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Abstract. After more than a decade of usage, bilinear groups have es-
tablished their place in the cryptographic canon by enabling the con-
struction of many advanced cryptographic primitives. Unfortunately, this
explosion in functionality has been accompanied by an analogous growth
in the complexity of the assumptions used to prove security. Many of
these assumptions have been gathered under the umbrella of the “uber-
assumption,” yet certain classes of these assumptions—namely, q-type
assumptions—are stronger and require larger parameter sizes than their
static counterparts. In this paper, we show that in certain bilinear groups,
many classes of q-type assumptions are in fact implied by subgroup hid-
ing (a well-established, static assumption). Our main tool in this en-
deavor is the dual-system technique, as introduced by Waters in 2009.
As a case study, we first show that in composite-order groups, we can
prove the security of the Dodis-Yampolskiy PRF based solely on sub-
group hiding and allow for a domain of arbitrary size (the original proof
only allowed a logarithmically-sized domain). We then turn our atten-
tion to classes of q-type assumptions and show that they are implied—
when instantiated in appropriate groups—solely by subgroup hiding.
These classes are quite general and include assumptions such as q-SDH.
Concretely, our result implies that every construction relying on such as-
sumptions for security (e.g., Boneh-Boyen signatures) can, when instan-
tiated in appropriate composite-order bilinear groups, be proved secure
under subgroup hiding instead.

1 Introduction

For the past decade, bilinear groups— i.e., groups equipped with a bilinear map,
or pairing—have allowed for the efficient construction of a wide variety of ad-
vanced cryptographic primitives, including (but by no means limited to): sig-
natures [?,?,?,?], group signatures [?,?,?], zero-knowledge proofs [?,?], (hierar-
chical) identity-based encryption [?,?,?,?], and functional and attribute-based
encryption [?,?,?]. As such, pairings are now used as a standard general-purpose
tool in cryptographic constructions.
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Unfortunately, this growth in the complexity of cryptographic primitives has
been accompanied by an analogous growth in the complexity of the assumptions
required to prove security. While assumptions such as Bilinear Diffie Hellman
(BDH) [?] and Decision Linear [?] have become relatively standard, the use of
pairings has also ushered in various classes of assumptions such as q-type as-
sumptions, in which the size of the assumption grows dynamically, or interactive
assumptions, in which the adversary is given access to some oracle(s). For exam-
ple, in the q-DBDHI (Decisional Bilinear Diffie Hellman Inversion) assumption,

the adversary is given (g, gx, gx
2

, . . . , gx
q

) and is asked to produce e(g, g)1/x.
While the “uber-assumption” [?,?] generalizes many q-type assumptions (as well
as many static assumptions) and provides a lower bound for their security in the
generic group model [?], such assumptions nevertheless remain less understood
than their static counterparts.

Beyond the understanding of such assumptions, the fact that they scale
asymptotically with the security of the scheme can be problematic. In a re-
duction, the value of q is frequently tied to the number of queries that the
adversary makes to an oracle. As a result, q must scale with some parameter
of the system; e.g., for identity-based encryption, q must be at least as big as
the number of parties that the adversary is able to corrupt. As it is typically
the case that an assumption parameterized by q′ implies the same assumption
parameterized by q for q′ > q (as the assumption parameterized by q′ gives out
strictly more information), this means that the assumption gets stronger as the
adversary is able to corrupt more parties. In some cases, this correlation is more
striking. For example, Dodis and Yampolskiy [?] use the 2a(λ)-DBDHI assump-
tion to prove the security of their pseudorandom function (PRF), where a(λ) is
the size of the domain of the PRF (and λ is the security parameter); as a result,
the domain is restricted to be of logarithmic size. This correlation is furthermore
not always an artifact of proof techniques, as Jao and Yoshida [?] showed that
Boneh-Boyen signatures were in fact equivalent to the q-SDH assumption that
they rely on for security. Finally, Cheon [?] showed that the time required to
recover a secret key scales inversely with the size of q, so that if recovering a
secret key takes time t when using q = 1 (e.g, it takes t steps to recover x given g
and gx), then it takes time t/

√
q in the general case (e.g., given (g, gx, . . . , gx

q

)).
This means that constructions rely on asymptotically stronger assumptions to
obtain stronger security guarantees, so the parameters must grow appropriately
in order to maintain a constant level of security (e.g., 128-bit security).

On the positive side, one technique that has proved particularly effective at
avoiding q-type assumptions—and boosting security as a result— is the dual-
system technique, which was introduced by Waters [?] in 2009 and has been used
extensively since [?,?,?,?,?,?]. Briefly, this technique takes advantage of subgroup
hiding in bilinear groups [?]; i.e., the assumption, in a group of composite order
N = p1p2, that a random element of the full group is indistinguishable from a
random element of order p1. (Subgroup hiding can also be defined, albeit in a
more complex way, for vector spaces over prime-order bilinear groups.) Using this
core assumption, the dual-system technique begins with a scheme in a particular



subgroup (for concreteness, the subgroup of elements of order p1); i.e., a scheme
in which all elements are contained solely within the subgroup. To prove security,
a “shadow” copy of the original scheme is first added in a new subgroup (e.g.,
the subgroup of order p2); the addition of this shadow copy goes unnoticed by
subgroup hiding. Using a property called parameter hiding [?], this shadow copy
is then randomized, so the value in the additional subgroup is now unstructured;
in Waters’ terminology, this object is now semi-functional. This randomness is
then pushed back into the original subgroup, again using subgroup hiding, and
is used to blind the structure of the original scheme; e.g., in an IND-CPA game
it can be used to obscure all information about the challenge message.

Our contributions. In this paper, we expand the usage of the dual-system tech-
nique. Rather than work at the level of constructions, we show directly that
many q-type assumptions can be implied—with a crucial looseness of q—by
subgroup hiding. In some sense, we thus interpret previous usages as absorbing
rather than avoiding q-type assumptions, and believe our work takes a (perhaps
surprising) step in expanding the power of the dual-system technique.

As a first exercise, we prove in Section 3 that the Dodis-Yampolskiy PRF—
unmodified, but instantiated in a composite-order group—can be proved secure
using only the subgroup hiding assumption. Because of the limitations (described
above) in the original security proof, our result not only uses a static assumption,
but also boosts security to allow for domains of arbitrary size, which is useful in
and of itself for the many applications of the Dodis-Yampolskiy PRF [?,?,?,?].

Next, in Section 4, we look beyond cryptographic primitives and instead
focus directly on the underlying assumptions, and in particular on the class of q-
type assumptions that are instantiations of the uber-assumption. Here we show
that many instantiations of the uber-assumption can be reduced— following a
modified version of the dual-system technique, which still assumes subgroup
hiding—to instantiations that are significantly weaker; in fact, in many cases
we can reduce to an assumption so weak that it actually holds by a statistical
argument. As examples, we revisit a number of well-known q-type assumptions.
By applying our general theorem to these assumptions, we can reduce them to
assumptions in which all secret information (e.g., the exponent x in q-DBDHI)
is statistically hidden, so an adversary can do no better than a random guess
and the security of the entire assumption collapses down to subgroup hiding.

Finally, in Section 5, we discuss the concrete implications of our work; i.e.,
in which concrete bilinear settings the abstract requirements of the dual-system
technique (namely, subgroup hiding and parameter hiding) can be expected to
hold. Due to current limitations in the parameter hiding supported by prime-
order bilinear groups, our results can most generally be applied in asymmetric
composite-order bilinear groups [?,?].

Putting it all together, we obtain the following concrete results:

– In a composite-order group (such as the target group of a composite-order
pairing, or any composite-order elliptic curve group without a pairing), sub-



group hiding implies any q-type assumption where the exponents are linearly
independent rational functions.

– In an asymmetric composite-order bilinear group, subgroup hiding implies
any q-type assumption where the exponents are linearly independent rational
functions and the adversary must compute a value in the source group.

Related work. As mentioned above, the dual-system technique was first intro-
duced by Waters in 2009 [?], and was applied subsequently to achieve a wide
variety of results [?,?,?,?,?,?,?,?], all involving randomized public-key primitives
(e.g., identity-based encryption) in bilinear groups.

To the best of our knowledge, we are the first to systematically apply the dual-
system technique directly to assumptions, and in particular to q-type assump-
tions. Boneh, Boyen, and Goh [?] analyzed the security of the uber-assumption—
which includes many q-type assumptions— in the generic group model, and de-
rived generic lower bounds on the runtime of an adversary that could break
the uber-assumption; this work was later extended by Jager and Rupp [?], who
showed the equivalence of many assumptions in the semi-generic group model.
Our result is somewhat orthogonal to theirs, as we seek to show that in cer-
tain concrete (i.e., non-generic) settings these assumptions actually reduce to
subgroup hiding. Anecdotally, several results use the dual-system technique to
eliminate the requirement on q-type assumptions for specific primitives or con-
structions: Gerbush et al. [?] obtained Camenisch-Lysyanskaya signatures under
static assumptions, as opposed to the interactive LRSW assumption; Attra-
padung and Libert achieved the first identity-based broadcast encryption scheme
with short ciphertexts [?]; and the original result of Waters [?] achieved the first
secure HIBE under non-q-type assumptions.

2 Definitions and Notation

2.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S|
denotes its size and x

$←− S denotes sampling a member uniformly from S and
assigning it to x. λ ∈ N denotes the security parameter and 1λ denotes its unary
representation.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands
for “polynomial-time.” By y ← A(x1, . . . , xn;R) we denote running algorithm
A on inputs x1, . . . , xn and random coins R and assigning its output to y. By

y
$←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for some random coins R.

By [A(x1, . . . , xn)] we denote the set of values that have positive probability of
being output by A on inputs x1, . . . , xn. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G has a main

procedure whose output is the output of the game. Pr[G] denotes the probability
that this output is true.



2.2 Bilinear groups

We refer to a bilinear group as a tuple G = (N,G,H,GT , e), where N can be
either prime or composite, |G| = |H| = kN and |GT | = ℓN for some k, ℓ ∈ N, and
e : G×H → GT is a bilinear map, meaning it is (1) efficiently computable; (2)
satisfies bilinearity: e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H, and a, b ∈ Z/NZ;
and (3) satisfies non-degeneracy: if e(x, y) = 1 for all y ∈ H then x = 1 and
if e(x, y) = 1 for all x ∈ G then y = 1. When G and H are cyclic, we may
include in G generators g and h of G and H respectively, and when the groups
G and H decompose into subgroups G = G1 ⊕ G2 and H = H1 ⊕H2, we may
additionally include descriptions of these subgroups and/or their generators. In
what follows, we use BilinearGen to denote the algorithm by which bilinear groups
are generated, and provide it with an argument n that specifies the number of
subgroups.

There are two additional structural properties of bilinear groups that are
exploited in the dual-system technique: subgroup hiding and parameter hiding.
Subgroup hiding is a computational assumption that requires that, if G (respec-
tively H) decomposes into two subgroups, then distinguishing between a random
element of the full group and a random element of one of the subgroups should
be hard. (This is actually the specific simple case of subgroup hiding originally
introduced by Boneh, Goh, and Nissim [?]; more general definitions exist as
well [?,?].)

Assumption 2.1 (Subgroup hiding) For a bilinear group G = (N,G,H,GT ,
e, g1, g2, h1, h2), subgroup hiding holds in G if no PT adversary A has a non-
negligible chance of distinguishing a random element of the subgroup G1 from a
random element of the group G; formally, define Advsgh

A
(λ) = 2Pr[SGHA

µ (λ)]−1,
where SGHA

µ (λ) is defined as follows for µ ⊆ {g1, g2, h1, h2}:

main SGHA
µ (λ)

b
$←− {0, 1}; (N,G,H,GT , e, g1, g2, h1, h2)

$←− BilinearGen(1λ, 2)

if (b = 0) then T
$←− G

if (b = 1) then T
$←− G1

b′
$←− A((N,G,H,GT , e), µ, T )

return (b′ = b)

Then subgroup hiding holds with respect to the auxiliary information µ if for all
PT adversaries A there exists a negligible function ν(·) such that Advsgh

A
(λ) <

ν(λ).

There are often limits to the auxiliary information that can be provided to

A; e.g., if A is attempting to distinguish T = gr1 from T = gr for r
$←− Z/NZ and

has access to a canceling pairing e(·, ·)— i.e., a pairing such that e(G1, H2) =
e(G2, H1) = 1—and h2 ∈ µ, it can easily distinguish between these elements
by checking if e(T, h2) = 1 or not. Thus, if an adversary is trying to distinguish



between a random element of G1 and a random element of G1⊕G2 (analogously,
if it is trying to distinguish between G2 and G1⊕G2), the problem becomes easy
if µ includes h2 (analogously, h1).

Parameter hiding, unlike subgroup hiding, is a statistical property of the
group that allows certain distributions across subgroups to be independent. In
composite-order groups, for example, the Chinese Remainder Theorem tells us
that the values of x mod p1 and x mod p2 are independent, so that given gx1 ,
the value of gx2 is unconstrained. In prime-order groups, Lewko [?] demonstrated
how to support parameter hiding with respect to linear functions; i.e., how—
using appropriate constructions of G1 and G2 —the distribution of gax2 and

gr2 for a, r
$←− Fp is identical, even given x and ga1 . The first formal notion of

parameter hiding with respect to these linear functions was later given by Lewko
and Meiklejohn [?]; we generalize their notion as follows:

Definition 2.1 (Parameter hiding). For a bilinear group G = (N,G,H,GT ,
e), parameter hiding holds in G with respect to a family of functions F if the dis-

tribution {gf(x1,...,xn)
1 g

f(x1,...,xn)
2 }f∈F is identical to {gf(x1,...,xn)

1 g
f(x′

1,...,x
′

n)
2 }f∈F

for g1
$←− G1, g2

$←− G2, and x1, x
′
1, . . . , xn, x

′
n

$←− Z/NZ. (And holds analogously
in H using h1 and h2.)

As a very simple example, if F = {1, x1}, for g1 $←− G1, g2
$←− G2, and x1, x

′
1

$←−
Z/NZ, the distributions (g1g2, g

x1
1 gx1

2 ) and (g1g2, g
x1
1 g

x′

1
2 ) are identical.

We also define a somewhat weaker condition, which requires distributions
that are statistically close for any (potentially adaptively chosen) polynomial-
sized subset of F.

Definition 2.2 (Adaptive parameter hiding). For a bilinear group G =
(N,G,H,GT , e), adaptive parameter hiding holds with respect to a family of
functions F if for all λ ∈ N and all adaptively chosen sets S ⊆ F of size poly(λ),

the distribution {gf(x1,...,xn)
1 g

f(x1,...,xn)
2 }f∈S is statistically close to {gf(x1,...,xn)

1

g
f(x′

1,...,x
′

n)
2 }f∈S for g1

$←− G1, g2
$←− G2, and x1, x

′
1 . . . , xn, x

′
n

$←− Z/NZ.

We use these definitions in Sections 4, and discuss the different families of
functions that can be supported in different types of bilinear groups in Section 5.

2.3 Pseudorandom functions

A pseudorandom function family [?] F specifies the algorithms F.Pg, F.Keys,

F.Dom, F.Rng, and F.Ev. Via fp
$←− F.Pg(1λ) one generates a description fp

of a function F.Ev(1λ, fp) : F.Keys(1λ, fp) × F.Dom(1λ, fp) → F.Rng(1λ, fp). The
evaluation algorithm F.Ev is PT and deterministic.



Definition 2.3. For a function family F and an adversary A, let Advprf
F,A(λ) =

2Pr[PRFA
F
(λ)]− 1, where PRFA

F
(λ) is defined as follows:

main PRFA
F
(λ) Procedure Fnsk (x)

b
$←− {0, 1}; fp $←− F.Pg(1λ); sk

$←− F.Keys(1λ, fp) if b = 0 y
$←− F.Rng(1λ, fp)

b′
$←− AFn(1λ, fp) if b = 1 y ← F.Ev(1λ, fp, sk , x)

return (b′ = b) return y

Then F is pseudorandom if for all PT algorithms A there exists a negligible
function ν(·) such that Advprf

F,A(λ) ≤ ν(λ).

3 Pseudorandom Functions

In this section, we explore the security of the Dodis-Yampolskiy PRF [?]. First,
we recall the Dodis-Yampolskiy PRF, instantiated for our purposes in a group
of composite order N = p1p2:

3

– F.Pg(1λ): Output (N,G,H,GT , e, g, h)
$←− BilinearGen(1λ, 2). Then F.Keys =

F.Dom = Z/NZ, and F.Rng = GT .

– F.Ev(1λ, fp, sk , x): Output y := e(g, h)
1

sk+x . If (sk + x)−1 is undefined in
Z/NZ, then output y := 1.

Dodis and Yampolskiy originally showed that this was a verifiable random func-
tion—a more powerful primitive than a PRF, as it comes with the additional
ability to prove that the PRF value was computed correctly—under the q-
DBDHI assumption, which states that when given (g, gx, . . . , gx

q

), it should be
hard to distinguish e(g, g)1/x from random. Their reduction, however, is quite
loose: if the size of the PRF domain is a(λ), then they use the 2a(λ)-DBDHI as-

sumption, and show that Advpr-vrf
F,A (λ) ≤ 2a(λ) ·Adv2a(λ)-DBDHI

A (λ), which means
that the scheme is provably secure only if the domain is restricted to be of log-
arithmic size (i.e., its size is logarithmic in the size of the security parameter).

We instead make two minor modifications to the PRF and show that

Advprf
F,A(λ) ≤ q ·Advsgh

A
(λ)

for an adversary A that makes q queries to the PRF oracle; while the reduction
is still not tight, our approach nevertheless allows for a domain of arbitrary size.
Our first modification is to move the scheme into a subgroup: rather than use
e(g, h) for the full group generators, we switch to using e(g1, h1), where g1 and h1

generate G1 and H1 respectively. (In a cyclic group, such as a composite-order

3 To mirror the exposition of the original PRF, we use the target group GT here, but
note that in fact our analysis would work for any composite-order group in which
subgroup hiding holds and there is no pairing.



target group, this could instead be accomplished using an additional application
of subgroup hiding, and we can show that the function is a PRF even in the full
group.) Our second modification is to use, rather than the “canonical” generator
e(g1, h1), a random generator w1 ∈ GT,1. We stress that these modifications are
purely syntactical and do not fundamentally alter the spirit of the construction
(and, in particular, do not affect its usage in applications). They do, however,
allow us to prove the following theorem:

Theorem 3.1. For all λ ∈ N and fp ∈ [F.Pg(1λ)], if subgroup hiding holds in G

and adaptive parameter hiding holds with respect to {F.Ev(1λ, fp, ·, x)}x∈F.Dom,
then F is a pseudorandom function family.

A proof of Theorem 3.1 can be found in the full version of the paper. In-
tuitively, our approach amplifies the only unknown value present in the PRF—
namely, the sk value—as follows: first, this secret value is replicated in the GT,2

subgroup, which is indistinguishable from the original by subgroup hiding. The
secret value in the GT,2 subgroup is then decoupled from the secret value in
the GT,1 subgroup, which is indistinguishable (in fact identical) by parameter
hiding. Finally, the new secret value from the GT,2 subgroup is moved back into
GT,1, which is again indistinguishable by subgroup hiding. At this point, we
now have one additional secret value in the PRF values we return. By repeat-
ing the process, we can embed polynomially many secret values (in particular,
we embed as many values as there are oracle queries), at which point we have
enough entropy to argue that the values returned by the PRF are statistically
indistinguishable from truly random values.

One interesting feature of our approach is that—because we are using a
deterministic primitive—we do not need to follow the traditional dual-system
structure and adhere to a “query hybrid,” in which each query to the oracle
must be treated separately. Nevertheless, we do need to add enough additional
degrees of randomness to cover all of the adversary’s queries, so we still end up
with a looseness of q in our reduction (but where q is the number of queries, not
the size of the PRF domain).

4 Reducing q-Type Assumptions to Subgroup Hiding

Our main result in this section is to show that— if subgroup hiding holds and
parameter hiding holds with respect to certain functions in the exponent—
certain q-type assumptions are equivalent to significantly weaker assumptions. In
fact, these equivalent assumptions are often so weak that they hold by a purely
statistical argument, so the original assumption is fully implied by subgroup
hiding.

We begin by recalling the uber-assumption, which serves as an umbrella for
many q-type assumptions. We then describe two approaches: roughly, the first
reduces any uber-assumption to subgroup hiding, but only if the assumption
gives out meaningful functions on one side of the pairing (or in the target group),
and the second reduces any computational uber-assumption in the source group



to subgroup hiding. Both of our reductions incur a looseness of q in the reduction,
so we can think of them as “absorbing” the factor of q from the assumption rather
than eliminating it outright.

4.1 The uber-assumption

We are able to examine many q-type assumptions at the same time using the
“uber-assumption” [?,?], which was first introduced by Boneh, Boyen, and Goh
as a way to reason generally about a wide variety of pairing-based assump-
tions. They prove that if the parameters of the uber-assumption meet certain
independence requirements then the assumption is hard in the generic group
model, which eliminates the need to prove generic lower bounds for every indi-
vidual instantiation of the assumption that is introduced. Our motivation, on
the other hand, is to prove that many common instantiations of the assumption
are in fact implied—assuming subgroup hiding holds in the bilinear group—by
weaker versions of the assumption.

Formally, for a bilinear group G = (N,G,H,GT , e, g, h) (where N can be ei-
ther prime or composite) the uber-assumption is parameterized by five values: an
integer c ∈ N, three sets R, S, and T of polynomials over Z/NZ (which represent
the values we are given in G, H, and GT respectively), and a polynomial f over
Z/NZ. For the sets of polynomials, we write R = 〈ρ1(x1, . . . , xc), . . . , ρr(x1, . . . ,
xc)〉 and as shorthand use ρi(~x) = ρi(x1, . . . , xc) and gR(x1,...,xc) = {gρi(~x)}ri=1

(and similarly for S and T ).

Assumption 4.1 (Computational) For an adversary A, define Advuber
A (λ)

= Pr[c-UBERA
c,R,S,T,f (λ)], where c-UBERA

c,R,S,T,f (λ) is defined as follows:

main c-UBERA
c,R,S,T,f (λ)

(N,G,H,GT , e, g, h)
$←− BilinearGen(1λ, 2); x1, . . . , xc

$←− Z/NZ

y
$←− A(1λ, (N,G,H,GT , e, g, h), g

R(x1,...,xc), hS(x1,...,xc), e(g, h)T (x1,...,xc))
return (y = e(g, h)f(x1,...,xc))

Then the uber-assumption holds if for all PT algorithms A there exists a negli-
gible function ν(·) such that Advuber

A (λ) < ν(λ).

As an example, CDH in a symmetric group G uses c = 2, R = S = 〈1, x1, x2〉,
T = 〈1〉, and f(x1, x2) = x1x2, so that given (g, gx1 , gx2), it should be hard to
compute gx1x2 . As long as R and S both include 1, the computational uber-
assumption in the target group implies the computational uber-assumption in
the source group, since given X = gf(~x) one can always compute e(X,h) =
e(g, h)f(~x).

The game d-UBERA
c,R,S,T,f (λ) for the decisional uber-assumption is defined

analogously, except rather than compute gf(x1,...,xc) at the end, the adversary
has only to distinguish it from random. Unlike the computational version,
the decisional uber-assumption in the source group implies the decisional uber-
assumption in the target group, since one can use a decider between e(g, h)f(~x)



and RT to decide between gf(~x) and R by computing the pairing. Furthermore,
the decisional uber-assumption (in either group) implies the computational uber-
assumption, since the ability to compute the target value immediately implies
the ability to distinguish it from random. The strongest version of the uber-
assumption, and the one we therefore choose to aim for in the next section, is
the decisional assumption in either of the source groups.

4.2 A first approach: functions on one side of the pairing

Our first approach shows that certain classes of the uber-assumption are equiv-
alent to significantly weaker classes, and that in fact these weaker classes are
so weak that the assumption holds by a statistical argument. The subclass of
uber-assumptions we cover includes q-type assumptions such as exponent q-SDH
(defined above), and implies that any schemes that currently rely on such as-
sumptions can be instantiated so that they rely solely on subgroup hiding.

Our only modifications to the parameters of the uber-assumption are analo-
gous to our modifications in Section 3, which are as follows: first, we assume G,
H, and GT all have two subgroups, and we initially operate solely in the first of

these subgroups, so that A is given (g
R(x1,...,xc)
1 , h

S(x1,...,xc)
1 , e(g1, h1)

T (x1,...,xc))
rather than values in the full group. Second, we again switch from the canoni-
cal generators g1 and h1 to random generators u1 and v1. To make our proofs
cleaner, we phrase this requirement as follows: for every ρi ∈ R, there must exist

an efficiently computable function ρ̂i such that g
ρi(~x)
1 = u

ρ̂i(~x)
1 , and there must

also exist an efficiently computable function f̂ such that g
f(~x)
1 = u

f̂(~x)
1 . Practi-

cally, suppose that u1 = gr1. Then, using x1 = r, our requirement is equivalent
to the requirement that ρi(x1, . . . , xc) = x1 · ρ̂i(x2, . . . , xc) (and the same for f).
Again, we stress that this is just a base translation rather than a restriction on
the parameters of the uber-assumption.

Theorem 4.2. For a bilinear group G = (N,G,H,GT , e, g1, g2) ∈ [BilinearGen(
1λ, 2)], consider the decisional uber-assumption parameterized by c, R = 〈1,
ρ1(~x1), . . . , ρr(~x1)〉, S = T = 〈1〉, and f(~x1). Then, if subgroup hiding holds in
G with respect to µ = {g1, g2} and parameter hiding holds with respect to R∪{f},
this assumption is implied by the decisional uber-assumption parameterized by
ℓc, R′ = 〈1,∑ℓ

i=1 ρ1(~xi), . . . ,
∑ℓ

i=1 ρr(~xi)〉, S, T , and f ′ =
∑ℓ

i=1 f(~xi) for all
ℓ = poly(λ).

A proof of this theorem can be found in the full version of the paper, and also
applies when R = S = 〈1〉 and only T contains meaningful functions, or more
generally in the case when there might not be an efficiently computable pairing.
Intuitively, the transitions rely on the same modified dual-system technique that
we used in the proof of Theorem 3.1. First, all elements exist only in the G1

subgroup, operating over the original set of variables ~x1. A shadow copy of these
elements is then added into the G2 subgroup, which goes unnoticed by subgroup
hiding. This shadow copy is then switched to operate over a new set of variables
~x2, which is identical by parameter hiding. These new values are then folded



back into the G1 subgroup, which is again indistinguishable by subgroup hiding.
Finally, the G2 component is eliminated, which is once again indistinguishable
by subgroup hiding. The result is now a G1 component that operates over both
~x1 and ~x2, and the effect is analogous to the extra degree of randomness we
obtain in the proof of Theorem 3.1. Repeating this process ℓ − 1 more times
proves the theorem.

To now show why this theorem is useful, we illustrate that the resulting game
is often statistically hard, and thus the original uber-assumption is implied solely
by subgroup hiding. To start, consider

V =

















1 ρ1(~x1) ρ2(~x1) · · · ρq(~x1) f(~x1)
1 ρ1(~x2) ρ2(~x2) · · · ρq(~x2) f(~x2)

...
...

. . . ...
.... . .

1 ρ1(~xℓ) ρ2(~xℓ) · · · ρq(~xℓ) f(~xℓ)

















(1)

We then have the following lemma, which relates the linear independence of
the polynomials with the invertibility of the matrix:

Lemma 4.1. For all λ ∈ N, if the functions in R∪{f} are linearly independent
and of maximum degree poly(λ), ℓ = q+2 for q = poly(λ), and N = p1 ·. . .·pn for
distinct primes p1, . . . , pn ∈ O(2poly(λ)), then with all but negligible probability
the matrix V is invertible.

Proof. If the matrix V is invertible in Z/piZ for each prime pi | N , then it
is also invertible in Z/NZ. To see that V is invertible (with all but negligible
probability) in Z/piZ for all i, define F = Z/piZ (or, in the case that N is
itself prime, define F = Z/NZ); then V is a matrix over F , where |F | is ex-
ponential in λ. If we consider V instead as a matrix over the polynomial ring
F [x1,1, . . . , x1,c, . . . , xq+2,c], then we can define its determinant to be the polyno-
mial D(~x1, . . . , ~xq+2). By the definition of polynomial linear independence, the
columns of V are linearly independent, so D is not the zero polynomial.

To consider the linear independence of the matrix over F , we must con-
sider an assignment of concrete values ~a1, . . . ,~aq+2 for the variables ~x1, . . . , ~xq+2.
To see that D(~a1, . . . ,~aq+2) 6= 0 with all but negligible probability—and thus
the matrix V is invertible—consider d = maxqi=0(di), where d0 = deg(f) and
di = deg(ρi) for all ρi ∈ R; then deg(D) ≤ (q + 1)d. By the Schwartz-Zippel

lemma, Pr[D(~a1, . . . ,~aq+2) = 0] ≤ (q + 1)d/|F | for ~a1, . . . ,~aq+2
$←− F . As |F |

is exponential in λ and both q and d are polynomial in λ, the probability is
bounded by a negligible function in λ. ⊓⊔

We then have the following corollary, which indicates when we can show that
the original decisional assumption is implied by subgroup hiding.

Corollary 4.1. The decisional uber-assumption parameterized by (c,R, S, T, f)
holds with all but negligible probability if (1) subgroup hiding holds in G with



respect to µ = {g1, g2}, (2) parameter hiding holds with respect to R ∪ {f}, (3)
S = T = 〈1〉, and (4) the polynomials in R ∪ {f} are linearly independent.

Proof. By requirements (1), (2), and (3), Theorem 4.2 tells us that the (c,R, S, T,
f)-uber assumption is equivalent to the (ℓc, R′, S, T, f ′)-uber-assumption. In this
latter assumption, the adversary sees values with exponents of the form ~y = ~r ·V ,
where ~r is a random vector of length ℓ and V is the ℓ × (q + 2) matrix defined
in Equation 1. If we use ℓ = q + 2, then by requirement (4), Lemma 4.1 tells us
that V is invertible with all but negligible probability.

We can now use a bijection argument similar to the one in the proof of
Theorem 3.1: ~r and ~y are both members of the set S containing all sets of size
q+2 over Z/NZ, so multiplication by V maps S to itself. As V is invertible, the
map is invertible as well, and is thus a permutation over S. Sampling ~r uniformly
at random and then multiplying by V thus yields a vector ~y that is distributed
uniformly at random over Z/NZ.

An adversary A thus has no advantage in distinguishing between ~y and a
uniformly random vector in S, as the distributions over the two are identical,
and thus has no advantage in d-UBERA

ℓc,R′,S,T,f ′(λ). ⊓⊔

As observed by Boneh, Boyen, and Goh, if f is not linearly independent
from all polynomials in R ∪ T , then the assumption becomes trivially false. It
furthermore unnecessarily expands the size of the tuple to use polynomials in R
or T that are linearly dependent, as, e.g., g2x is redundant given gx. We therefore
believe that the requirement that the polynomials in R ∪ T ∪ {f} be linearly
independent is not restrictive, and in fact— to the best of our knowledge— it is
satisfied by all existing instantiations of the uber-assumption.

As a concrete example, we finally examine the exponent q-SDH assumption,
as introduced and used by Zhang et al. [?].

Example 4.1. For exponent q-SDH, R = 〈1, α, α2, . . . , αq〉 and f(α) = αq+1.
Plugging these values into the matrix V gives a Vandermonde matrix, which
is invertible. By Corollary 4.1, exponent q-SDH is thus implied by subgroup
hiding, assuming parameter hiding holds with respect to the set {fk(α) = αk}q+1

k=1

(which, given our discussion in Section 5, currently restricts us to composite-
order groups).

4.3 A second approach: computational assumptions in the source
group

Although our results in the previous section have potentially broad implications,
the requirements for Theorem 4.2—and in particular the requirement that S =
〈1〉—are somewhat restrictive, as many q-type assumptions require meaningful
functions on both sides of the pairing. We furthermore do not seem able to relax
this requirement using our current proof strategy: briefly, the fact that we need
subgroup hiding between both G1 and G1 × G2 and between G1 × G2 and G2

means that we cannot give out the subgroup generators h1 and h2 on the other



side of the pairing. To get around this restriction and allow meaningful functions
on both sides of the pairing, we now consider an alternate approach in which we
require subgroup hiding only between G1 and G1 ×G2, which allows us to give
out h1.

Theorem 4.3. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)],
consider the computational uber-assumption parameterized by c, R = 〈1, ρ1(~x),
. . . , ρr(~x)〉, S, T , and f . Then, if subgroup hiding holds in G with respect to
µ = {g1, g2, h1} and parameter hiding holds with respect to R ∪ {f}, this is
implied by the following assumption for all ℓ = poly(λ): given

(G, u1g
∑ℓ

i=1 ri
2 , {uρk(~x)

1 g
∑ℓ

i=1 riρk(~xi)
2 }rk=1, v

S(x1,...,xc)
1 , e(u1, v1)

T (x1,...,xc))

for ~x, r1, ~x1, . . . , rℓ, ~xℓ
$←− Z/NZ, it is difficult to compute u

f(~x)
1 g

∑ℓ
i=1 rif(~xi)

2 .

A proof of this theorem can be found in the full version of the paper. In-
tuitively, the starting point is the same as in our previous proofs: all elements
exist only in the G1 subgroup, operating over the original set of variables ~x, and
a shadow copy of these elements is added into the G2 subgroup, which goes un-
noticed by subgroup hiding. This shadow copy is then switched to operate over
a new set of variables ~x1, which is identical by parameter hiding. Now, rather
than attempt to move these new variables back into G1, we simply repeat the
process of adding and re-randomizing the original set of variables into the G2

subgroup, until we end up with ℓ sets of variables there.
Once again, the usefulness of this theorem is revealed only when we examine

what this more complex assumption provides. Interestingly, it is not clear how
to show that the decisional assumption holds by a statistical argument, as the
isolation of the ~x variables in the G1 subgroup provides a potentially detectable
distribution. Instead, we restrict our attention to computational assumptions in

the source group, in which the adversary is required to compute u
f(~x)
1 g

∑ℓ
i=1 rif(~xi)

2

rather than distinguish it from random. In this setting, we have the following
corollary; as its proof is analogous to the proof of Corollary 4.1, we omit it here
(but it can be found in the full version of the paper).

Corollary 4.2. The computational uber-assumption parameterized by (c,R, S,
T, f) holds in the source group with all but negligible probability if (1) subgroup
hiding holds in G with respect to µ = {g1, g2, h1}, (2) parameter hiding holds
with respect to R∪{f}, (3) the polynomials in R∪{f} are linearly independent.

To bring everything together, we examine the q-SDH assumption, as defined
by Boneh and Boyen [?].

Example 4.2. The q-SDH assumption uses R = 〈1, α, . . . , αq〉, S = 〈1, α〉, T =

〈1〉, and asks A to compute (c, u
1

α+c ). Using Theorem 4.3,4 this is equiva-
lent (under subgroup and parameter hiding) to an assumption in which A is

4 Technically, this assumption doesn’t meet the requirements of the theorem, as A

produces a new value c rather than a function f(~x). The proof of the theorem can,
however, be trivially extended to support assumptions of this type as well, as long
as the group satisfies adaptive parameter hiding.



given (u1g
∑q+2

i=1 ri
2 , uα

1 g
∑q+2

i=1 riγi

2 , . . . , uαq

1 g
∑q+2

i=1 riγ
q
i

2 , v1, v
α
1 ), where γ1, . . . , γq+2

$←−
Z/NZ, and is asked to compute (c, u

1
α+c

1 g

∑
i

ri
γi+c

2 ). Applying the same analysis
as above, we can ignore G1 and focus on G2, in which we use the matrix

A =











1 γ1 · · · γq
1

1
γ1+c

1 γ2 · · · γq
2

1
γ2+c

...
...

. . .
...

...
1 γℓ · · · γq

ℓ
1

γℓ+c











Then, for its choice of c, A is given the first q + 1 entries of ~r · A and needs to
compute the final entry. This matrix is invertible, so the same bijection argument
as in Corollary 4.2 thus implies that A can produce the correct value with at
most negligible probability, which implies (assuming parameter hiding holds with
respect to {ρk(α) = αk}qk=1) that q-SDH is implied by subgroup hiding.

5 Instantiating Our Results

Abstractly, our results provide quite a strong guarantee: as long as subgroup
hiding and parameter hiding hold, many instantiations of the uber-assumption
hold (as well as non-uber-assumptions, such as q-SDH), as they reduce to as-
sumptions that hold by a statistical argument. Concretely, we need to examine
which groups support these underlying assumptions.

Parameter hiding. Our strongest requirement in our analysis was the generality
of parameter hiding: to reason about any q-type assumption, we need a group
where parameter hiding holds for all rational functions. While this seems hard
to achieve in general, it does hold for any composite-order group (e.g., any group
of order N = p1p2 for primes p1 and p2), as the value of any exponent modulo
p1 is independent of its value modulo p2.

Subgroup hiding. In groups without a pairing—such as the target group of a
bilinear tuple or a group over a non-pairing-friendly elliptic curve—subgroup
decision is fairly straightforward. In groups with a pairing, however, the concerns
mentioned in Section 2 (in which certain subgroup generators on the other side
of the pairing could render subgroup decision easy) mean we have to be more
careful. Our first approach in Section 4.2 relies on being unable to distinguish
random elements of both G1 and G2 from G1 ×G2, even when given g1 and g2.
This cannot hold, for example, in a symmetric bilinear group, so this assumption
is reasonable only in the asymmetric setting. Our second approach in Section 4.3
requires that subgroup hiding holds even given h1 and g2, so it again requires
an asymmetric pairing.

Instantiations. As mentioned above, our results in Sections 3 and 4 can be
applied in any composite-order group where we can assume subgroup hiding.



Reasonable candidates for such a group include composite-order elliptic curve
groups without efficient pairings, the target group of a composite-order bilinear
group, or composite-order subgroups of finite fields.

In the case where we do have a pairing, we need an asymmetric composite-
order bilinear group in order to make subgroup hiding a reasonable assump-
tion. Although most composite-order bilinear groups are symmetric (as they are
groups of points on supersingular curves), ordinary composite-order curves were
first introduced by Boneh, Rubin, and Silverberg [?], and their applicability for
cryptography—and in particular an examination of the nature of the result-
ing asymmetric composite-order bilinear group—was very recently explored by
Meiklejohn and Shacham [?].

Applications. In asymmetric composite-order bilinear groups we can prove a
wide range of constructions secure based on just subgroup hiding. For example,
our examination of q-SDH means that the Boneh-Boyen signature, the Boneh-
Boyen-Shacham group signature [?], and the attribute-based signature due to
Maji et al. [?] can all be proved secure under subgroup hiding, and the fact that
q-DHI [?] is also equivalent to subgroup hiding implies the Dodis-Yampolskiy
VUF and the Jarecki-Liu PRF [?] can also both be proved secure based on
subgroup hiding.

6 Conclusions and Open Problems

This paper demonstrated the applicability of the dual-system technique (and
variants on it) by first proving the security of the Dodis-Yampolskiy PRF—
using a domain of arbitrary size—under subgroup hiding, and then proving
equivalence between many classes of the uber-assumption. This latter result
further implies that many of these classes are in fact implied solely by subgroup
hiding, as they reduce to assumptions that hold by a purely statistical argument.
Our paper thus demonstrates that many common q-type assumptions—and
the constructions that rely on them for security—can be implied directly by
subgroup hiding when instantiated in the appropriate bilinear groups.

As our paper is a first step, many interesting directions and open problems
remain. For example, we currently cannot prove anything about, e.g., decisional
assumptions—such as q-DDHE—that require meaningful functions on both
sides of the pairing. Perhaps the biggest open problem is obtaining more robust
forms of parameter hiding in prime-order groups. Prime-order groups have the
benefit of being significantly more efficient, and it is possible to construct groups
with the appropriate subgroup hiding requirements using dual pairing vector
spaces [?,?], as exemplified most recently by Lewko and Meiklejohn [?].

For parameter hiding in prime-order bilinear groups, however, it is currently
known how to obtain parameter hiding only for linear functions. Papers that
have focused on translating these structural properties into prime-order settings,
however, have indicated that they focus on such simple functions to keep their
“constructions. . . simple and tailored to the requirements that [they] need” [?],



so we consider constructing parameter hiding for more robust functions in the
prime-order setting an interesting open problem rather than an impossibility.
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