthermore that Sig be au-
tomorphic, that is, besides being compatible, its verification keys must lie in its message
spaceM. We let EVer denote the verification equations for Sig. When, for example, Σ
is considered a variable we write EVer(vk,M,·)(Σ).

4 Commitment schemes with two types of keys were called perfectly hiding with extraction in
[GOS06] and strongly computationally hiding in [BCKL08]. Note that a scheme Com with
the described properties is at the same time a lossy encryption scheme [BHY09].

7



3 Commuting Signatures and Verifiable Encryption

Commuting signatures extend a commitment scheme Com, an associated proof sys-
tem Proof and a compatible signature scheme Sig by the following functionalities:
ComM is a commitment scheme with the same keys as Com and whose message
space is that of Sig. SigCom takes a ComM commitment and a signing key, and pro-
duces a commitment to a signature on the committed message and a proof of validity.
SmSigCom simulates SigCom and is given a signature instead of the signing key. More-
over, the algorithms AdC and AdD adapt proofs when (de)committing to a signature
(subscript S), a message (subscriptM) or a verification key (subscript K).

Definition 1. A system of commuting signatures and verifiable encryption consists
of an extractable commitment scheme Com = (Setup,Com,RdCom,ExSetup,Extr,
WISetup) with value space V and randomness space R, a randomizable WI proof
system Proof = (Prove,Verify,RdProof) for Com, a compatible signature scheme
Sig=(SetupS,KeyGenS,Sign,Ver) and the following algorithms. We let ck ← Setup,
ppS ← SetupS, (vk, sk)← KeyGenS(ppS), M ∈M, µ ∈ RM and pp := (ck, ppS).

ComM. On input pp, a message M ∈ M and µ ∈ RM, algorithm ComM outputs
a commitment C in CM, the space of commitments. RdComM takes inputs pp, C
and µ′ ∈ RM and outputs a randomized commitment C′. On input ek output by
ExSetup, and C, ExtrM outputs the committed value M . We require ComM :=
(Setup,ComM,RdComM,ExSetup,ExtrM,WISetup) to be a commitment scheme
as defined in Section 2 and to be compatible with Proof , i.e., Prove and RdProof
accept inputs fromRM and Verify accepts ComM commitments.

AdCS(pp, vk,C, (Σ, ρ), π̄). If Verify(ck,EVer(vk,·,Σ),C, π̄) = 1 then the algorithm
outputs π which is distributed as [Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))], where M
and µ are such that C = ComM(pp,M, µ).

AdDS(pp, vk,C, (Σ, ρ), π). If Verify(ck,EVer(vk,·,·),C,Com(ck, Σ, ρ), π) = 1 then the
algorithm outputs π̄ which is distributed as [Prove(ck,EVer(vk,·,Σ), (M,µ))], where
M and µ are such that C = ComM(pp,M, µ).

AdCM(pp, vk, (M,µ), cΣ , π̃). If Verify(ck,EVer(vk,M,·), cΣ , π̃) = 1 then the algorithm
outputs π which is distributed as [Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))], where Σ
and ρ are such that cΣ = Com(ck, Σ, ρ).

AdDM(pp, vk, (M,µ), cΣ , π). If Verify(ck,EVer(vk,·,·),ComM(pp,M, µ), cΣ , π) = 1,
the algorithm outputs π̃ which is distributed as [Prove(ck,EVer(vk,M,·), (Σ, ρ))],
where Σ and ρ are such that cΣ = Com(ck, Σ, ρ).

AdCK(pp, (vk, ξ),C, cΣ , π). If Verify(ck,EVer(vk,·,·),C, cΣ , π) = 1, the algorithm out-
puts π̂ which is distributed as [Prove(ck,EVer(·,·,·), (vk, ξ), (M,µ), (Σ, ρ)))], where
M,µ,Σ and ρ are such that C = ComM(pp,M, µ) and cΣ = Com(ck, Σ, ρ).

AdDK(pp, (vk, ξ),C, cΣ , π̂). If Verify(ck,EVer(·,·,·),Com(ck, vk, ξ),C, cΣ , π̂) = 1, the
algorithm outputs π, distributed as [Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ)))], where
M,µ,Σ and ρ are such that C = ComM(pp,M, µ) and cΣ = Com(ck, Σ, ρ).

8



SigCom(pp, sk,C). If C ∈ CM then the algorithm outputs a commitment to a signature
and a proof of validity (cΣ , π) which is distributed as[
Σ←Sign(sk,M); ρ←R :

(
Com(ck, Σ, ρ),Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

)]
where M and µ are such that C = ComM(pp,M, µ).

SmSigCom(pp, ek, vk,C, Σ). Assume (ck, ek) ← ExSetup. If Ver(vk,ExtrM(ek,C),
Σ) = 1 then the algorithm outputs (cΣ , π) which is distributed as [ρ ← R :
(Com(ck, Σ, ρ), Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ)))], where M and µ are such
that C = ComM(pp,M, µ).

By Algs :=(AdCS,AdDS,AdCM,AdDM,AdCK,AdDK,SigCom,SmSigCom) we de-
note the algorithms of the system that extend Com,Proof ,Sig and ComM. When
verifying a signature Σ on a message M by Ver(vk,M,Σ), we implicitly assume that
Ver also checks whetherM ∈M. Analogously, we assume that when verifying a proof
of validity by running Verify on EVer and C, it checks whether C ∈ CM.

Definition 1 implies that running SigCom on a commitment to M yields the same
(the output is distributed identically) as running Σ←Sign(sk,M), ComM on M , Com
onΣ and Prove for EVer(vk,·,·); or running Sign, ComM onM and Prove for EVer(vk,·,Σ),
and then Com on Σ and AdCS , etc. This means that the diagram in Figure 1 commutes.

SmSigCom allows us to prove the following unforgeability property: Consider an
adversary that is given (pp, ek, vk) for (vk, sk)← KeyGenS and access to an oracle that
on input Ci returns (ci, πi)←SigCom(pp, sk,Ci). Then it cannot output a valid triple
(C, cΣ , π) such that the committed message/signature pair is different from every pair
committed in (Ci, ci) from the oracle calls. Commuting signatures moreover yield a
round-optimal blind signature scheme: The user sends a commitment to the message to
the signer, who runs SigCom to produce (cΣ , π). The user computes a proof π̃ for cΣ
and M via AdDM, and outputs (cΣ , π̃) as the blind signature (see [Fuc10]).

4 Instantiation of the Building Blocks

4.1 Bilinear Groups and Assumptions

A bilinear group is a tuple G = (p,G1,G2,GT , e,G1, G2) where G1,G2 and GT

are cyclic groups of prime order p; G1 and G2 generate G1 and G2, respectively; and
e : G1 × G2 → GT is an efficient non-degenerate bilinear map: ∀X ∈ G1 ∀Y ∈ G2

∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y )ab, and e(G1, G2) generates GT .
We denote group elements by capital letters and assume two fixed generators G and

H of G1 and G2, respectively. We call a pair (A,B) ∈ G1 × G2 a Diffie-Hellman
pair (w.r.t. (G,H)), if there exists a ∈ Zp such that A = Ga and B = Ha. We let
DH := {(Ga, Ha) | a ∈ Zp} denote the set of DH pairs. Using the bilinear map e,
DH is efficiently decidable by checking e(G−1, B) e(A,H) = 1. We will make the
following assumptions.

Assumption 1 (SXDH). The Symmetric External Diffie-Hellman assumption for G
states that given (G1, G

r
1, G

s
1, G

t
1) for random r, s ∈ Zp, it is hard to decide whether

t = rs or t is random; likewise, given (G2, G
r′

2 , G
s′

2 , G
t′

2 ) for random r′, s′ ∈ Zp, it is
hard to decide whether t′ = r′s′ or t′ is random.

9



The q-Asymmetric Double Hidden Strong Diffie-Hellman assumption (ADH-SDH)
was introduced in [AFG+10] and proven to hold in the generic-group model for any
type of pairing. It was shown in [FPV09] that under the q-SDH assumption [BB04],
given q − 1 tuples ((K · Gvi)1/(x+ci), ci, vi) for random ci, vi ← Zp, it is hard to
produce a new tuple of this form. Similarly to q-HSDH [BW07], ADH-SDH states that
if ci and vi are given in a hidden form (F ci ,Hci , Gvi , Hvi), it is intractable to produce
another such tuple ((K ·Gv)1/(x+c), F c,Hc, Gv,Hv).

Assumption 2 (q-ADH-SDH). For randomly chosen G,F,K ← G1,H ← G2 and
x, ci, vi ← Zp, given (G,F,K,X=Gx; H,Y =Hx) and, for 1 ≤ i ≤ q − 1,(

Ai = (K ·Gvi)
1

x+ci , Bi = F ci , Di = Hci , Vi = Gvi , Wi = Hvi
)
,

it is hard to output ((K ·Gv)1/(x+c), F c, Hc, Gv,Hv) with (c, v) ̸= (ci, vi) for all i.

The next assumption is a weak variant of the various flexible CDH assumptions, gen-
eralized to asymmetric bilinear groups. It was also introduced in [AFG+10] and shown
to be implied by DDH in G1, and thus by SXDH.

Assumption 3 (AWF-CDH). Given random generators G ← G1 and H ← G2, and
A = Ga for a← Zp, it is hard to output (Gr, Gra,Hr,Hra) with r ̸= 0.

4.2 Groth-Sahai Proofs and Automorphic Signatures

Commitments. We instantiate Com, defined in Section 2, by the commitment scheme
based on SXDH from [GS08]. Setup, on input G = (p,G1,G2,GT , e, G1, G2), outputs
a commitment key ck ∈ G2×2

1 × G2×2
2 . Value and randomness space are defined as

V := G1 ∪ G2 and R := Z2
p. Com(ck, X, r) takes randomness r ∈ R and an element

X ∈ V; commitments to G1-elements are in G2
1 and commitments to G2-elements are

in G2
2. We have Com(ck, X, r) ◦· Com(ck, X ′, r′) = Com(ck, X · X ′, r + r′), where

“ ◦· ” denotes component-wise multiplication; the commitments are thus homomorphic.
RdCom(ck, c, r′) returns c′ := c ◦· Com(ck, 1, r′), which for c = Com(ck, X, r) is

c′ = Com(ck, X, r+ r′). ExSetup constructs ck as in Setup and in addition outputs the
used randomness as ek, and Extr(ek, c) outputs the committed value. WISetup produces
a commitment key ck∗ that is indistinguishable from outputs of Setup under the SXDH
assumption. Commitments under ck∗ are independent of the committed value.

Proofs for Committed Values. In order to instantiate Proof for Com, we use the
proof system from [GS08], which was shown to be randomizable in [BCC+09]. The
class of equations E for our proof system are pairing-product equations (PPE). A PPE
over variables X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 is an equation of the form 5

E(X1, . . . , Xm; Y1, . . . , Yn) :
n∏

j=1

e(Aj , Yj)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)
γi,j = tT , (1)

5 For a more concise exposition we will underline the variables of an equation.

10



defined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
tT ∈ GT . We refer to [GS08] or [Fuc10] for a description of the implementations
of the following: Prove, which chooses internal randomness Z ← Z2×2

p , and out-
puts π ∈ G2×2

2 ×G2×2
1 (we write Prove(ck,E, (Xi, ri)

m
i=1, (Yj , sj)

n
j=1; Z) if we want

to make Z explicit); RdProof(ck,E, (ci, ri)mi=1, (dj , sj)
n
j=1, π), which adapts a proof

π to the new commitments output by RdCom(ck, ci, ri) and RdCom(ck,dj , sj); and
Verify(ck,E, c⃗, d⃗, π).

Signatures. We instantiate Sig with the automorphic signature scheme presented in
[AFG+10]. It is compatible, as signature components are in the space for committed
values V = G1 ∪G2, and the verification equations are pairing-product equations, thus
in E . Moreover, the verification keys lie in its message space, the set of Diffie-Hellman
pairs. Under q-ADH-SDH and AWF-CDH (which is implied by SXDH), Sig is strongly
unforgeable against adversaries making up to q − 1 adaptive chosen-message queries,
as shown in [Fuc09].

Scheme 1 (Sig). SetupS has input a bilinear group G and outputs random generators
F,K, T ← G1. The message space is DH := {(Gm, Hm) |m ∈ Zp}.
KeyGenS chooses x← Zp and outputs vk = (Gx,Hx) and sk = x.
Sign has input a secret key x and a message (M,N) ∈ DH. It chooses c, r ← Zp and

outputs(
A := (K · T r ·M)

1
x+c , B := F c, D := Hc, R := Gr, S := Hr

)
.

Ver on input a verification key (X,Y ) ∈ DH, a message (M,N) ∈ DH and a signa-
ture (A,B,D,R, S) outputs 1 if and only if the following equalities hold:

e(A, Y ·D) = e(K ·M,H) e(T, S)
e(B,H) = e(F,D)

e(R,H) = e(G,S)
(2)

Under SXDH and ADH-SDH, Com,Proof and Sig are instantiations of the primi-
tives defined in Section 2. Note that if we based GS proofs on DLIN instead of SXDH,
the security of our constructions would follow from DLIN, ADH-SDH and AWF-CDH,
which can all be made for bilinear groups of every type (1, 2 and 3) from [GPS08].

5 Additional Properties of Groth-Sahai Proofs

We identify four properties of Groth-Sahai (GS) proofs which will allow us to instanti-
ate commuting signatures. We refer to [Fuc10] for the proofs and further results. First,
proofs are independent of the right-hand side of the equation, and if the equation does
not contain pairings of two variables, i.e., γij = 0 for all i, j in (1), then they are even
independent of the committed values.

Lemma 1. For any equation E ∈ E the output of Prove(·,E, ·, ·) is independent of tT .

Lemma 2. Proofs for equations for which γij = 0 for all i, j depend only on the
randomness of the commitments.

11



Groth-Sahai (GS) proofs are homomorphic w.r.t. the equations, in that the product of
two proofs is a proof for the “product of the respective equations”. More precisely,
given two equations

E :
∏n

i=1 e(Ai, Yi)
∏m

i=1 e(Xi, Bi)
∏m

i=1

∏n
j=1 e(Xi, Yj)

γi,j = tT

E′ :
∏n′

i=1 e(A
′
i, Y

′
i )

∏m′

i=1 e(X
′
i, B

′
i)

∏m′

i=1

∏n′

j=1 e(X
′
i, Y

′
j )

γ′
i,j = t′T

and a proof π for commitments (⃗c, d⃗) for E and a proof π′ for commitments (⃗c′, d⃗′)

for E′, then π′′ := π ◦· π′ is a proof for commitments ((⃗c, c⃗′), (d⃗, d⃗′)) and equation
E′′ defined as

∏
e(Ai, Yi)

∏
e(A′

i, Y
′
i )

∏
e(Xi, Bi)

∏
e(X ′

i, B
′
i)

∏∏
e(Xi, Yj)

γi,j

·
∏∏

e(X ′
i, Y

′
j )

γ′
i,j = t′′T (for arbitrary t′′T ∈ GT ).

Lemma 3. For E,E′ and E′′ as above, if π = Prove(ck,E, (Xi, ri)
m
i=1, (Yj , sj)

n
j=1;Z)

and π′ = Prove(ck,E′, (X ′
i, r

′
i)

m′

i=1, (Y
′
j , s

′
j)

n′

j=1; Z
′) then the following equation holds:

π ◦· π′ = Prove(ck,E′′, (Xi, ri)
m
i=1, (X

′
i, r

′
i)

m′

i=1, (Yj , sj)
n
j=1, (Y

′
j , s

′
j)

n′

j=1; Z + Z ′).

Given a proof for an equation, one can commit to its constants and adapt the proof.
Consider E(X1, . . . , Xm; Y1, . . . , Yn) as in (1) and a proof π for E and commitments
(c1, . . . , cm; d1, . . . ,dn). Then π is also a proof for E′(X⃗, Ak; Y⃗ ) defined as∏n

i=1
i ̸=k

e(Ai, Yi)
∏m

i=1 e(Xi, Bi)
∏m

i=1

∏n
j=1 e(Xi, Yj)

γi,j e(Ak, Yk) = tT

and commitments (c1, . . . , cm,Com(ck, Ak, 0); d1, . . . ,dn). We have thus:

Lemma 4. Let π ← Prove
(
ck,E, (Xi, ri)

m
i=1, (Yj , sj)

n
j=1

)
, ci = Com(ck, Xi, ri) and

dj = Com(ck, Yj , sj) for all i, j. Then RdProof
(
ck,E′, (ci, 0)

m
i=1, (Com(ck, Ak, 0), r),

(dj , 0)
n
j=1, π

)
yields a proof that is distributed as Prove

(
ck,E′, (Xi, ri)

m
i=1, (Ak, r),

(Yj , sj)
n
j=1

)
. An analogous result holds for committing to a constant Bk ∈ G2.

6 Instantiation of Commuting Signatures

We explain how to implement commuting signatures; due to space constraints we re-
fer to [Fuc10] for more details and the proofs. In [Fuc09,AFG+10], a blind signature
scheme is constructed from the scheme Sig (Scheme 1) as follows. Given parameters
(G,H,F,K, T ) and a message (M,N) ∈ DH := {(Gm,Hm) |m ∈ Zp}, the user
chooses a random t ← Zp and blinds the first message component by the factor T t.
He then sends the following to the signer: U := T t ·M , commitments cM , cN , cP and
cQ to M,N,P := Gt and Q := Ht, respectively; and proofs πM , πP and πU proving
(M,N), (P,Q) ∈ DH and well-formedness of U . With

EDH(M,N) : e(G−1, N) e(M,H) = 1 (3)

EU (M,Q) : e(T−1, Q) e(M,H−1) = e(U,H)−1 (4)

πM proves EDH(M,N), πP proves EDH(P,Q), and πU proves EU (M,Q), which
asserts U = T t ·M .

12



The signer replies with a “pre-signature” on U , defined in (6) below, which the user
converts into a signature and outputs a GS proof of knowledge of it. Now to turn this
into a commuting signature, there are two key observations.

1. The values C := (cM , cN , πM , cP , cQ, πP , U, πU ) the user sends to the signer can
be considered as a commitment to the message (M,N), which is extractable and
randomizable, and which perfectly hides the message when the values are produced
under a key ck∗ ←WISetup.

2. As Com is homomorphic, the values cP and cQ contained in the commitment C to
(M,N) can be used by the signer to compute commitments to an actual signature.
Moreover, below we show how πP and πU can be used to make a proof of validity
using Lemmas 1, 2, 3 and 4.

For the blind signature scheme in [Fuc09], the values cP , cQ, πP and πU are mainly
needed in the proof of unforgeability, when the simulator extracts the message, queries
it to its signing oracle and then uses P and Q to turn the signature into a pre-signature.
We show that these values can be directly used by the signer to produce commitments
to the signature components and even a proof of validity.

Commitments to Messages. To instantiate ComM, we define a commitment to a mes-
sage (M,N) ∈ DH as C discussed above. For parameters pp = (G, ck, F,K, T ) the
space of valid commitments is thus defined as

CM(pp) :=
{
(cM , cN , πM , cP , cQ, πP , U, πU )

∣∣ Verify(ck,EDH, cM , cN , πM )

∧ Verify(ck,EDH, cP , cQ, πP ) ∧ Verify(ck,EU , cM , cQ, πU )
}
,

and the randomness space is RM := Zp × R4. The algorithms ComM,RdComM and
ExtrM defining ComM are given in Figure 2.

Committing to a Signature on a Committed Message and Proving Validity. We
now show how the signer can use the values in C to produce a proof of knowledge
(cA, cB , cD, cR, cS , πA, πB , πR) of a signature (A,B,D,R, S) (i.e., a verifiably en-
crypted signature) on the message committed in C. The proofs πA, πB and πR attest
that the values committed in (cA, cB , cD, cR, cS) and cM contained in C satisfy the
verification equations in (2):

EA(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1

ER(R; S) : e(G−1, S) e(R,H) = 1

(5)

In the blind signature scheme, after receiving C, the signer checks the proofs contained
in it, and then produces a pre-signature, which is constructed as a signature on U , but
on a message that lacks the second component: choose c, r ← Zp and compute

A := (K · T r · U)1/(x+c) B := F c D := Hc R′ := Gr S′ := Hr (6)

Since U := T t ·M , we have A = (K · T r · U)1/(x+c) = (K · T r+t ·M)1/(x+c), which
is the first component of a signature on (M,N) with randomness r + t. Knowing t,

13



ComM on input pp, (M,N) ∈ DH, (t, µ, ν, ρ, σ) ∈ RM sets P = Gt, Q = Ht and returns

cM := Com(ck,M, µ) cN := Com(ck, N, ν) πM ← Prove(ck,EDH, (M,µ), (N, ν))

cP := Com(ck, P, ρ) cQ := Com(ck, Q, σ) πP ← Prove(ck,EDH, (P, ρ), (Q,σ))

U := T t ·M πU ← Prove(ck,EU , (M,µ), (Q, σ))

RdComM has input pp, C and (t′, µ′, ν′, ρ′, σ′) ∈ RM, and returns C′. It replaces t by t + t′

setting U ′ := U · T t′ , ĉP := cP ◦· Com(ck, Gt′ , 0), and ĉQ := cQ ◦· Com(ck, Ht′ , 0). It then
replaces the remaining randomness (µ, ν, ρ, σ) by (µ+ µ′, ν + ν′, ρ+ ρ′, σ + σ′), setting

c′M := RdCom(ck, cM , µ′) π′
M ← RdProof(ck,EDH, (cM , µ′), (cN , ν′), πM )

c′N := RdCom(ck, cN , ν′)

c′P := RdCom(ck, ĉP , ρ′) π′
P ← RdProof(ck,EDH, (ĉP , ρ

′), (ĉQ, σ
′), πP )

c′Q := RdCom(ck, ĉQ, σ′) π′
U ← RdProof(ck,EU , (cM , µ′), (ĉQ, σ

′), πU )

ExtrM(ek,C = (cM , cN , πM , cP , cQ, πP , U, πU )) outputs (Extr(ek, cM ),Extr(ek, cN )).

SigCom(pp, sk,C). Parse C as (cM , cN , πM , cP , cQ, πP , U, πU ) and sk as x. If πM , πP and
πU are valid then choose c, r ← Zp and α, β, δ, ρ′, σ′ ← Z2

p and compute the following values:

A := (K · T r · U)
1

x+c cB := Com(ck, F c, β) cR := cP ◦· Com(ck, Gr, ρ′)

cA := Com(ck, A, α) cD := Com(ck, Hc, δ) cS := cQ ◦· Com(ck,Hr, σ′)

π′
A := πU ◦· Prove(ck,EA† , (A,α), (Hc, δ); 0) (with EA† being Equation (9))

πA ← RdProof(ck,EA, (cA, 0), (cD, 0), (cM , 0), (cS , σ
′), π′

A)

πR ← RdProof(ck,ER, (cR, ρ
′), (cS , σ

′), πP ) πB ← Prove(ck,EDH, (F c, β), (Hc, δ))

Return (cA, cB , cD, cR, cS , πA, πB , πR).

Fig. 2. Committing to messages and making commitments to a signature on a committed value

the user can fabricate an actual signature on (M,N) from the pre-signature by setting
R := R′ · Gt = Gr+t and S := S′ ·Ht = Hr+t. (A,B,D,R, S) is then a signature
on (M,N) with randomness (c, r + t).

Let µ, ρ and σ denote the randomness of the respective commitments cM , cP and
cQ, contained in C. Since the commitments are homomorphic, the signer can—without
knowing P = Gt and Q = Ht—compute commitments to R and S from cP and cQ:

cR := Com(ck, R′, 0) ◦· cP = Com(ck, R, ρ)

cS := Com(ck, S′, 0) ◦· cQ = Com(ck, S, σ)
(7)

The signer then chooses α, β, δ ← R, and makes the remaining commitments:

cA := Com(ck, A, α) cB := Com(ck, B, β) cD := Com(ck, D, δ) (8)

The vector c⃗Σ := (cA, cB , cD, cR, cS) is thus a commitment to the signature Σ =
(A,B,D,R, S) on (M,N). It remains to construct proofs πA, πB and πR for the 3
equations in (5)—without knowledge of the randomness µ, ρ and σ of the commitments
cM , cR and cS! This can be done by observing the following:

14



1. Equation ER(R; S) is actually EDH(R; S) from (3). Since by (7) cR and cP have
the same randomness ρ, and cS and cQ have the same randomness σ, and since by
Lemma 2 proofs for EDH are independent of the committed values, πP (the proof
for cP and cQ for EDH) is also a proof for cR and cS ; we thus set πR := πP .

2. Lemmas 1 and 2 yield that proofs for EU (Equation (4)) only depend on the ran-
domness of the commitments. Since cS = Com(ck, S, σ) and cQ = Com(ck, Q, σ)
have the same randomness, πU is not only a proof for EU (M ;Q) but also for

EU†(M ; S) : e(T−1, S) e(M,H−1) = tT

(for an arbitrary tT ∈ GT )6 for cM and cS . Moreover, the signer, knowing A,D,
α and δ, can produce a proof πA† ← Prove(ck,EA† , (A,α), (D, δ)) for

EA†(A; D) : e(A, Y ) e(A,D) = tT (9)

(for any tT ). Since the product of the left-hand sides of EU†(M ;S) and EA†(A;D)
is the left-hand side of EA(A,M ; S,D) from (5), Lemma 3 yields that πA :=
πU ◦· πA† is a proof for EA.

We have thus shown how the signer can construct πA and πR. The remaining proof πB
can be made regularly, since the required randomness (β, δ) was chosen by the signer.
Finally, to get a random proof of knowledge, the signer randomizes all commitments
and proofs using RdCom and RdProof as defined in Section 4.2. Algorithm SigCom,
with some optimizations, is summarized in Figure 2.

Instantiation of SmSigCom. This algorithm is similar to SigCom but instead of the
signing key sk it is given a signature (A,B,D,R, S) and the extraction key. It pro-
ceeds like SigCom but starting from a signature instead of producing a pre-signature:
choose α, β, δ, ρ′, σ′ ← R and set cA, cB and cD as in (8); use ek to extract P and
Q from C and set cR := cP ◦· Com(ck, R · P−1, ρ′) = Com(ck, R, ρ + ρ′) and
cS := cQ ◦· Com(ck, S · Q−1, σ′) = Com(ck, S, σ + σ′). Now πA, πB and πR can
be computed as in SigCom in Figure 2.

Instantiations of Proof Adaptation for Committing and Decommitting. We define
equations EÃ and EĀ and recall EA, which all represent the first verification equation
in (2) but with different elements being variables.

EA(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K,H)

EÃ(A; S,D) : e(T−1, S) e(A, Y ) e(A,D) = e(K ·M,H)

EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

With EB and ER defined in (5) we can write the following

EVer((X,Y ), · , · )((M,N), (A,B,D,R, S))

≡ EA(A,M ; S,D) ∧ EB(B; D) ∧ ER(R; S) (10)
EVer((X,Y ),(M,N), · )(A,B,D,R, S) ≡ EÃ(A; S,D) ∧ EB(B; D) ∧ ER(R; S) (11)

EVer((X,Y ), · ,(A,B,D,R,S))(M,N) ≡ EĀ(M) (12)

6 Technically, πU is only a proof for EU† when tT is s.t. M and S satisfy it. However, since the
proofs are independent of the right-hand side, the prover need not know the appropriate tT .

15



AdCS transforms proofs π̄ for EVer(vk,·,Σ) (12) into proofs π for EVer(vk,·,·) (10), AdCM
transforms proofs π̃ for EVer(vk,(M,N),·) (11) into proofs π for EVer(vk,·,·), whereas AdDS
and AdDM do the converse.

Since the product of the left-hand sides of EÃ and EĀ is the left-hand side of EA,
by Lemma 3 we have πA = πÃ ◦· πĀ, which lets us transform proofs for equations EÃ
and EĀ into proofs for EA and vice versa, and thus implement the four algorithms. Note
that when a proof is multiplied by a freshly generated proof, it is uniformly distributed:
by Lemma 3, if Z is the internal randomness of the proof and Z ′ that of the fresh proof
then the randomness of the product of proofs is Z+Z ′. However, when reusing a proof
it must be randomized first.

AdCS(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π̄). Proof π̄ being for (12), it sets

πÃ ← Prove(ck,EÃ, (A,α), (S, σ), (D, δ))
πB ← Prove(ck,EB , (B, β), (D, δ))

πR ← Prove(ck,ER, (R, ρ), (S, σ))

for EB and ER defined in (5). It then returns π := (πÃ ◦· πĀ, πB , πR).
AdDS(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π). The proof π is of the form (πA,

πB , πR). The algorithm sets πÃ ← Prove(ck,EÃ, (A,α), (S, σ), (D, δ)) and re-
turns π̄ := πA⊘πÃ (where “⊘” denotes componentwise division, i.e., multiplying
every component of πA with the inverse of that component of πÃ).

AdCM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), (cA, cB , cD, cR, cS), π̃). The proof π̃ is of the
form (πÃ, πB , πR). The algorithm returns π := (πÃ ◦· πĀ, π

′
B , π

′
R) with

πĀ ← Prove(ck,EĀ, (M,µ))
π′
B ← RdProof(ck,EB , (cB , 0), (cD, 0), πB)

π′
R ← RdProof(ck,ER, (cR, 0), (cS , 0), πR)

AdDM(pp, vk, ((M,N), (t, µ, ν, ρ, σ)), (cA, cB , cD, cR, cS), π). The proof π is of the
form (πA, πB , πR). The algorithm computes πĀ, π′

B and π′
R as for AdCM above,

and returns π̃ := (πA ⊘ πĀ, π′
B , π

′
R).

Instantiation of AdCK and AdDK. A commitment cvk to vk = (X,Y ) ∈ DH is
defined as (Com(ck, X, ξ),Com(ck, Y, ψ),Prove(ck,EDH, (X, ξ), (Y, ψ))). The equa-
tions for EVer(·, · , · )((X,Y ), (M,N), (A,B,D,R, S)), i.e., when the key, the message
and the signature are committed, are represented by

EÂ(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y )e(A,D) = e(K,H) ,

and EB and ER from (5). Given a commitment C to a message, a commitment cΣ =
(cA, cB , cD, cR, cS) to a signature, (X,Y ) and a proof π = (πA, πB , πR) of validity,
by Lemma 4 the component πA can be adapted to πÂ for cY = Com(ck, Y, ψ) setting

πÂ ← RdProof
(
ck,EÂ, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0), ψ), (cD, 0), πA

)
.

To adapt a proof to a decommitment of cvk, we have to reset the randomness of cY to
0. AdDK does thus the converse: it sets

πA ← RdProof(ck,EÂ, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0),−ψ), (cD, 0), πÂ) .

16



We conclude this section by summarizing the results by the following theorem.

Theorem 1. Under the ADH-SDH and the SXDH assumption,
(
Com,Proof ,Sig,

ComM,AdCS,AdDS,AdCM,AdDM,AdCK,AdDK,SigCom,SmSigCom
)

is a system
of commuting signatures and verifiable encryption as defined in Definition 1.

7 Non-interactively Delegatable Anonymous Credentials

7.1 The BCCKLS Model

Functionality. We give an overview of the model for delegatable credentials defined in
[BCC+09]. The system parameters are set up by a trusted party. Every user generates
a secret key sk, of which they can publish pseudonyms Nym. Any user can become
originator of a credential by publishing a pseudonym NymO as the public key. To issue
or delegate a credential, the issuer and the user (both known to each other under their
respective pseudonyms) run a protocol at the end of which the user holds a credential.
The holder can produce a credential proof for any of his pseudonyms, which proves
that the owner of that pseudonym holds a credential rooted at a public key NymO.

In our non-interactive instantiation we have the following: To delegate (or to issue) a
credential to a user known to the delegator under NymU , the delegator produces (without
interacting with the user) a ready credential proof for NymU . The user can turn this
credential proof into a credential, which (as in the BCCKLS model) she can then use to
make a credential proof for another pseudonym.

A (non-interactively) delegatable anonymous credential system consists of the fol-
lowing algorithms. On input 1λ, SetupC generates the parameters pp, which are input to
all other algorithms. KeyGenC generates user secret keys sk, of which NymGen outputs
pseudonyms Nym and auxiliary information aux related to Nym.

Issuing and delegation is done via Issue, which on input the issuer’s secret key
skI , pseudonym NymI and corresponding auxI , a level-L credential cred for the is-
suer rooted at NymO (if L = 0 then cred = ε) and a user pseudonym NymU , out-
puts a credential proof credproof for NymU . From this the user can obtain a credential
cred by running Obtain on his secret key skU , pseudonym NymU and auxU , the is-
suer’s and delegator’s pseudonyms NymO and NymI , respectively, and credproof . Run-
ning CredProve on (pp,NymO, cred, sk,Nym, aux, L) permits a user to make a creden-
tial proof for the pseudonym Nym related to sk and aux. CredVerify verifies a proof
credproof rooted at NymO for Nym. Note that CredProve outputs a credproof for the
user that runs it, while Issue outputs a credproof for the user one issues or delegates to.

Security. Security is defined by correctness, anonymity and unforgeability. Run hon-
estly, Issue and Obtain must produce credentials on which, for all user pseudonyms,
CredProve outputs a proof that is accepted by CredVerify.

Anonymity means that an adversary interacting with honest users cannot distinguish
the real game from an ideal game: There are simulated parameters which are indistin-
guishable from the real ones but lead to pseudonyms, credentials and proofs that are
independent of users’ secret keys. Given a trapdoor for these parameters, Issue,Obtain
and CredProve can be simulated without the secret inputs cred, sk and aux.

17



To break unforgeability, an adversary must produce a proof that some Nym has a
credential although such a credential has never been issued to any pseudonym of the
owner of Nym. To formalize the notion of “owner”, Belenkiy et al. define an algorithm
that extracts from a pseudonym a user identity vk, which is uniquely defined by the
secret key. Moreover, from a credential proof it extracts the identities that represent the
underlying delegation chain. We say that a forgery occurs if the adversary produces a
credential for authority vk0 from which are extracted (vk1, . . . , vkL−1, vkL) such that
vkL−1 is an honest user that never delegated a level-L credential rooted at vk0 to vkL.

7.2 Our Instantiation

In the instantiation from [BCC+09] the system parameters are a Groth-Sahai (GS) com-
mitment key and parameters for an authentication scheme. Each user holds a secret key
sk for the authentication scheme, and a pseudonym is a GS commitment to f(sk) for
a one-way function f . To issue and delegate, the issuer and the user run an interactive
two-party protocol to compute a proof of knowledge of an authenticator on the user’s
secret key, which is valid under the issuer’s secret key. A credential is then a chain of
pseudonyms and committed authenticators with GS proofs of validity.

We replace the authenticators (consisting of 11 group elements and verified by 8
pairing-product equations) by automorphic signatures (5 group elements satisfying 3
PPEs). A non-anonymous level-L credential for vkL rooted at vk0 is a chain of veri-
fication keys and signatures (Σ1, vk1, Σ2 . . . , vkL−1, ΣL), where Σi is a signature on
vki under vki−1. To achieve anonymity, the keys and signatures in the credential are
committed to and proofs of validity are added. Using commuting signatures, given a
commitment to a key, the issuer can directly make a commitment to a signature on it
and a validity proof. This is what enables non-interactive delegation.

However, merely signing user keys does not suffice, as the issuer of a credential
might want to add public information to the credential, such as attributes. For delegat-
able credentials it is also required to include the originator’s pseudonym and the dele-
gation level in each certificate to prevent combining different credentials and changing
the order within a credential.

In the full version [Fuc10] we therefore give a simple extension of Sig: Scheme
Sig′′ has message space Zp×M, allowing the signer to specify a public value in addi-
tion to M . Its parameters contain one additional group element, but the signatures have
the same size as those of Sig. We also define SigCom′′, an adaptation of SigCom which
has the public value in Zp as additional input, and show that all the other algorithms
defined in Definition 1 and instantiated in Section 6 work equally for Sig and Sig′′.7

Our Scheme. Let H : CM × N → Zp be a collision-resistant hash function. Then our
scheme Cred can be sketched as follows: SetupC generates a key for Com and param-
eters for Sig′′; KeyGenC outputs a signing key for Sig′′; and given such a key, NymGen
outputs a commitment to the corresponding verification key and the used randomness
as auxiliary information. A level-L credential proof from Nym0 for NymL has the form

credproof = (c1, π1,Nym1, c2, π2, . . . ,NymL−1, cL, πL) ,

7 Note that replacing SigCom by SigCom′′ in the construction of a blind signature at the end of
Section 3 yields a partially blind signature [AF96].

18



where ci is a commitment to a Sig′′ signature Σi on the public value H(Nym0, i) and
the key committed in Nymi, valid under the key committed in Nymi−1; and πi is a proof
of validity of Σi. We call credproof a credential if it is valid on a “trivial” NymL, i.e.,
when NymL = Com(ck, vkL, 0).

CredProve takes a credential and turns it into a credential proof for NymL by ran-
domizing all its components, using as randomness for the last component the value aux
s.t. NymL = Com(ck, vkL, aux). CredVerify verifies a credproof by checking the proofs
contained in it. Given a level-L credential, Issue extends it by one level making a cre-
dential proof for the delegatee’s pseudonym NymL+1: In case of a delegation (L > 0),
it first makes a credproof for the issuer’s pseudonym NymI ; otherwise credproof := ε.
Running SigCom′′ on skI , H(Nym0, L + 1) and NymL+1, it produces (cL+1, π

′
L+1),

a verifiably encrypted signature under vkI . It then runs AdCK on (vkI , auxI) to adapt
π′
L+1 to a proof πL+1, which is valid for the committed verification key NymI . Finally,

Issue outputs credproof ∥NymI ∥ (cL+1, πL+1). Obtain turns a level-L credential proof
into a credential by adapting the randomness to make it valid for a trivial NymL.

Simulatability. While unforgeability of our scheme is implied by the soundness of
Proof and unforgeability of Sig′′, anonymity is shown as follows. We generate the
simulated parameters by replacing Setup with WISetup; this makes the commitments
perfectly hiding and thus pseudonyms and credential proofs independent of secret keys.

We then have to simulate issuing and CredProve for pseudonyms of the adversary’s
choice. This essentially means to simulate credential proofs for given Nym’s; thus, sim-
ulating commitments to a signature and a proof of validity w.r.t. commitments to a key
and to a message which are both given to the simulator.

While Groth and Sahai [GS08] show simulation of proofs of satisfiability of equa-
tions, where the simulator produces all the commitments, we require a novel type of
simulation: given commitments to certain variables of an equation, we have to simulate
the remaining commitments and the proof of validity. In the full version [Fuc10] we
show that this can be done for a class E ′ ⊂ E of equations, in which the equations for
validity of committed signatures fall. We call a commuting signature scheme simulat-
able if given a commitment to a key and a commitment to a message the simulator can
create a verifiably encrypted signature for them.

In [Fuc10] we define a simulatable variant of our scheme from Section 6. We also
give a formal description of our credential scheme Cred and a proof of the following.

Theorem 2. Let (Com,Proof ,Sig′′,ComM,Algs) be a system of commuting sig-
natures which is automorphic and simulatable, and let H be a collision-resistant hash
function. Then Cred is a secure delegatable anonymous credential scheme.

8 Conclusion

We introduced and instantiated commuting signatures and verifiable encryption. Given
an encryption C of M and a signing key, they let us produce an encryption cΣ of a
signature on M and a proof that cΣ contains a valid signature on the content of C.
We used them to give the first instantiation of delegatable anonymous credentials with
non-interactive issuing and delegation and believe that they are a useful tool in the
construction of privacy-preserving primitives that will find further applications.

19



Acknowledgements

The author would like to thank David Pointcheval, Elizabeth Quaglia and Damien
Vergnaud for many helpful discussions and the anonymous referees of CCS 2010 and
EUROCRYPT for their valuable comments.

References

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo
Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages
244–251. Springer, November 1996.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In Tal
Rabin, editor, CRYPTO, volume 6223 of LNCS, pages 209–236. Springer, 2010.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 56–73. Springer, May 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Au-
gust 2004.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-
skaya, and Hovav Shacham. Randomizable proofs and delegatable anonymous cre-
dentials. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–
125. Springer, August 2009.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-
signatures and noninteractive anonymous credentials. In Ran Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 356–374. Springer, March 2008.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In STOC, pages 103–112. ACM Press, 1988.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signa-
tures on randomizable ciphertexts. In Rosario Gennaro, editor, PKC, volume ???? of
LNCS, pages ???–??? Springer, 2011.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 416–432. Springer, May 2003.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results
for encryption and commitment secure under selective opening. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer, April 2009.

[Bra99] Stefan Brands. Rethinking public key infrastructure and digital certificates—building
privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands, 1999.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size
group signatures. In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, vol-
ume 4450 of LNCS, pages 1–15. Springer, April 2007.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1983.

[Cha85] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

20



[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann, ed-
itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, May 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume
2576 of LNCS, pages 268–289. Springer, September 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 56–72. Springer, August 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, August
2006.

[Dam90] Ivan Damgård. Payment systems and credential mechanisms with provable security
against abuse by individuals. In Shafi Goldwasser, editor, CRYPTO’88, volume 403
of LNCS, pages 328–335. Springer, August 1990.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Cryptography against continuous memory attacks. In FOCS, pages 511–520. IEEE
Computer Society, 2010.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
60–77. Springer, August 2006.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail
Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN 08, volume 5229 of
LNCS, pages 201–217. Springer, September 2008.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-
size fair e-cash. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS
09, volume 5888 of LNCS, pages 226–247. Springer, December 2009.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320, 2009.
http://eprint.iacr.org/2009/320. An extended abstract appeared as part of [AFG+10].

[Fuc10] Georg Fuchsbauer. Commuting signatures and verifiable encryption and an applica-
tion to non-interactively delegatable credentials. Cryptology ePrint Archive, Report
2010/233, 2010. http://eprint.iacr.org/2010/233.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 339–358. Springer, May / June 2006.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptog-
raphers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, April 2008.

[LRSW00] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard M. Heys and Carlisle M. Adams, editors, SAC 1999, volume
1758 of LNCS, pages 184–199. Springer, August 2000.

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of
LNCS, pages 252–265. Springer, November 1996.

[RS09] Markus Rückert and Dominique Schröder. Security of verifiably encrypted signatures
and a construction without random oracles. In Hovav Shacham and Brent Waters,
editors, PAIRING 2009, volume 5671 of LNCS, pages 17–34. Springer, August 2009.

21


