
Sometimes-Recurse Shuffle
Almost-Random Permutations
in Logarithmic Expected Time

Ben Morris1 Phillip Rogaway2

1 Dept. of Mathematics, University of California, Davis, USA
2 Dept. of Computer Science, University of California, Davis, USA

Abstract. We describe a security-preserving construction of a random
permutation of domain size N from a random function, the construction
tolerating adversaries asking all N plaintexts, yet employing just Θ(lgN)
calls, on average, to the one-bit-output random function. The approach
is based on card shuffling. The basic idea is to use the sometimes-recurse
transformation: lightly shuffle the deck (with some other shuffle), cut the
deck, and then recursively shuffle one of the two halves. Our work builds
on a recent paper of Ristenpart and Yilek.

Keywords: Card shuffling, format-preserving encryption, PRF-to-PRP
conversion, mix-and-cut shuffle, pseudorandom permutations, sometimes-
recurse shuffle, swap-or-not shuffle.

1 Introduction

Format-preserving encryption. Suppose you are given a blockcipher, say
AES, and want to use it to efficiently construct a cipher on a smaller domain, say
the set ofN = 1016 sixteen-digit credit card numbers. You could, for example, use
AES as the round function for several rounds of a Feistel network, the approach
taken by emerging standards [1, 7]. But information-theoretic security will vanish
by the time the adversary asks

√
N queries, which is a problem on small-sized

domains. (It is a problem from the point of view of having a satisfying provable-
security claim; likely it is not a problem with respect to their being a feasible
attack.) Alternatively, you could precompute a random permutation onN points,
but spending Ω(N) time in computation will become undesirable before

√
N

adversarial queries becomes infeasible.
This paper provides a new solution to this problem of format-preserving en-

cryption, where we aim to build ciphers with an arbitrary finite domain [3–5, 8],
frequently [N] = {0, 1, . . . , N−1} for some N . Our solution lets you encipher a
sixteen-digit credit card with about 1000 expected AES calls, getting an essen-
tially ideal provable-security claim. (One thousand AES calls comes to about
80K clock cycles, or 25 μsec, on a recent Intel processor.) In particular, the
adversary can ask any number of queries—including all N of them—and its ad-
vantage in distinguishing the constructed cipher from a random permutation will

2 Ben Morris and Phillip Rogaway

be insignificantly more than its ability to break the underlying primitive (in our
example, AES) with a like number of queries.

Cast in more general language, this paper is about constructing ciphers—
meaning information theoretic or complexity theoretic PRPs—on an arbitrary
domain [N], starting from a PRF. (If starting from AES, only a single bit of
each 128-bit output will be used. A random permutation on 128 bits that gets
truncated to a single bit is extremely close to a random function [2].) As in
other recent work [9, 11, 14], our ideas are motivated by card shuffling and its
cryptographic interpretation. This connection was first observed by Naor [15,
p. 62], [17, p. 17], who explained that when a card shuffle is oblivious—meaning
that you can trace the trajectory of a card without attending to the trajectories of
other cards in the deck—then it determines a computationally plausible cipher.
We will move back and forth between the language of encryption and that of
card shuffling: a PRP/cipher is a shuffle; a plaintext x encrypts to ciphertext y
if the card initially at position x ends up at position y; the PRP’s key is the
randomness underlying the shuffle.

The swap-or-not and mix-and-cut shuffles. Hoang, Morris, and Rogaway
describe an oblivious shuffle well-suited for enciphering on a small domain [11]. In
the binary-string setting (N = 2n), round i of their swap-or-not shuffle employs
a random string Ki ∈ {0, 1}n and replaces X by Ki⊕X if F (i, X̂) = 1, where F
is a random function to bits and X̂ = max(X,X⊕Ki). If F (i, X̂) = 0, then X is
left alone. After all rounds are complete, the final value of input X is the result
of the shuffle. The authors show that O(lgN) rounds suffice to get a cipher that
will look uniform to an adversary that makes q < (1 − ε)N queries. But as q
approaches N , one would need more and more rounds and, eventually, one gets
a non-result.

Ristenpart and Yilek were looking for practical ways to tolerate adversaries
asking all q = N queries, a goal they called full security. Assume again that we
want to shuffle N = 2n cards. Then Ristenpart and Yilek’s Icicle construction
first mixes the cards using some given (we’ll call it the inner) shuffle. Then they
cut the deck into two piles and recursively shuffle each. The authors explain that
if the inner shuffle is a good pseudorandom separator (PRS), then the constructed
shuffle will achieve full security. A shuffle is a good PRS if, after shuffling, the
(unordered) set of cards ending up in each of the two piles is indistinguishable
from a uniform partitioning of the cards into two equal-sized sets.

Ristenpart and Yilek apply the Icicle construction to the swap-or-not shuffle,
a combination they call mix-and-cut. The combination achieves full security in
Θ(lg2 N) rounds. When the underlying round function is realized by an AES
call, mix-and-cut constructs a cipher on N points, achieving full security, with
Θ(lg2 N) AES calls. While full security is directly achieved by other oblivious
shuffles [9, 13, 18], mix-and-cut would seem to be much faster.

Contributions. We reconceptualize what is going on in Ristenpart and Yilek’s
mix-and-cut. Instead of thinking of the underlying transformation as turning a
PRS into a PRP, we think of it as turning a mediocre PRP into a better one.

Sometimes-Recurse Shuffle 3

If the inner shuffle is good enough to mix half the cards—in the inverse shuffle,
any N/2 cards end up in almost uniform positions—then the constructed shuffle
will achieve full security.

After this shift in viewpoint, we make a simple change to mix-and-cut that
dramatically improves its speed. As before, one begins by applying the inner
shuffle to the N cards. Then one splits the deck and recursively shuffles one
(rather than both) of the two halves. Using swap-or-not (SN) for the inner shuffle
we now get a PRP over [N] enjoying full security and computable in Θ(lgN)
expected time. We call the SN-based construction SR, for sometimes-recurse.
The underlying transformation we call SR (in bold font).

Our definitions and results apply to an arbitrary domain size N (it need
not be a power of two). We emphasize that the adversary may query all points
in the domain. We give numerical examples to illustrate that the improvement
over mix-and-cut is large. We also explain why, with SR, having the running
time depend on the key and plaintext does not give rise to side-channel attacks.
Finally, we explain how to cheaply tweak [12] the construction, degrading neither
the run-time nor the security bound compared to the untweaked counterpart.
(Ristenpart and Yilek likewise support tweaks [16], but their quantitative bounds
give up more, and each round key needs to depend on the tweak.)

Additional related work. Granboulan and Pornin [9] also give a shuffle
achieving full security, and Ristenpart and Yilek’s paper [16] can likewise be
seen as building on it, reconceptualizing their work as the application of the
Icicle construction to a particular PRS. But the chosen PRS is computationally
expensive to realize, involving extensive use of arbitrary-precision floating-point
arithmetic to do approximate sampling from a hypergeometric distribution. The
mix-and-cut and sometimes-recurse shuffles are much more practical.

For realistic domain sizes N , both mix-and-cut and sometimes-recurse are
also much faster than the method of Stefanov and Shi [18], which spends Θ̃(N)
time to preprocess the key into a table of size Θ̃(

√
N) that supports Θ̃(

√
N)-time

evaluation of the constructed cipher.

2 Preliminaries

Shuffles as formal objects. A shuffle SHN on N ≥ 1 cards is a distribution
on permutations of [N]. We are only interested in distributions that can be
described by efficient probabilistic algorithms, so one can alternatively consider
a shuffle SHN on N cards to be a probabilistic algorithm that bijectively maps
each x ∈ [N] to a value SHN (x) ∈ [N]. The algorithm may be thought of as
keyed, the key coinciding with the algorithm’s coins. A shuffle SH (now on an
arbitrary number of cards) is a family of shuffles on N cards, one for each number
N ≥ 1. One can regard SH as taking two arguments, with SHN (x) ∈ [N] being
the image of x ∈ [N] under the random permutation on [N]. If we write SH(x)
for some shuffle SH we mean SHN (x) for some understood N .

As suggested already, we may refer to points x ∈ [N] as cards. We then
think of SHN (x) as the location that card x landed at following the shuffle of

4 Ben Morris and Phillip Rogaway

these N cards. Locations are indexed 0 to N − 1. We think of 0 as the leftmost
position and N − 1 as the rightmost position. If we shuffle a deck with an even
number N of cards, the lefthand pile would be positions {0, . . . , N/2 − 1} and
the righthand pile would be positions {N/2, . . . , N − 1}. The card that landed
at position y ∈ [N] is card SH−1

N (y).
We are interested in operators that transform one shuffle into another. Such

an operator OP takes a shuffle SH and produces a shuffle SH′ = OP[SH]. The
definition of SH′

N (x) may depend on SHN ′(x′) values with N ′ �= N .

Probability. For distributions μ and ν on a finite set V , define the total
variation distance

||μ− ν|| = 1
2

∑
x∈V

|μ(x)− ν(x)|.

If V1, . . . , Vk are finite sets and τ is a probability distribution on V1 × · · · × Vk,
then for l with 0 ≤ l ≤ k − 1 define

τ(· | x1, . . . , xl) = P(Xl+1 = · | X1 = x1, . . . , Xl = xl),

where (X1, . . . , Xk) ∼ τ .

Lemma 1. Let V1, . . . , Vn be finite sets and let μ and ν be probability distribu-
tions on V1 × · · · × Vn. Suppose that (Z1, . . . , Zn) ∼ μ. Then

‖μ− ν‖ ≤
n−1∑
l=0

E (‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖) .

We defer the proof of Lemma 1 to Appendix A. The lemma immediately gives
us the following.

Corollary 2. Suppose that for every l with 1 ≤ l ≤ n there is an εl > 0 such
that for any z1, z2, . . . , zl we have ‖μ(· | z1, . . . , zl)− ν(· | z1, . . . , zl)‖ ≤ εl. Then
‖μ− ν‖ ≤ ε1 + · · ·+ εn.

Let us explain part of the utility of this fact. Consider a random permutation π on
{0, 1, . . . , N−1}, which we view as a random ordering of cards arranged from left
to right. Suppose N1, . . . , Nn are positive integers with N1+N2+ · · ·+Nn = N .
Let Z1 be the configuration of cards in the rightmost N1 positions, let Z2 be
the configuration of cards in the N2 positions to the immediate left of these,
and so on. Applying Corollary 2 to (Z1, . . . , Zn) shows that if the distribution
of the rightmost N1 cards is within ε1 of uniform, and regardless of the values
of these cards the conditional distribution of the N2 cards to their immediate
left is within ε2 of uniform, and so on, then the whole deck is within distance
ε = ε1 + ε2 + · · ·+ εn of a uniform random permutation.

Sometimes-Recurse Shuffle 5

3 Mix-and-Cut Shuffle

This section reviews and reframes the prior work of Ristenpart and Yilek [16].
The mix-and-cut transformation can be described recursively as follows. As-

sume we want to shuffle N = 2n cards. If N = 1 then we are done; a single card
is already shuffled. Otherwise, to mix-and-cut shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves (that is, the cards in positions 0, . . . , N

2 − 1 and

the cards in positions N
2 , . . . , N − 1) and, recursively, shuffle each half.

The method can be seen as an operator, MC, that maps a shuffle SH on a power-
of-two number of cards to a shuffle SH′ = MC[SH] on the same number of cards.
A sufficient condition for SH′ to achieve full security is for SH to lightly shuffle
the deck. Informally, to lightly shuffle the deck means that if one identifies some
N/2 positions of the deck, then the cards that land in these positions should
be nearly uniform, that is, like N/2 samples without replacement from the N
cards. More formally, we say that SH ε-lightly shuffles if for anyN/2 positions the
distribution of the unordered set of cards in those positions is within distance ε
of a uniform random subset of cards of size N/2. Note that if the shuffle SH
is swap-or-not (SN) then it is equivalent to ask that SH itself send N/2 cards
to something ε-close to uniform, as SN is identical in its forward and backward
direction, up to the naming of keys.

Let’s consider the speed of MC with SN as the underlying shuffle, a com-
bination we’ll write as MC = MC[SN]. First some preliminaries. For a round-
parameterized shuffle SH that approaches the uniform distribution, let τ rq (N) be
the induced distribution after r rounds on some q distinct cards (x1, . . . , xq) ∈
[N]q from a deck of size N , and let πq(N) be the distribution of q samples, with-
out replacement, from [N]. Let ΔSH(N, q, r) = ‖τ rq (N) − πq(N)‖ be the total
variation distance between these two distributions. Hoang, Morris, and Rogaway
show that, for the swap-or-not shuffle, SN,

ΔSN(N, q, r) ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

= Δub
SN(N, q, r) . (1)

Assuming even N , setting q = N/2 in this equation gives

ΔSN(N,N/2, r) ≤ N3/2

(
3

4

)r/2

and so ΔSN(N,N/2, r) ≤ ε if

3

2
lgN +

r

2
lg(3/4) ≤ lg ε,

which occurs if

r ≥ lg ε− (3/2) lgN

(1/2) lg(3/4)

≥ 7.23 lgN − 4.82 lg ε (2)

∈ Θ(lgN − lg ε) .

6 Ben Morris and Phillip Rogaway

Let SH be a round-based shuffle approaching the uniform distribution and
let TSH(N, q, ε) be the minimum number r such that ΔSH(N, q, r) ≤ ε. Let
TSH(N, ε) = TSH(N,N, ε) be the time to mix all the cards to within ε. For
MC = MC[SN] to mix all N = 2n cards to within ε it will suffice if we arrange
that each invocation of SN mixes half the cards to within ε/n. Assuming this
strategy, the total number of needed rounds will be

TMC(2
n, ε) ≤

n∑
�=1

TSN(2
�, 2�−1, ε/n)

≤
n∑

�=1

(
7.23
− 4.82 lg(ε/n)

)
(from (2))

≤ 14.46n2 + 4.82n lg n− 4.82n lg ε

∈ Θ(lg2 N − lgN lg ε)

Interpreting, the MC construction can encipher n-bit strings, getting to within
any fixed total variation distance ε of uniform, by using Θ(n) stages of Θ(n)
rounds, so Θ(n2) total rounds. The round functions here are assumed uniform
and independent. Replacing them by a complexity-theoretic PRF, we are con-
verting a PRF into a PRP on domain {0, 1}n with Θ(n2) calls, achieving tight
provable security and no limit on the number of adversarial queries.

4 Sometimes-Recurse Shuffle

The SN shuffle has a stronger mixing property than light shuffling: namely, the
SN shuffle randomizes the sequence of cards in any N/2 positions of the deck (as
made precise by equation (1)). Therefore, after shuffling the deck with SN and
cutting it in half, there is no need to recurse on one of the two halves. Either
pile can be declared finished and in the next stage we recursively shuffle only the
other pile. Assuming that the first stage brings the distribution of the cards in
the rightmost N/2 positions to within distance ε1 of uniform, and the next stage
brings the conditional distribution of the cards in the prior N/4 positions to
within distance ε2 of uniform, and so on, the final permutation is with distance
ε1+ · · ·+ εn of a uniform random permutation, where n is the number of stages.
This follows by the remark that immediately followed Corollary 2.

Power-of-two domains. The sometimes-recurse (SR) transform can thus
be described as follows. Assume for now that want to shuffle N = 2n cards. (We
will generalize afterward.) If N = 1 then we are done; a single card is already
shuffled. Otherwise, to SR shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves and, recursively, shuffle the first half.

The method can be seen as an operator, SR, that maps a shuffle SH on any
power-of-two cards to a shuffle SH′ = SR[SH] on any power-of-two cards.

Sometimes-Recurse Shuffle 7

Recasting the method into more cryptographic language, suppose you are
given a variable-input-length PRP E : K × {0, 1}∗ → {0, 1}∗. Write EK(·) for
E(K, ·). Each EK(·) is a length-preserving permutation. We construct from E a
PRP E′ = SR[E] as follows. First, assert that E′

K(ε) = ε, where ε is the empty
string. Otherwise, let E′

K(X) = Y if Y = EK(X) = 1 ‖ Y ′ begins with a 1-bit,
and let E′

K(X) = 0 ‖ EK(Y ′) if Y = EK(X) = 0 ‖ Y ′ begins with a 0-bit.

The SR transformation. The description above assumes a power-of-two
number of cards and an even cut of the deck. The first assumption runs contrary
to our intended applications, and dropping this assumption necessitates dropping
the second assumption as well. Here then is the SR transform stated more
broadly. Assume an inner shuffle, SH, that can mix an arbitrary number of cards.
Let p : N → N, the split, be a function with 1 ≤ p(N) < N . We’ll sometimes
write pN for p(N). We construct a shuffle SH′ = SRp[SH]. Namely, if N = 1, we
are done; a single card is shuffled. Otherwise,

1. shuffle the N cards using the inner shuffle, SH; and then
2. cut the deck into a first pile having pN cards and a second pile having

qN = N − pN cards. Recursively, shuffle the first pile.

Initial and generated N-values. A potential point of confusion is that,
above, the name “N” effectively has two different meanings: it is used for both
the initial N , call it N0, that specifies the domain [N0] on which we seek to
encipher; and it is used as a generic name for any of the N -values that can
arise in recursive calls that begin with the initial N . These are the generated
N -values, a set of numbers Gp(N0) = G(N0). Note that we count the ini-
tial N among the generated N -values Gg(N0). As an example, if the initial N is
N0 = 1016 and pN = �N/2�, then there are 54 generated N -values, which are
Gp(10

16) = {1016, 1016/2, 1016/4, . . . , 71, 35, 17, 8, 4, 2, 1}. In general, Gp(N0) is
the set {N0, N1, . . . , Nn} where Ni = p(Ni−1) and Nn = 1. We call n the number
of stages.

The transformation works. Let q : N → N and let ε : N → [0, 1] be
functions, 1 ≤ q(N) ≤ N . We may write q(N) and εN for q(N) and ε(N). Let
SH be a shuffle that can mix any number of cards. We say that SH is (q, ε)-
good if for all N ∈ N, for any distinct y1, . . . , yq(N) ∈ [N], the total-variation

distance between (SH−1(y1), . . . ,SH
−1(yq(N)) and the uniform distribution on

q(N) distinct points from [N] is at most ε(N). A shuffle is ε-good if it is (q, ε)-
good for q(N) = N . We have the following:

Theorem 3. Let p, q : N → N and ε : N → [0, 1] be functions, p(N)+q(N) = N ,
and fix N0 ∈ N. Suppose that SH is a (q, ε)-good shuffle. Then SRp[SH] is a
δ-good shuffle where δ =

∑
N∈Gg(N0)

εN .

Proof. Consider the indicated shuffle π on domain [N0]. Enumerate the elements
of Gp(N0) as {N0, N1, . . . , Nn} where N0 > N1 > · · · > Nn. The first stage of the
shuffle brings the distribution of the rightmost qN0

cards to within a distance

8 Ben Morris and Phillip Rogaway

10 procedure EN
KF (X) //invariant: X ∈ [N]

11 if N = 1 then return X //a single card is already shuffled

20 for i← 1 to tN do //SN, for tN -rounds
21 X ′ ← Ki −X (mod N) //X ′ is the “partner” of X
22 X̂ ← max(X,X ′) //canonical name for {X,X ′}
23 if F (i, X̂) = 1 then X ← X ′ //maybe swap X and X ′

30 if X < pN then return EpN
KF

(
X
)

//recursively shuffle the first pile
31 if X ≥ pN then return X //but second pile is done

Fig. 1. Construction SR = SR[SN]. The method enciphers on [N0] (the initial value
of N), each stage (recursive invocation) employing tN -rounds of SN (lines 20–23). The
split values, pN , are a second parameter on which SR depends. The randomness for
SN is determined by F : N× N→ {0, 1} and K : N→ N.

εN0
of uniform. Regardless of the values of these cards the second stage brings

the conditional distribution of the preceding qN1
cards to within distance εN1

of uniform, and so on. Therefore, applying Corollary 2 (as explained in the
argument immediately following the statement of Corollary 2) shows that the
final permutation is within δ of a uniform random permutation, where δ =
εN0

+ εN1
+ · · ·+ εNn

. �

Using SN as the inner shuffle. We’ll write SR (no bold) for SR[SN],
the sometimes-recurse transformation applied to the swap-or-not shuffle. The
algorithm is shown in Fig. 1, now written out in the manner of a cipher, where
the trajectory of a single card X is followed. Of course SN = SNt depends on
the round count and SR = SRp depends on the split, so SR = SRt,p depends
on both. The canonical choice for the split pN is pN = �N/2�; when no mention
of pN is made, this is assumed. There is no default for the round counts tN ; we
must select these values with care.

We proceed to analyze SR, for the canonical split, with the help of Proposi-
tion 3 and equation (2). We aim to shuffle N cards to within a target distance ε.
Assume we run each stage (that is, each SN shuffle) with tN adequate to achieve
error ε/n for any half, rounded up, of the cards. When N is a power of 2, the
expected total number of rounds to encipher a point will then be

E[TSR(N, ε)] ≤ TSN(N, N
2 ,

ε
lgN) +

TSN(
N
2 ,

N
4 ,

ε
lgN)

2
+

TSN(
N
4 ,

N
8 ,

ε
lgN)

4
+ · · ·

≤ 2(7.23 lgN + 4.82 lg lgN − 4.82 log ε) from (2)

For arbitrary N (not necessarily a power of two), simply replace N by 2N in the
equation just given to get an upper bound. This is valid because the sequence
of generated N -values for N0 are bounded above by the sequence of generated
N -values for N ′

0 the next higher power of two, and, additionally, the bound

Sometimes-Recurse Shuffle 9

Δub
SN(N,N/2, r) is increasing in N . Thus, for any N ,

E[TSR(N, ε)] ≤ 14.46 lgN + 4.82 lg lg 2N − 4.82 lg ε+ 14.46 (3)

∈ Θ(lgN − lg ε)

The worst-case number of rounds is similarly bounded. We summarize the result
as follows.

Theorem 4. For any N ≥ 1 and ε ∈ (0, 1), the SR construction enciphers
points on [N] in Θ(lgN − lg ε) expected rounds and Θ(lg2 − lgN lg ε) rounds in
the worst case. No adversary can distinguish the construction from a uniform
permutation on [N] with advantage exceeding ε. This assumes uniformly random
round keys and round functions for SN, appropriate round counts tN , and the
canonical split.

As a numerical example, equation (3) gives E[TSR(10
16, 10−10)] ≤ 1159. In the

next section we will do better than this—but not by much—by doing calculations
directly from equation (1) and by partitioning the error ε so as to give a larger
portion to earlier (that is, larger) generated N .

5 Parameter Optimization

Round counts. Let us continue to assume the canonical split of pN = �N/2�
and look at the optimization of round counts tN under this assumption.

In speaking below of the number p of nontrivial stages of SR, we only count
generated N -values with N ≥ 3. This is because we will always select t2 = 1, as
this choice already contributes zero error, and the degenerate SR stage with N =
1 contributes no error and needs no t1 value (let t1 = 0). Corresponding to this
convention for counting the number of nontrivial stages, we let G′(N0) = G(N0)\
{1, 2} be the generated N -values when starting with N0 but excluding N = 1
and N = 2.

Given an initial N0 and a target ε, we consider two strategies for computing
the round counts tN for N ∈ G′(N0). Both use the upper bound Δub

SN(N, q, r) =
(2N3/2/(r + 2)) · ((q +N)/(2N))r/2+1 on ΔSN(N, q, r) given by equation (1).

1. Split the error equally. Let n = |G′(N0)| ≈ lgN0 be the number of non-
trivial stages. For each N ∈ G′(N0) let tN be smallest number r for which
Δub

SN(N, �N/2�, r) ≤ ε/n. This will result in rounds counts tN that diminish
with diminishing N , each stage contributing about the same portion to the
error.

2. Constant round count. Let r0 be the smallest number r for which the sum∑
N∈G′(N0)

Δub
SN(N, �N/2�, r) < ε, and let tN = r0 for all N ∈ G′(N0). This

will result in stages that contribute a diminishing amount to the error.

The table of Fig. 2 illustrates the expected and worst-case number of rounds
that result from these two strategies if we encipher on a domain of N0 = 10d

points and cap the error at ε = 10−10. The pronounced differences between mean

10 Ben Morris and Phillip Rogaway

d 2 4 6 8 10 12 14 15 16 18 20 30

min-1 187 239 289 337 386 435 483 507 531 580 628 869

mean-1 359 464 563 660 758 856 952 1000 1048 1145 1242 1723

max-1 1110 2442 4411 6402 8885 11842 14790 16639 18239 22158 26069 51453

min-2 218 225 272 318 365 413 460 484 507 555 602 840

mean-2 427 450 544 636 730 826 920 968 1014 1110 1204 1680

max-2 1308 2701 5168 7951 11681 16107 20701 23716 26365 32745 39131 83160

Fig. 2. Speed of SR shuffle. Minimum, mean (rounded to nearest integer), and
maximum number of rounds to SR-encipher a d-digit decimal string with error ε ≤
10−10 and round counts tN selected by strategy 1 or strategy 2, as marked. The split
is pN = �N/2�. Round-counts for MC always coincide with the max-labeled rows.

and max round counts (a factor exceeding 17 when n = 16) coincides with the
saving of SR over MC. In contrast, there is only a modest difference in mean
round-counts between the two round-count selection strategies.

In numerical experiments, more complex strategies for determining the round
counts did not work better.

Non-equal splits. Besides the split of pN = �N/2�, we considered splits of
pN = �αN� for α ∈ (0, 1). For example, if the input is a decimal string then a
selection of α = 0.1 corresponds to using SN until a 90% fraction of the cards
are (almost) properly distributed, at which point there would be only a 10%
chance of needing to recurse. When a recursive call is made, it would be on a
string of length one digit less than before. But splits this uneven turn out to
be inefficient; see Fig. 3. On the other hand, when the split pN = �αN� has α
close to 1/2, the expected number of rounds is not very sensitive to α; again see
the figure. Small α make each SN stage slower, but there will be fewer of them;
large α make each SN stage faster, but there will be more.

Given the similar mean round counts for strategies 1 and 2, the similar mean
round counts all α near 1/2, the implementation simplicity of dividing by 2, and
the better maximum rounds counts of strategy 1, the choice of strategy 1 and
α = 1/2 seems best.

6 Incorporating Tweaks

The possibly-small domain for FPE makes it important, in applications, to have
the constructed cipher be tweaked : an additional argument T , the tweak, names
the desired permutation in a family of keyed permutations [12]. In the reference
experiment that defines security one asks for indistinguishability (complexity
theoretic or information theoretic) from a family of tweak-indexed, uniformly
random permutations, each tweak naming an independent permutation from
the collection. As an example of a tweak’s use, in the context of enciphering a

Sometimes-Recurse Shuffle 11

Fig. 3. Selecting the split. Expected number of rounds (the y-coordinate) to encipher
N = 1016 points using SR and a split of pN = �αN� for various α (the x-axis). The
total variation distance is capped at ε = 10−10. The top (blue) curve is with round
counts tN determined by for strategy 1; the bottom (red) curve for strategy 2. In both
cases the smallest expected number of rounds occurs with a non-canonical split: 1048
rounds (α = 0.5) reduced to 1043 rounds (α = 0.53) for strategy 1; and 1014 rounds
(α = 0.5) reduced to 1010 rounds (α = 0.52) for strategy 2.

credit card number, one might encipher only the middle six digits, using the first
six and last four digits as the tweak.

The obvious way to incorporate a tweak in SR is to make the round constants
Ki (line 21 of Fig. 1) depend on it, and to make the round functions F (i, X̂)
(line 23 of Fig. 1) depend on it. Note, however, that an inefficiency emerges when
the former is done: if there is a large space of possible tweaks, it will no longer
be possible to precompute the round constants Ki. In addition, we do not want
to get a security bound that gives up a factor corresponding to the number of
tweaks used, which would be a potentially major loss in quantitative security.

As it turns out, neither price need be paid. In particular, it is fine to leave
the round constants independent of the tweak T , and, even when doing so, there
need be no quantitative security loss in the bound from making this change.
What we call tweaked-SR, then, is identical to Fig. 1 except that the tweak T
is added to the scope of F at line 23.

To establish security for this scheme, obtaining the same bounds as before,
we go back to the swap-or-not shuffle and show that, in that context, if the round
constants are left untweaked but the round function is tweaked, then equation (1)
continues to hold. The result is as follows.

Theorem 5. Fix q1, . . . , ql with
∑l

i=1 qi = q. Let X1
t , X

2
t , . . . , X

l
t be SN shuf-

fles on G driven by the same round constants K1, . . . ,Kr, but independent
round functions. Let Xt = (X1

t , . . . , X
l
t). For i with 1 ≤ i ≤ l, let πi be

the uniform distribution on qi samples without replacement from G, and let
π = π1 × π2 · · · × πl. That is, π is the distribution of l independent samples,

12 Ben Morris and Phillip Rogaway

one each from π1, π2, . . . , πl. Let τ be the distribution of Xr. Then

‖τ − π‖ ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

. (4)

Proof. Let

Δ(j) =

j−1∑
m=0

√
N

2

(
m+N

2N

)r/2

.

We show that

‖τ − π‖ ≤ Δ(q)

from which (4) follows by way of

‖τ − π‖ ≤
q−1∑
m=0

√
N

2

(
m+N

2N

)r/2

≤ N3/2

∫ q/2N

0

(1/2 + x)r/2 dx

≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

.

For random variables W1,W2, . . . ,Wj , we write τ i(· | W1,W2, . . . ,Wj) for the
conditional distribution of Xi

r given W1,W2, . . . ,Wj . Then Lemma 1 implies
that

‖τ − π‖ ≤
l∑

i=1

E
(‖τ i(· | X1

r , . . . , X
i−1
r)− πi‖) . (5)

We claim that

E
(‖τ i(· | X1

r , . . . , X
i−1
r)− πi‖) ≤ Δ(qi). (6)

For distributions μ and ν the total variation distance ‖μ−ν‖ is half the L1-norm
of μ − ν. Since the L1-norm is convex, to verify the claim it is enough to show
that

E
(‖τ i(· | X1

r , . . . , X
i−1
r ,K1, . . . ,Kr)− πi‖) ≤ Δ(qi).

But the Xi
r are conditionally independent given K1,K2, . . . ,Kr, so

τ i(· | X1
r , . . . , X

i−1
r ,K1, . . . ,Kr) = τ i(· | K1, . . . ,Kr).

Thus it remains to show that

E
(‖τ i(· | K1, . . . ,Kr)− πi‖) ≤ Δ(qi) =

qi−1∑
m=0

√
N

2

(
m+N

2N

)r/2

,

Sometimes-Recurse Shuffle 13

but this inequality is shown on page 8 of [11]. This verifies (6), and combining
this with (5) gives

‖τ − π‖ ≤
l∑

i=1

Δ(qi)

≤ Δ(q),

where the second inequality holds because the summands in the definition of
Δ(j) are increasing. This completes the proof. �

Theorem 5 plays the same role in establishing the security for tweaked-SR as
equation (1) played for establishing the security of the basic version. The values
in the table of Fig. 2, for example, apply equally well to the tweakable-SR.

We comment that in the the tweakable version of SR, the round constants
do depend on the generated N -values. This dependency can also be eliminated,
but we do not pursue this for now.

7 Absence of Timing Attacks

With SR (and, more generally, with SR), the total number of rounds t∗ used to
encipher a plaintext X ∈ [N0] to a ciphertext Y ∈ [N0] will depend on X and
the key K = KF . This suggests that an adversary’s acquiring t∗, perhaps by
measuring the running time of the algorithm, could be damaging. But this is not
the case—not in the typical setting, where the adversary knows the ciphertext—
for, knowing Y , one can determine the corresponding t∗ value.

It is easiest to describe this when N0 = 2n is a power of two, whence the
generated N -values are 2n, 2n−1, . . . , 4, 2, 1. Let t′0, t

′
1, . . . , t

′
n−2, t

′
n−1, t

′
n be the

corresponding round counts (the last two values are 1 and 0, respectively). Let
t∗j =

∑
i≤j t

′
i be the cumulative round counts: the total number of SN rounds if

we run for j +1 stages. Then t∗ is simply t∗� where
 is the number of leading 0-
bits in the n-bit binary representation of Y . The adversary holding a ciphertext
of Y = 0z1Z, knows that it was produced using t∗ = t∗z rounds of SN. Ciphertext
0n is the slowest to produce, needing t∗n rounds.

The observation generalizes when N0 is not a power of 2: the set [N0] is
partitioned into easily-calculated intervals and the number of SN rounds that a
ciphertext Y was subjected to is determined by the interval containing it.

8 Discussion

Alternative description. It is easy to eliminate the tail recursion of Fig. 1;
no stack is needed. This and other changes are made to the alternative descrip-
tion of tweaked-SR given in Fig. 4. While the algorithm looks rather different
from before, it is equivalent.

14 Ben Morris and Phillip Rogaway

50 procedure ET,N0
KF (X) //Encipher X ∈ [N0] with tweak T , key KF

51 N ← N0 //initial-N
52 for j ← 0 to ∞ do //for each stage, until we return
53 for i← 1 to tN do //SN, for as many rounds as needed for this stage
54 X ′ ← Ki −X (mod N) //X ′ is the partner of X
55 X̂ ← max(X,X ′) //canonical name for {X,X ′}
56 if F (i, X̂, T) = 1 then X ← X ′ //maybe swap X and X ′

57 if X ≥ �N/2� then return X //right pile is done
58 N ← �N/2� //left pile is new domain to shuffle

Fig. 4. Alternative description of the tweaked construction. We eliminate the
recursion and assume the canonical split. The values tN again parameterize the algo-
rithm, influencing the mechanism’s speed and the quality of enciphering.

Which pile to recurse on? The convention that SR recurses on the first
(left) pile of cards, rather than on the second (right) pile of cards, simplifies
bookkeeping: in this way, we will always be following a card X ∈ [N] for de-
creasing values of N . Had we recursed on the second pile we would be following
a card X ∈ [N0−N+1 ..N0−1] for decreasing values of N . Concretely, the code in
Figures 1 and 4 would become more complex with the recurse-right convention.

Multiple concurrent domains. Our assumption has been that the domain
for the constructed cipher is [N0] for some N0. As with variable-input-length
(VIL) PRFs, it makes sense to seek security against adversaries that can simul-
taneously encipher points from any number of domains {[N0] : N0 ∈ N}, as
previously formalized [3]. This can be handled by having the round-function and
round-keys depend on the description of the domain N0. Once again it seems
unnecessary to reflect the N0 dependency in the round-keys. To prove the con-
jecture will take a generalization of Theorem 5.

Open question. The outstanding open question in this domain is whether
there is an oblivious shuffle on N cards where a card can be tracked through the
shuffle in worst-case Θ(lgN)-time. Equivalently, can we do information-theoretic
PRF to PRP conversion with Θ(lgN) calls, always, to a constant-output-length
PRF?

Acknowledgments. This work was made possible by Tom Ristenpart and Scott
Yilek generously sharing an early draft of their work [16]. Thanks also to Tom and
Scott for their comments and interaction. Thanks to Terence Spies and Voltage
Security, whose interest in FPE has motivated this line of work. Our work was
supported under NSF grants CNS-0904380, CNS-1228828 and DMS-1007739.

References

1. Accredited Standards Committee X9, Incorporated (ANSI X9): X9.124: Symmet-
ric Key Cryptography for the Financial Services Industry — Format Preserving
Encryption. Manuscript (2011)

Sometimes-Recurse Shuffle 15

2. Bellare, M., Impagliazzo, R.: A Tool for Obtaining Tighter Security Analyses of
Pseudorandom Function Based Constructions, with Applications to PRP to PRF
Conversion. ePrint report 1999/024 (1999)

3. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T., Format-Preserving Encryp-
tion. In: Jacobson, J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in Cryp-
tography (SAC) 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

4. Black, J, Rogaway, B.: Ciphers with Arbitrary Finite Domains. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

5. Brightwell, M., Smith, H.: Using Datatype-preserving Encryption to Enhance Data
Warehouse Security. 20th National Information Systems Security Conference Pro-
ceedings (NISSC), pp. 141–149 (1997)

6. Did, user profile http://math.stackexchange.com/users/6179/did: Total
Variation Inequality for the Product Measure. Mathematics Stack Exchange,
http://math.stackexchange.com/q/72322 (2011). Last visited 2014-02-06

7. Dworkin, M.: NIST Special Publication 800-38G: Draft. Recommendation for
Block Cipher Modes of Operation: Methods for Format-Preserving Encryption.
July 2013

8. FIPS 74: Guidelines for Implementing and Using the NBS Data Encryption Stan-
dard. U.S. National Bureau of Standards, U.S. Dept. of Commerce (1981)

9. Granboulan, L., Pornin, T.: Perfect Block Ciphers with Small Blocks. In: Biryukov,
A. (ed.) Fast Software Encryption (FSE 2007). LNCS vol. 4593, pp. 452–465.
Springer, Heidelberg (2007)

10. H̊astad, J.: The Square Lattice Shuffle. Random Structures and Algorithms, 29(4),
pp. 466–474. (2006)

11. Hoang, V., Morris, M., Rogaway, P.: An Enciphering Scheme Based on a Card
Shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS vol. 7417,
pp. 1–13. Springer, Heidelberg (2012)

12. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. J. of Cryptology,
24(3), pp. 588–613. Springer, Heidelberg (2011)

13. Morris, B.: The Mixing Time of the Thorp Shuffle. SIAM J. on Computing, 38(2),
pp. 484–504 (2008)

14. Morris, B., Rogaway, P., Stegers, T.: How to Encipher Messages on a Small
Domain: Deterministic Encryption and the Thorp Shuffle. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS vol. 5677, pp. 286–302. Springer, Heidelberg (2009)

15. Naor, M., Reingold, O.: On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited. J. of Cryptology, 12(1), pp. 29-66 (1999)

16. Ristenpart, T., Yilek, S.: The Mix-and-Cut Shuffle: Small-Domain Encryptions
Secure against N Queries. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013. LNCS
vol. 8042, pp. 392–409. Springer, Heidelberg (2013)

17. Rudich, S.: Limits on the Provable Consequences of One-Way Functions.
Ph.D. Thesis, UC Berkeley (1989)

18. Stefanov, E., Shi, E.: FastPRP: Fast Pseudo-Random Permutations for Small Do-
mains. Cryptology ePrint Report 2012/254 (2012)

19. Thorp, E.: Nonrandom Shuffling with Applications to the Game of Faro. J. of the
American Statistical Association, 68, pp. 842–847 (1973)

16 Ben Morris and Phillip Rogaway

A Proof of Lemma 1

We follow the approach outlined in [6] for bounding the total variation distance
between two product measures. Define V = V1 × V2 × · · · × Vn. Note that

2 ‖μ− ν‖ =
∑
x∈V

|μ(x)− ν(x)| (7)

=
∑
x∈V

|μ1(x)μ2(x) · · ·μn(x)− ν1(x)ν2(x) · · · νn(x)|, (8)

where, for j with 1 ≤ j ≤ n, we define μj(x) to be μ(xj | x1, . . . , xj−1), with a
similar definition for νj(x). For x ∈ V , define sj(x) as

μ1(x)μ2(x) · · ·μj(x)νj+1(x) · · · νn(x).

Then

s0(x) = ν1(x)ν2(x) · · · νn(x) and
sn(x) = μ1(x)μ2(x) · · ·μn(x),

and hence by the triangle inequality the quantity (8) is at most

∑
x∈V

n−1∑
j=0

∣∣∣ sj+1(x)− sj(x)
∣∣∣ (9)

=
n−1∑
l=0

∑
x∈V

∣∣∣μl+1(x)− νl+1(x)
∣∣∣μ1(x)μ2(x) · · ·μl(x)νl+2(x) · · · νn(x). (10)

If we sum the terms over all x ∈ V whose first l components are x1, x2, . . . , xl

we get

μ(x1, x2, . . . , xl)
∑

v∈Vl+1

∣∣∣μ(v | x1, x2, . . . , xl)− νl(v | x1, x2, . . . , xl)
∣∣∣

= 2μ(x1, x2, . . . , xl) ‖μ(· | x1, . . . , xl)− ν(· | x1, . . . , xl)‖ .

Summing this over x1, . . . , xl gives

2E
(
‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖

)

where (Z1, . . . , Zn) ∼ μ, and now summing this over l proves the lemma.

