
A Full Characterization of Completeness for
Two-party Randomized Function Evaluation

Daniel Kraschewski1, Hemanta K. Maji2, Manoj Prabhakaran3, and Amit
Sahai4

1 Technion, Haifa, Israel.
2 Los Angeles, USA.

3 Univ. of Illinois, Urbana-Champaign, USA.
4 Univ. of California, Los Angeles, USA.

Abstract. We settle a long standing open problem which has pursued
a full characterization of completeness of (potentially randomized) fi-
nite functions for 2-party computation that is secure against active ad-
versaries. Since the first such complete function was discovered [Kilian,
FOCS 1988], the question of which finite 2-party functions are complete
has been studied extensively, leading to characterization in many special
cases. In this work, we completely settle this problem.
We provide a polynomial time algorithm to test whether a 2-party finite
secure function evaluation (SFE) functionality (possibly randomized) is
complete or not. The main tools in our solution include:
– A formal linear algebraic notion of redundancy in a general 2-party

randomized function.
– A notion of statistically testable games. A kind of interactive proof

in the information-theoretic setting where both parties are computa-
tionally unbounded but differ in their knowledge of a secret.

– An extension of the (weak) converse of Shannon’s channel coding
theorem, where an adversary can adaptively choose the channel based
on its view.

We show that any function f , if complete, can implement any (random-
ized) circuit C using only O(|C|+κ) calls to f , where κ is the statistical
security parameter. In particular, for any two-party functionality g, this
establishes a universal notion of its quantitative “cryptographic com-
plexity” independent of the setup and has close connections to circuit
complexity.

1 Introduction

Understanding the complexity of functions is central to theoretical computer
science. While the most studied notion of complexity in this literature is that
of computational complexity, there have also been other important aspects ex-
plored, most notably, communication complexity [35]. Another aspect of com-
plexity of a (distributed) function is its cryptographic complexity, which seeks
to understand the cryptographic utility of a function, stemming from how it
hides and reveals information. While it is only recently that the term has been



explicitly used, cryptographic complexity theory has been vigorously pursued at
least since Kilian introduced the notion of completeness of cryptographic primi-
tives [23].

Completeness (of functions with finite domains) has been the first and most
important question of cryptographic complexity: what properties of a function let
all other cryptographic tasks (in the context of secure computation) be reduced
to it. This question has been asked and answered several times [23, 11, 24, 25, 12,
28, 31] each time for a different class of functions, or restricted to different kinds
of reductions (see Fig. 1 for a summary of the state of the art). These works
produced several exciting ideas and advances, and brought together concepts
from different fields. For instance, [25] used the Nash equilibrium in a zero-sum
game defined using the function to obtain a secure protocol; earlier [11] identified
the binary symmetric channel (noisy channel) as a complete function, paving the
way to a fruitful and successful connection with information-theory literature.

However, these works left open what is arguably the hardest part of the
characterization: completeness of randomized functions with finite domain under
reductions that are secure against an active adversary (see Fig. 1). Indeed, even
with a (usually simplifying) restriction that only one of the two parties receives
an output from the function, it was not known which randomized functions are
complete. In this work, we finally provide a full characterization of completeness
of general5 2-party functions with finite domains. This work brings to close this
rich line of investigation, but also introduces several new ideas and notions, and
poses new questions regarding cryptographic complexity.

Prior to our work, the only completeness results known for randomized func-
tions against active adversaries were for the very restricted case of channels [12],
i.e. randomized functions that only take input from one party, and deliver the
output to the other. Thus, in particular, before our work, no completeness char-
acterization results against active adversaries were known for any randomized
function classes that take input from both parties.

Also, along the way to our main construction, we generalize a result in an-
other line of work, on black-box protocol constructions [20, 19, 22, 9]. We give a
black-box transformation from a passive-secure OT protocol in a hybrid setting
(wherein the protocol has access to an ideal functionality) to a UC-secure OT
protocol in the same hybrid setting, with access to the commitment function-
ality.6 Our transformation relativizes with respect to any ideal functionality, as
long as that functionality is “redundancy free” (see later). Though our focus is
on information-theoretic security, we note that by considering ideal functionali-

5 By a general function, we mean one without any restrictions on which parties have
inputs and which parties have outputs. Earlier work on characterizing randomized
functions considered only “symmetric” (both parties get same output) and “asymmet-
ric” (only one party gets any output) functions. Beyond this, only specific examples
were known, like correlated random variables considered by Beaver [1].

6 It is interesting to note that, unlike in many other settings, a black-box transforma-
tion in the plain model does not imply a transformation in a hybrid model. That is,
there is no analogue of universal composition for black-box protocol compilation.



ties that are not information-theoretically complete, our transformation implies
black-box equivalence of related computational assumptions.

Passive Completeness Active Completeness

Deterministic
Symmetric: [24]-1991 Symmetric: [24]-1991
Asymmetric: [3]-1999 Asymmetric: [25]-2000
General: [28]-2011 General: [28]-2011

Randomized
Symmetric: [25]-2000 Channels: [12]-2004
Asymmetric: [25]-2000 Symmetric/Asymmetric/General: Open
General: [31]-2012 Settled in this paper

Fig. 1. Summary of Completeness Characterization Results.

Finally, our tools for analysis are novel in this line of work. In particular,
we introduce the notion of statistically testable games, which is a kind of
interactive proof in the information-theoretic setting where both parties can be
computationally unbounded, but differ in their knowledge of some secret. We
discuss these in more detail in Section 1.3 and in subsequent sections.

We also formulate and prove a new converse of Shannon’s Channel Coding
theorem to obtain a hiding property from a “channel.” This is perhaps an unusual
(but in hindsight, natural) use of a converse of the channel coding theorem, which
was originally used to establish the optimality of the channel coding theorem.

1.1 Our Results

We provide the first algorithmic characterization of all finite 2-party (potentially
randomized) functions that are complete for secure function evaluation against
active adversaries: Namely, our results provide the first explicit algorithm (see
Fig. 2 for an abridged version; the full figure is provided in the full version of
the paper [27]) that can analyze any given (randomized) function f , and output
whether or not f is complete against active adversaries.

Input: A 2-party randomized SFE f , given as a matrixPf of conditional probabilities
pf [w, z|x, y].
Output: Whether f is UC-complete or not.
1. Compute a core f̂ of f .
2. Check if f̂ is simple or not (using combinatorial characterization in [31].
3. If f̂ is simple, then f is not complete.
4. Else (i.e., f̂ is not simple), f is complete.

Fig. 2. This algorithm tests whether a function f is UC-complete or not. More detailed
version is provided in [27].



The algorithm has two steps: finding what we call the “core” of a given
function f and then checking if it is “simple” or not. A function f is complete if
and only if its core is not simple.

We now provide a high-level intuitive explanation of our algorithmic char-
acterization works, by considering some easy and well-known examples. This
will help in understanding our exact characterization, which is somewhat more
involved since it covers general randomized functions.

The core of f is computed by removing “redundant” parts of the function f .
To develop some intuition for this, consider the one-sided OR function which
takes two bits from Alice and Bob and outputs the logical OR of these two bits
to only Bob. This function is not complete against active adversaries, and in fact
is trivial: the reason is that a corrupt Bob can always choose his input to be “0”
– and by doing so, it can always learn Alice’s input, without Alice detecting this.
(Thus, even a trivial protocol in which Alice sends her bit to Bob is indeed secure
against active adversaries, since if Bob is corrupt, he could have learned Alice’s
input even in the ideal world.) Because of this, we say that Bob’s input “1” is
redundant from the adversary’s point of view: the adversary is always better off
using the input “0”.

When extended to the setting of randomized functions, redundancy becomes
more subtle. For instance, an input can become redundant because instead of
using that input, an adversary could use a distribution over other inputs, without
being detected. Another form of redundancy that appears for randomized func-
tions is that of redundant outputs (for the same input). As an example, suppose
in the above example, when Bob’s input is 0, if Alice’s input is 0 then he receives
0, but if her input is 1, he receives the output symbol α with probability 3/4 and
the symbol β with probability 1/4. Here, we observe that the two outcomes α
and β give Bob the same information about Alice’s input, and could be merged
into a single outcome. More generally, if two possible outputs that the adversary
can obtain for the same input have identical conditional distributions for the
other party’s input-output pair, then the distinction between these two output
values is redundant.

We provide a novel formal definition of redundancy that fully captures both
these forms of redundancy: (1) it identifies inputs that are useless for the adver-
sary; and (2) it identifies if the output can be compressed to remove aspects of
the output that are useless for the adversary’s goal of gaining information about
the honest party’s inputs. While the above intuition is useful, it is not exactly
the motivation behind our formal definition. The formal definition balances the
following two requirements on redundancy:

– Adding or removing redundancy does not change a function’s complexity (as
far as security against active corruption alone is concerned): in particular, f
is complete if and only if its core is complete.

– A redundancy free function removes the possibility for a party to freely de-
viate from its interaction with a functionality without the rest of the system
(the environment and the other party) detecting any difference.



The formal definition (based on Equation 1) is linear algebraic, inspired by simu-
latability considerations, and seemingly more general; but as will be discussed in
Section 1.3 and later, this definition coincides with exactly the above two forms
of redundancies. An explicit algorithm for removing redundancy and finding the
“core” is given in the full version of the paper [27].

The second phase of our algorithm determines whether the core of f is simple,
a notion defined earlier by [31] generalizing Kilian’s condition for passive com-
pleteness [25]. Informally, a function g is simple if it preserves the independence
of views. To develop intuition for this, consider a common randomness function
that ignores the inputs of the two parties and simply outputs a uniform inde-
pendent random bit to both parties. This function is intuitively useless because,
at least in the passive-security setting, this function can be trivially realized by
one party sampling this bit, and sending it to the other party. The formal notion
of a simple function generalizes this to arbitrary randomized functions, by en-
suring that if the parties start with independent inputs, then conditioned on the
“common information” present after function evaluation, the views of the two
players remain independent of each other (see the full version [27] for details).
A natural explicit algorithm for determining whether a function is simple was
already given by [31], which we use here.

Beyond the basic feasibility result, we also show that secure evaluation of any
finite function g to a complete finite function f can be carried out, asymptoti-
cally, at “constant rate.” That is, n copies of g can be evaluated with access to
O(n+ κ) copies of f , and in fact, only O(n+ κ) communication, overall. Here κ
is a statistical security parameter; that is, the error in security (simulation error)
is negligible in κ. In fact, the total amount of communication in the protocol
(including the interaction with copies of f) is also bounded by O(n + κ). This
leads to our main theorem:

Theorem 1. A finite 2-party function is UC-complete (or equivalently, standalone-
complete) against active adversaries if and only if its core is not simple. Further,
if f is such a function, n copies of any finite 2-party function can be securely
evaluated by a protocol in f -hybrid with communication complexity O(n + κ),
where κ is the security parameter.

Connections to Circuit Complexity. An interesting measure of complexity of a
function g (modeled as a 2-party function) is its “OT complexity” – the number
of (1 out of 2, bit) OT instances needed for securely evaluating it.7 As sketched
below, the OT complexity of a function is closely related to its circuit complexity
and may provide an approach to proving explicit circuit lowerbounds. Our results
show that instead of OT complexity, one could consider f -complexity, for any
f whose core is not simple. This establishes “cryptographic complexity” as a
fundamental complexity measure of (2-party) functions, independent of which
complete finite 2-party function is used to securely realize it, just the same way

7 One may also define OT complexity to be the total amount of communication (pos-
sibly amortized) needed for securely evaluating g, in the OT-hybrid model.



circuit complexity is independent of which specific set of universal finite gates
are used to implement it.

Circuit complexity and OT complexity are closely related to each other as
follows. By a simple protocol due to [16–18], we know that the OT complexity
of a function g (defined with respect to passive security) is O(C(g)), where C(g)
stands for the circuit complexity of g. This means that a super-linear lowerbound
for OT complexity of g gives a super-linear lowerbound on C(g). Of course, this
only shows that it is a hard problem to lowerbound OT complexity. But inter-
estingly, this connection does open up a new direction of approaching circuit
complexity lowerbounds: the fact that most functions have exponential circuit
complexity is an easy consequence of a counting argument due to Shannon; but
for OT complexity, even such an existential lowerbound is not known. Resolv-
ing this could be an easier problem than finding explicit circuit lowerbounds,
yet could lead to new insights to proving explicit OT complexity and circuit
complexity lowerbounds.

The same argument applies for OT complexity defined with respect to active
adversaries as well, due to the result of [22]. Note that it would be easier to
lowerbound OT complexity when it is defined this way, than when defined with
respect to passive adversaries. The relevance of our result is that instead of OT,
one can consider any 2-party function f whose core is not simple. As we show
that OT can be reduced to any such function at a constant rate, a super-linear
lowerbound on (amortized) f -complexity will indeed translate to a super-linear
lowerbound on circuit complexity. We discuss this more in the full version of
our paper [27] and leave it as an important direction to study. Recently Beimel
et al. [2] have shown that the OT-complexity of random functions is significantly
lower than their (AND) circuit complexity, but still exponential in the input
length, in the worst case.

1.2 Related Work

We briefly summarize the results on completeness from prior work (also refer
to Fig. 1). The function oblivious transfer (OT) was identified independently
by Wiesner and Rabin [32, 34]. Brassard et al. [5] showed that various flavors
of OT can be reduced to each other with respect to security against active ad-
versaries. In a seminal work, Kilian identified OT as the first active-complete
function [23]. Prior to this Goldreich and Vainish, and independently Micali
and Haber, showed that OT is passive-complete [18, 17]. Crépeau and Kilian
then showed that the noisy channel is also active-complete [11]. The first char-
acterization of completeness appeared in [24] where it was shown that among
deterministic “symmetric” functions (in which both parties get the same out-
put) a function f is active-complete if and only if there is an “OR minor”
in the matrix representing f . Beimel, Malkin and Micali showed that among
“asymmetric” functions (in which only one party gets the output), a function is
passive-complete if and only if it is not “trivial” [3]. ([3] also concerned itself with
the computational setting and asked cryptographic complexity questions regard-
ing computational assumptions.) Kilian vastly generalized this by giving several



completeness characterizations: active-complete deterministic asymmetric func-
tions, passive-complete symmetric functions and passive-complete asymmetric
functions [25]. Kilian’s result for active-completeness was extended in two differ-
ent directions by subsequent work: Crépeau, Morozov and Wolf [12] considered
“channel functions” which are randomized asymmetric functions (only one party
has output), but with the additional restriction that only one party has input;
Kraschewski and Müller-Quade [28] considered functions in which both parties
can have inputs and outputs, but restricted to deterministic functions.

Kilian’s result for passive-completeness was extended to all functions in a
recent work [31], which also presented a unification of all the prior character-
izations and posed the question of completing the characterization. The full
characterization we obtain matches the unified conjecture from [31].

A related, but different line of work investigated secure computability and
completeness for multi-party computation (with more than 2 parties) (e.g., [8,
4, 33, 29, 26, 14, 13]). We restrict ourselves to 2-party functions in this work. An-
other direction of research considers whether a short protocol for f (instead of
a black-box implementing f) is complete or not [30].

1.3 Technical Overview

An important ingredient of our result is a combinatorial/linear-algebraic char-
acterization of “redundancy” in a general 2-party function. The importance of
redundancy is two fold:

– Any function f is “equivalent” (or weakly isomorphic, as defined in [31]) to
a “core” function f̂ which is redundancy free, so that f is complete against
active adversaries if and only if f̂ is. Thus it is enough to characterize com-
pleteness for redundancy free functions.

– Our various protocols rely on being given access to a redundancy free func-
tion. Redundancy makes it possible for an adversary to deviate from a pre-
scribed interaction with a function without any chance of being detected.
Thus the statistical checks used to enforce that the adversary does not de-
viate from its behavior crucially rely on the protocol using only redundancy
free functions.

While redundancy of special classes of 2-party functions have appeared in the
literature previously, it turns out that for general 2-party functions, the nature of
redundancy is significantly more intricate. Recall that we discussed redundancy
informally by considering an adversary that tries to learn about the other party’s
input-output pair: any input it can avoid, and distinction between outputs (for
the same input) that provide it with identical information are both redundant.
However, the role of redundancy in showing completeness is somewhat different:
redundancy in a function makes it hard (if not impossible) to use it in a pro-
tocol, as it allows an active adversary to deviate from behavior prescribed by
a protocol, with no chance of being caught. Possible deviation includes replac-
ing its prescribed input to the function by a probabilistically chosen input, and



probabilistically altering the output it receives from the function before using
it in the protocol, at the same time. The goal of this deviation is to minimize
detectability by the other party (and the environment). Our formal definition
of redundancy uses this point of view. We define irredundancy quantitatively
(Definition 1) as a lowerbound on the ratio of the detection advantage to the
extent of deviation (“irredundancy = detection/deviation”).

The first step in our characterization is to bridge the gap between these two
formulations of redundancy. While the definition of irredundancy is what allows
us to use a redundancy-free function in our protocols, to find the core of a func-
tion, we rely on the formulation in terms of redundancy of individual inputs – we
shall reduce redundancy one input or output at a time, until we obtain a redun-
dancy free function. Clearly when redundancy is present, irredundancy would be
0 (i.e., can deviate without being detected); but we show that conversely, when
irredundancy is 0, then one of the two forms of redundancy must be present. We
stress that a priori, it is not at all obvious that irredundancy cannot be 0 even if
there is no redundancy (i.e., detection/deviation could approach 0 by a sequence
of deviations that are smaller and smaller, achieving even smaller detectability).
We provide a non-trivial linear algebraic analysis of irredundancy and show that
this is not the case (Lemma 1).

Simple Function. Following [31], we define a simple function. First, we present a
combinatorial characterization (given in Lemma 1 in [31]) of a simple function,
which constitutes the algorithm for determining if a function is simple or not.

A 2-party randomized function f is described by a joint distribution over
Alice-Bob output space W × Z for every Alice-Bob input pair in X × Y . We
consider the |Y ||Z| × |X||W | matrix Pf , with rows indexed by (y, z) ∈ Y × Z
and columns indexed by (x,w) ∈ X ×W , such that Pf

(y,z),(x,w) = pf [w, z|x, y].
The function f is simple if Pf can be partitioned into a set of rank-1 minors
such that no row or column of the matrix pass through two of these minors.
Being of rank 1, each minor has all its rows (equivalently, columns) parallel to
each other. (In [31], this is described in terms of a bipartite-graph in which each
connected component is a complete bipartite graph, with weights on the edges
being proportional to the product of the weights on the two end points of the
vertex.)

To better understand what being simple means, we briefly explain how it is
defined. The kernel of a function f is a symmetric function that provides both
the parties with only the “common information” that f provides them with.
A simple function is one which is “isomorphic” to its kernel: i.e., given just the
output from the kernel, the rest of the information from f can be locally sampled
by the two parties, independent of each other.

As stated in [31], the passive-complete functions are exactly those which are
not simple. Our construction shows that restricted to the class of redundancy
free functions, the same characterization holds for complete functions for active-
security as well.



1.4 The construction

Our main construction shows that any redundancy free function f which is not
simple is also UC-complete. This construction separates into two parts:

– A protocol to UC-securely reduce the commitment functionality Fcom to f .
– A protocol in the Fcom-hybrid model that UC-securely reduces OT to f ,

starting from a passive-secure reduction of OT to f (since f is passive-
complete, such a protocol exists). That is, we compile (in a black-box man-
ner) a passive-secure OT protocol using f , to a UC-secure OT protocol using
f (and Fcom).

In building the commitment functionality we rely on a careful analysis of func-
tions that are redundancy free and not simple, to show that there will exist
two or more extreme views for one party (which cannot be equivocated) that are
confusable by the second party (provided it uses inputs from an “unrevealing dis-
tribution” — something that can be verified by the first party). We interpret the
function invocations as a channel through which the first party transmits a mes-
sage using the set of its extreme views as the alphabet. This message is encoded
using an error correcting code of rate 1 − o(1) and o(1) distance; the distance
would be sufficient to prevent equivocation during opening. To argue hiding, we
rely on a well-known result from information theory, namely the (weak) converse
of Shannon’s Channel Coding Theorem. We extend this theorem to the case of
adaptively chosen channel characteristics, corresponding to the fact that the re-
ceiver can adaptively choose its input to the function and that determines the
channel characteristics. Due to confusability, the capacity of this channel will be
less than 1 (measured with the logarithm of the input alphabet size as the base).
Since the rate of the code is higher than the capacity of the channel, this gives
us some amount of hiding (which is then refined using an extractor).

The second part, which gives a compiler, is similar in spirit to prior protocols
that established that a passive-secure OT protocol (in the plain model) can be
converted to an active-secure OT protocol in a black-box manner [20, 19, 9]. In
particular, its high-level structure resembles that of the protocol in [9]. However,
the key difference in our protocol compared to these earlier protocols (which
were all in the computational setting), is that the passive-secure OT protocol
that we are given is not in the plain model, but is in the f -hybrid model. The
technical difficulty in our case is in ensuring that a cut-and-choose technique can
be used to verify an adversary’s claims about what inputs it sent to a 2-party
function and what outputs it received, when the verifier has access to only the
other end of the function. This is precisely where the statistical testability of
redundancy free functions (see below) is invoked.

Also, in contrast with the above mentioned compilers, we do not use a two-
step compilation to first obtain security against active corruption of the receiver
and then that of the sender. Instead, we directly obtain a somewhat “noisy”
OT protocol that is secure against active corruption of either player, and use
techniques from [22, 21] to obtain the final protocol. In particular, we show how
the result in [22] can be extended so that it works in a noisy OT-hybrid rather



than a regular OT-hybrid. (A similar extension was used in [21], to allow using
a noisy channel hybrid instead of a regular OT-hybrid.) These tools help us
achieve a constant rate in implementing OTs from instances of f .

Statistically Testable Games. We introduce a formal notion of statistically testable
game, which is an information-theoretic analogue of interactive proofs where
both players can be computationally unbounded. Note that interactive proofs
are not interesting in this information-theoretic setting (or if P=PSPACE). In a
statistically testable game, the statements being proven (tested) are statements
regarding the private observations of the prover in a system, which provides par-
tial observations to the verifier as well. The non-triviality of such a proof system
stems not from the computational limitations of the verifier, but from the fact
that the verifier cannot observe the entire system. While such proofs have been
implicitly considered in several special cases in many prior works (e.g. [11, 12, 22,
21]), the class of games we consider is much more general than those implicitly
considered in these earlier instances, and the soundness of the tests we consider
is not at all obvious.

The game we consider is of 2-party function evaluation, in which the prover
and the verifier interact with a (stateless) trusted third party which carries out
a randomized function evaluation for them. The prover first declares a sequence
of n inputs it will feed the function (the verifier chooses its inputs privately
and independently). After n invocations of the function, the prover declares to
the verifier the sequence of the n outputs it received from the invocations. A
statistical test is a sound and complete proof system which convinces the verifier
that the input and output sequences declared by the prover has a o(1) fraction
Hamming distance from the actual sequences in its interaction with the trusted
party. Note that the verifier can use its local observations (its input-output
sequences) to carry out the verification.

A major technical ingredient of our compiler is the following theorem:

Evaluation of a 2-party function f is statistically testable if and only if
f is redundancy free.

Clearly, if a function is not redundancy free, it admits no sound statistical test.
But a priori, it may seem possible that even if no single input has redundancy,
the prover can map the entire sequence of inputs and outputs to a different
sequence, with only a small statistical difference in the verifier’s view, such that
this difference vanishes with the length of the sequence. We show that this is not
the case: if the function is redundancy-free, then there is a lowerbound on the
ratio of the “detection advantage” to “extent of deviation” that does not vanish
with the number of invocations.

This naturally motivates our approach of compiling a passive-secure protocol
in f -hybrid, where f is redundancy free, into one that is secure against active
adversaries. We should be able to enforce honest behavior by “auditing” randomly
chosen executions from a large number of executions, and the auditing would
use the statistical tests. However, this idea does not work directly: the statistical
test models a test by an environment: it lets the adversary arbitrarily interact



with f and report back a purported output, but the purported input it sent to f
was fixed by the environment before the adversary obtained the output from f .
On the other hand, in a protocol, the honest party does not get to see the input
to be sent to the functionality ahead of time. It is to solve this issue that we rely
on the commitment functionality: the input each party should be sending to f is
fixed a priori using commitments (and coin-tossing-in-the-well). When a session
is chosen for auditing, the adversary could have sent a different input to f than
it was supposed to, and it can lie about the output it received from f as well,
but it cannot choose the purported input it sent to f after interacting with f .

2 Preliminaries

Matrix Definitions. In the following we shall refer to the following matrix norms:
‖A‖∞ = maxi

∑
j |aij | (maximum absolute row sum norm), and ‖A‖sum =∑

i,j |aij | (absolute sum norm). We shall also use the functionmax(A) = maxi,j aij
(maximum value among all entries); note that here we do not consider the ab-
solute value of the entries in A. For a probability distribution pXover a space X
(denoted as vectors), we define min(pX) = minx∈X pX [x], the minimum proba-
bility it assigns to an element in X. The norm ‖·‖∞ when applied to a column
vector simply equals the largest absolute value entry in the vector. We say that
a matrix P is a probability matrix if its entries are all in the range [0, 1] and
‖P‖sum = 1. We say that a matrix is a stochastic matrix (or row-stochastic
matrix) if all its entries are in the range [0, 1] and every row sums up to 1.
For convenience, we define the notation 〈M〉I for a square matrix M to be the
diagonal matrix derived from M by replacing all non-diagonal entries by 0.

2-Party Secure Function Evaluation. A two-party randomized function (also
called a secure function evaluation (SFE) functionality) is specified by a single
randomized function denoted as f : X × Y →W ×Z. Despite the notation, the
range of f is, more accurately, the space of probability distributions overW ×Z.
The functionality takes an input x ∈ X from Alice and an input y ∈ Y from
Bob and samples (w, z) ∈ W × Z according to the distribution f(x, y); then it
delivers w to Alice and z to Bob. Throughout, we shall denote the probability
of outputs being (w, z) when Alice and Bob use inputs x and y respectively by
pf [w, z|x, y]. We use the following variables for the sizes of the sets W,X, Y, Z:

|X| = m |Y | = n |W | = q |Z| = r.

In this paper we shall restrict to function evaluations where m, n, q and r are
constants, i.e. as the security parameter increases the domains do not expand.
(But the efficiency and security of our reductions are only polynomially depen-
dent on m,n, q, r, so one could let them grow polynomially with the security
parameter. We have made no attempt to optimize this dependency.) W.l.o.g.,
we shall assume that X = [m] (i.e., the set of first m positive integers), Y = [n],
W = [q] and Z = [r].



We consider standard security notions in the information-theoretic setting:
UC-security, standalone-security and passive-security against computationally
unbounded adversaries (and with computationally unbounded simulators). Using
UC-security allows to compose our sub-protocols securely [7]. Error in security
(simulation error) is always required to be negligible in the security parameter
of the protocol, and the communication complexity of all protocols are required
to be polynomial in the same parameter. However, we note that a protocol may
invoke a sub-protocol with a security parameter other than its own (in particular,
with a constant independent of its own security parameter).

Complete Functionalities. A two-party randomized function evaluation f is
standalone-complete (respectively, UC-complete) against information theoretic
adversaries if any functionality g can be standalone securely (respectively, UC
securely) computed in f hybrid. We shall also consider passive-complete func-
tions where we consider security against passive (semi-honest) adversaries.

3 Main Tools

In this section we introduce the three main tools used in our construction.

3.1 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in
the ideal world and not be detected (with significant probability) by an environ-
ment. In our protocol, which are designed to detect deviation, it is important
to use a function in a form in which redundancy has been removed. We define
irredundancy in an explicit linear algebraic fashion, and introduce a parameter
to measure the extent of irredundancy.

Irredundancy of a System of Stochastic Matrices. Let Pi, i = 1, . . . ,m be a
collection of s × q probability matrices (i.e., entries in the range [0, 1], with
‖Pi‖sum = 1). Consider tuples of the form (j, {Mi, αi}mi=1), where j ∈ [m], Mi

are q × q stochastic matrices, and αi ∈ [0, 1] are such that
∑
i αi = 1. Then we

define the irredundancy of this system as

D(P1, . . . , Pm) = inf
(j,{αi,Mi}m

i=1)

‖(
∑m
i=1 αiPiMi)− Pj‖∞

1− αj‖Pj · 〈Mj〉I‖sum
(1)

where the infimum is over tuples of the above form. (Recall that 〈Mj〉I refers to
the diagonal matrix with the diagonal entries of Mj .)

Intuitively, consider the rows of Pi to be probability distributions over a q-ary
alphabet produced as the outcome of a process with the row index corresponding
to a hidden part of the outcome, and the column index being an observable
outcome. Then, irredundancy measures how well a Pj can (or rather, cannot) be
approximated by a convex combination of all the matrices Pi, possibly with the



observable outcome transformed using a stochastic matrix (corresponding to a
probabilistic mapping of the observable outcomes); the denominator normalizes
the approximability by how much overall deviation (probability of changing the
process or changing the outcome) is involved. This excludes the trivial possibility
of perfectly matching Pj by employing zero deviation (i.e., taking αj = 1 and
Mj = I).

Irredundancy of a 2-Party Secure Function Evaluation Function. Recall that a
2-party SFE function f with input domains, X × Y and output domain W × Z
is defined by probabilities pf [w, z|x, y]. We define left and right redundancy of
f as follows. Below, |X| = m, |Y | = n, |W | = q, |Z| = r.

To define left-redundancy, consider representing f by the matrices {P x}x∈X
where each P x is an nr×q matrix with P x(y,z),w = pf [w, y, z|x]. Here, pf [w, y, z|x] ,
1
np

f [w, z|x, y] (where we pick y independent of x, with uniform probability
pf [y|x] = 1

n ).

Definition 1. For an SFE function f : X×Y →W×Z, represented by matrices
{P x}x∈X , with P x(y,z),w = Pr[w, y, z|x], we say that an input x̂ ∈ X is left-
redundant if there is a set {(αx,Mx)|x ∈ X}, where 0 ≤ αx ≤ 1 with

∑
x αx = 1,

and each Mx is a q × q stochastic matrix such that if αx̂ = 1 then Mx̂ 6= I, and
P x̂ =

∑
x∈X αxP

xMx.
We say x̂ is strictly left-redundant if it is left-redundant as above, but αx̂ = 0.

We say x̂ is self left-redundant if it is left-redundant as above, but αx̂ = 1 (and
hence Mx̂ 6= I).

We say that f is left-redundancy free if there is no x ∈ X that is left-
redundant.

Right-redundancy notions for inputs ŷ ∈ Y are defined analogously. A func-
tion f is said to be redundancy-free if it is left-redundancy free and right-
redundancy free. The main result about irredundancy is the following quan-
titative lemma:

Lemma 1. Suppose a 2-party function f : X × Y → W × Z is left redun-
dancy free. Let pY be a probability distribution over Y . Let the probability matri-
ces {P x}x∈X , be defined by P x(y,z),w = pf [w, z|x, y]pY [y]. Then there is a constant
εf > 0 (depending only on f) such that D(P 1, . . . , Pm) ≥ εfmin(pY ).

The analogous statement holds for right redundancy.

3.2 Statistically Testable Function Evaluation

In this section we consider the notion of a statistically testable function eval-
uation game. (The notion is more general and could be extended to reactive
systems, or multi-player settings; for simplicity we define it only for the rel-
evant setting of 2-party functions.) We informally defined a statistical test in
Section 1.3. As mentioned there, we shall show that evaluation of a 2-party
function is statistically testable if and only if the function is redundancy free.



For simplicity, we define a particular test and show that it is sound and com-
plete for redundancy free functions (without formally defining statistical tests in
general). (It is easy to see that functions with redundancy cannot have a sound
and complete test. Since this is not relevant to our proof, we omit the details.)

Let f be redundancy free. Consider the following statistical test, formulated
as a game between an honest challenger (verifier) and an adversary (prover) in
the f -hybrid.

Left-Statistical-Test(f, pY ;N):

1. The adversary picks x̃ = (x̃1, . . . , x̃N ) ∈ XN , and for each i ∈ [N ] the chal-
lenger (secretly) picks uniform i.i.d yi ∈ Y , according to the distribution
pY .

2. For each i ∈ [N ], the parties invoke f with inputs xi and yi respectively;
the adversary receives wi and the challenger receives zi, where (wi, zi)

$←
f(xi, yi).

3. The adversary then outputs w̃ = (w̃1, . . . , w̃N ) ∈WN .

The adversary wins this game (breaks the soundness) if the following condi-
tions hold:

1. Consistency: Let µw̃,x̃,y,z be the number of indices i ∈ [N ] such that w̃i =
w̃, x̃i = x̃, yi = y and zi = z. Also, let µx̃,y be the number of indices
i ∈ [N ] such that x̃i = x̃ and yi = y. The consistency condition requires that
∀(w, x, y, z) ∈W ×X × Y × Z,

µw̃,x̃,y,z = µx̃,y × pf [w̃, z|x̃, y]±N2/3.

2. Separation: Let vectors A, Ã ∈ (W ×X)N be defined by Ai := (wi, xi) and
Ãi = (w̃i, x̃i). The separation condition requires that the Hamming distance
between the vectors A and Ã is ∆(A, Ã) ≥ N7/8.

The Right-Statistical-Test(f, pX ;N) is defined analogously. The experiment
Statistical-Test(f, pX , pY ;N) consists of the left and right statistical tests, and
the adversary wins if it wins in either experiment.

Before proceeding, we note that the above statistical test is indeed “complete”:
if the prover plays “honestly” and uses x̃ = x and w̃ = w, then the consistency
condition will be satisfied with all but negligible probability (for any choice of
x).

Lemma 2. If f is redundancy free, and pXand pY are constant distribution
which have full support over X and Y respectively, then the probability that any
adversary wins in Statistical-Test(f, pY , pX ;N) is negl(N).8

8 The distributions pXand pY are constant while N is a growing parameter.



3.3 A Converse of The Channel Coding Theorem

A converse of the channel coding theorem states that message transmission is
not possible over a noisy channel at a rate above its capacity, except with a
non-vanishing rate of errors (see, for e.g., [10]). We give a generalization of the
(weak) converse of channel coding theorem where the receiver can adaptively
choose the channel based on its current view. We show that if in at least a µ
fraction of the transmissions, the receiver chooses channels which are noisy (i.e.,
has capacity less than that of a noiseless channel over the same input alphabet),
then we can lower bound its probability of error in predicting the input codeword
as a function of µ, an upper bound on the noisy channel capacities, and the rate
of the code.

Lemma 3 (Weak Converse of Channel Coding Theorem, Generaliza-
tion). Let F = {F1, . . . ,FK} be a set of K channels which take as input alpha-
bets from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that for all i ∈ G, the
capacity of the channel Fi is at most λ− c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment:
a random codeword c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is
transmitted sequentially; the channel used for transmitting each symbol is chosen
(possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for µ or more transmis-
sions, the probability of error of the receiver in predicting c is

Pe ≥ 1− 1

NRλ
− 1− cµ/λ

R
.

4 Main Construction

The main ingredient for the proof of Theorem 1 is the following result (details
are provided in the full version [27]):

Theorem 2. If f is a redundancy free 2-party function and f is passive-complete,
then there is a constant rate UC-secure protocol for Fot in the f -hybrid model.

Since f is passive-complete we know that OT does reduce to f against passive
adversaries. We shall take such a passive-secure OT protocol in the f -hybrid,
and convert it into a UC-secure protocol. For this we need two ingredients:
first a UC-secure commitment protocol in the f -hybrid model, and secondly
a compiler to turn the passive secure OT protocol in the f -hybrid model to
a UC-secure protocol in the commitment-hybrid model. In building the UC-
secure commitment protocol, we rely on the irredundancy of f as well as the
combinatorial characterization that passive-complete functions are exactly those
that are not simple (see Section 1.3).



4.1 A UC Secure Commitment Protocol

In this section we present the outline of a UC-secure commitment protocol in
the f -hybrid model, for any 2-party randomized function f that is redundancy
free (Definition 1) and is not simple (see Section 1.3).

The high-level structure of the protocol is as follows. The definition of the un-
derlined terms cannot be accommodated due to lack of space. Interested readers
should refer to [27].

1. Commitment phase:
(a) The sender plays the role of (say) Alice in f , and the receiver plays

the role of Bob in f . The sender invokes f several times, with random
inputs x ∈ X; and the receiver will be required to pick its inputs from
an unrevealing distribution pY .

(b) The sender checks if the frequencies of all the input-output pairs (x,w)
it sees are consistent with the receiver using pY .

(c) The sender announces a subset of indices for which in the corresponding
invocations, it obtained an extreme input-output pair.

(d) The sender picks a random codeword from an appropriate code, and
masks this codeword with the sequence of input-output pairs from the
previous step, and sends it to the receiver.

(e) The sender also sends the bit to be committed masked by a bit extracted
from the codeword in the previous step.

2. Reveal phase: The sender sends its view from the commitment phase. The
receiver checks that this is consistent with its view and the protocol (in
particular, the purported codeword indeed belongs to the code, and for each
possible value (x,w) of the sender’s input-output pair to f , the frequency of
input-output pairs (y, z) on its side are consistent with the function). If so,
it accepts the purported committed bit.

The delicate part of this construction is to show that there will indeed be
a set of extreme input-output pairs and an unrevealing distribution as required
above. We point out that we cannot use our results on statistical testability of
the function evaluation game from Section 3.2 directly to argue that binding
would hold for all input-output pairs. This is because the game there requires
the adversary to declare the input part of its purported view before invoking the
function. Indeed, once we have a commitment functionality at our disposal, we
can exploit the binding nature of this game; but to construct our commitment
protocol this is not helpful.

Due to lack of space, we provide rest of our construction in the full version
of the paper [27].

Acknowledgments

We thank Vinod Prabhakaran for helpful discussions on the converse of the
Channel Coding Theorem.



References

1. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, edi-
tor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 97–109.
Springer, 1995.

2. Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the
cryptographic complexity of the worst functions. http://www.cs.umd.edu/ ran-
jit/BIKK.pdf. Retrieved Oct 16, 2013, 2013.

3. Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-
party secure computation. In Michael J. Wiener, editor, CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 80–97. Springer, 1999.

4. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In Janos Simon, editor, STOC, pages 1–10. ACM, 1988.

5. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of Lecture Notes
in Computer Science, pages 234–238. Springer, 1986.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version “A unified framework for analyzing security of proto-
cols” available at the ECCC archive TR01-016. Extended abstract in FOCS 2001.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of
[6].

8. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols. In Janos Simon, editor, STOC, pages 11–19. ACM, 1988.

9. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple,
black-box constructions of adaptively secure protocols. In Omer Reingold, editor,
TCC, volume 5444 of Lecture Notes in Computer Science, pages 387–402. Springer,
2009.

10. Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

11. Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened se-
curity assumptions (extended abstract). In FOCS, pages 42–52. IEEE, 1988.

12. Claude Crépeau, Kirill Morozov, and Stefan Wolf. Efficient unconditional oblivious
transfer from almost any noisy channel. In Carlo Blundo and Stelvio Cimato,
editors, SCN, volume 3352 of Lecture Notes in Computer Science, pages 47–59.
Springer, 2004.

13. Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal
complete primitives for secure multi-party computation. J. Cryptology, 18(1):37–
61, 2005.

14. Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broadcast.
In F. Frances Yao and Eugene M. Luks, editors, STOC, pages 494–503. ACM,
2000.

15. Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, 2004.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game.
In Alfred V. Aho, editor, STOC, pages 218–229. ACM, 1987. See [15, Chap. 7] for
more details.



17. Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an effi-
ciency improvement. In Carl Pomerance, editor, CRYPTO, volume 293 of Lecture
Notes in Computer Science, pages 73–86. Springer, 1987.

18. Stuart Haber and Silvio Micali. Unpublished manuscript, 1986.
19. Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way.

In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science,
pages 412–426. Springer, 2008.

20. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box con-
structions for secure computation. In STOC, pages 99–108. ACM, 2006.

21. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai,
and Jürg Wullschleger. Constant-rate oblivious transfer from noisy channels. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 667–684. Springer, 2011.

22. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In David Wagner, editor, CRYPTO, volume 5157 of
Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

23. Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor,
STOC, pages 20–31. ACM, 1988.

24. Joe Kilian. A general completeness theorem for two-party games. In Cris Kout-
sougeras and Jeffrey Scott Vitter, editors, STOC, pages 553–560. ACM, 1991.

25. Joe Kilian. More general completeness theorems for secure two-party computation.
In F. Frances Yao and Eugene M. Luks, editors, STOC, pages 316–324. ACM, 2000.

26. Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and
completeness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

27. Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, and Amit Sahai. A
full characterization of completeness for two-party randomized function evaluation.
IACR Cryptology ePrint Archive, 2014:50, 2014.

28. Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with con-
structive proofs for finite deterministic 2-party functions. In Yuval Ishai, editor,
TCC, volume 6597 of Lecture Notes in Computer Science, pages 364–381. Springer,
2011.

29. Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and complete-
ness in multi-party private computations. In FOCS, pages 478–489. IEEE Com-
puter Society, 1994.

30. Yehuda Lindell, Eran Omri, and Hila Zarosim. Completeness for symmetric two-
party functionalities - revisited. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT, volume 7658 of Lecture Notes in Computer Science, pages 116–133.
Springer, 2012.

31. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A unified characteri-
zation of completeness in secure function evaluation. To appear at INDOCRYPT,
2012.

32. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

33. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In David S. Johnson, editor, STOC, pages 73–85. ACM,
1989.

34. Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88, January 1983.
35. Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-

ing (preliminary report). In STOC, pages 209–213. ACM, 1979.


