
Towards Stream Ciphers for Efficient FHE with
Low-Noise Ciphertexts

Pierrick Méaux1, Anthony Journault2, François-Xavier Standaert2, Claude Carlet3.

1 INRIA, CNRS, ENS and PSL Research University, Paris, France.
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

3 LAGA, Department of Mathematics, University of Paris VIII and University of Paris XIII,
France.

Abstract. Symmetric ciphers purposed for Fully Homomorphic Encryption
(FHE) have recently been proposed for two main reasons. First, minimizing
the implementation (time and memory) overheads that are inherent to current
FHE schemes. Second, improving the homomorphic capacity, i.e. the amount
of operations that one can perform on homomorphic ciphertexts before boot-
strapping, which amounts to limit their level of noise. Existing solutions for this
purpose suggest a gap between block ciphers and stream ciphers. The first ones
typically allow a constant but small homomorphic capacity, due to the iteration
of rounds eventually leading to complex Boolean functions (hence large noise).
The second ones typically allow a larger homomorphic capacity for the first
ciphertext blocks, that decreases with the number of ciphertext blocks (due to
the increasing Boolean complexity of the stream ciphers’ output). In this paper,
we aim to combine the best of these two worlds, and propose a new stream
cipher construction that allows constant and small(er) noise. Its main idea is to
apply a Boolean (filter) function to a public bit permutation of a constant key
register, so that the Boolean complexity of the stream cipher outputs is constant.
We also propose an instantiation of the filter function designed to exploit recent
(3rd-generation) FHE schemes, where the error growth is quasi-additive when
adequately multiplying ciphertexts with the same amount of noise. In order to
stimulate further investigation, we then specify a few instances of this stream
cipher, for which we provide a preliminary security analysis. We finally highlight
the good properties of our stream cipher regarding the other goal of minimizing
the time and memory complexity of calculus delegation (for 2nd-generation
FHE schemes). We conclude the paper with open problems related to the large
design space opened by these new constructions.

1 Introduction

Purpose: calculus delegation. Recent years have witnessed massive changes in
communication technologies, that can be summarized as a combination of two trends:
(1) the proliferation of small embedded devices with limited storage and computing
facilities, and (2) the apparition of cloud services with extensive storage and computing
facilities. In this context, the outsourcing of data and the delegation of data processing
gains more and more interest. Yet, such new opportunities also raise new security and
privacy concerns. Namely, users typically want to prevent the server from learning about

their data and processing. For this purpose, Gentry’s breakthrough Fully Homomorphic
Encryption (FHE) scheme [30] brought a perfect conceptual answer. Namely, it allows
applying processing on ciphertexts in a homomorphic way so that after decryption,
plaintexts have undergone the same operations as ciphertexts, but the server has not
learned anything about these plaintexts.1

Application scenario. Cloud services can be exploited in a plethora of applications,
some of them surveyed in [51]. In general, they are always characterized by the
aforementioned asymmetry between the communication parties. For illustration, we
start by providing a simple example where data outsourcing and data processing
delegation require security and privacy. Let us say that a patient, Alice, has undergone
a surgery and is coming back home. The hospital gave her a monitoring watch (with
limited storage) to measure her metabolic data on a regular basis. And this metabolic
data should be made available to the doctor Bob, to follow the evolution of the
post-surgery treatment. Quite naturally, Bob has numerous patients and no advanced
computing facilities to store and process the data of all his patients. So this is a typical
case where sending the data to a cloud service would be very convenient. That is, Alice’s
data could be sent to and stored on the cloud, and associated to both her and the doctor
Bob. And the cloud would provide Bob with processed information in a number of
situations such as when the metabolic data of Alice is abnormal (in which case an error
message should be sent to Bob), or during an appointment between Alice and Bob,
so that Bob can follow the evolution of Alice’s data (possibly after some processing).
Bob could in fact even be interested by accessing some other patient’s data, in order to
compare the effect of different medications. And of course, we would like to avoid the
cloud to know anything about the (private) data it is manipulating.

Typical Framework. More technically, the previous exemplary application can be
integrated in a quite general cloud service application framework, that can be seen as a
combination of 5 steps, combining a symmetric encryption scheme and an asymmetric
homomorphic encryption scheme, as summarised in Figure 1 and described next:

1. Initialization. Alice runs the key generation algorithms H.KeyGen and S.KeyGen
of the two schemes, and sends her homomorphic public key pkH and the
homomorphic ciphertext of her symmetric key CH(skSi).

2. Storage. Alice encrypts her data mi with the symmetric encryption scheme, and
sends CS(mi) to Claude.

3. Evaluation. Claude homomorphically evaluates, with the H.Eval algorithm, the
decryption CH(mi) of the symmetric scheme on Alice’s data CS(mi).

4. Computation. Claude homomorphically executes the treatment f on Alice’s en-
crypted data.

5. Result. Claude sends a compressed encrypted result of the data treatment cH(f(mi)),
obtained with the H.Comp algorithm, and Alice decrypts it.

1 In the remaining of the paper, and when not specified otherwise, the term FHE will also be
used for related schemes such as Leveled HE, SomeWhat HE, Scalable HE, etc.

Alice Claude

(skH ,pkH)← H.KeyGen(λ)

1: Initialization skS ← S.KeyGen(λ)

CH(skSi) = H.Enc(skSi ,pkH)
CH(skSi),pkH−−−−−−−−−→ CH(skSi),pkH

2: Storage CS(mi) = S.Enc(mi, skS) CS(mi)−−−−−−−−−→ CS(mi)

CH(mi)

3: Evaluation =

H.Eval(S.Dec(CS(mi),C
H(skSi),pkH)

4: Computation f
f−−−−−−−−−→ CH(f(mi)) = H.Eval(f(CH(mi))

cH(f(mi)) = H.Comp(CH(f(mi)))

5: Result cH(f(mi))
cH(f(mi))←−−−−−−−−−

f(mi) = H.Dec(cH(f(mi)), skH)

Fig. 1. Homomorphic Encryption - Symmetric Encryption framework. H and S
respectively refer to homomorphic and symmetric encryption schemes, for algorithms
(e.g. H.KeyGen) or scheme components (e.g. skS).

Note that if we assume the existence of a trusted third party active only during the
initialization step, Alice can avoid Step 1, which needs a significant computational and
memory storage effort. Note also that this framework is versatile: computation can be
done in parallel (in a batch setting) or can be turned into a secret key FHE.

FHE bottlenecks. The main limitation for the deployment of cloud services based on
such FHE frameworks relates to its important overheads, that can be related to two main
concerns: computational and memory costs (especially on the client side) and limited
homomorphic capacity (i.e. noise increase). More precisely:

– The computational and memory costs for the client depend overwhelmingly on the
homomorphic encryption and decryption algorithms during the steps 1 and 5. The
memory cost is mostly influenced by the homomorphic ciphertexts and public key
sizes. Solving these two problems consists in building size-efficient FHE schemes
with low computational cost [35, 38]. On the server side, this computational cost
further depends on the symmetric encryption scheme and function to evaluate.

– The homomorphic capacity relates to the fact that FHE constructions are built on
noise-based cryptography, where the unbounded amount of homomorphic opera-
tions is guaranteed by an expensive bootstrapping technique. The homomorphic
capacity corresponds to the amount of operations doable before the noise growing
too much forcing to use bootstrapping. Therefore, and in order to reduce the time

and computational cost of the framework, it is important to manage the error growth
during the homomorphic operations (i.e. steps 3 and 4). Furthermore, since the 4th
step is the most important one from the application point-of-view (since this is
where the useful operations are performed by the cloud), there is strong incentive
to minimize the cost of the homomorphic decryption in the 3rd step.

Previous works. In order to mitigate these bottlenecks, several works tried to
reduce more and more the homomorphic cost of evaluating a symmetric decryption
algorithm. First attempts in this direction, which were also used as benchmark for
FHE implementations, used the AES for this purpose [15, 31]. Various alternative
schemes were also considered, all with error and sizes depending on the multiplicative
depth of the symmetric encryption scheme, such as BGV [9] and FV [26]. Additional
optimizations exploited batching and bitslicing, leading to the best results of performing
120 AES decryptions in 4 minutes [31].

Since the multiplicative depth of the AES decryption evaluation was a restrictive
bound in these works, other symmetric encryption schemes were then considered. The
most representative attempts in this direction are the family of block ciphers LowMC [1]
and the stream cipher Kreyvium [11]. These constructions led to reduced and more
suitable multiplicative depths. Yet, and intuitively, these attempts were still limited
by complementary drawbacks. First for LowMC, the remaining multiplicative depth
remains large enough to significantly reduce the homomorphic capacity (i.e. increase
the noise). Such a drawback seems to be inherent in block cipher structures where
the iteration of rounds eventually leads to Boolean functions with large algebraic
degree, which inevitably imply a constant per block but high noise after homomorphic
evaluation. For example, ciphers dedicated to efficient masking against side-channel
attacks [33, 34, 52], which share the goal of minimizing the multiplicative complexity,
suffer from similar issues and it seems hard to break the barrier of one multiplication
per round (and therefore of 12 to 16 multiplications for 128-bit ciphers). Second for
Kreyvium, the error actually grows with the number of evaluated ciphertexts, which
implies that at some point, the output ciphertexts are too noisy, and cannot be decrypted
(which requires either to bootstrap or to re-initialize the stream cipher).

Our contribution. In view of this state-of-the-art, a natural direction would be to try
combining the best of these two previous works. That is, to design a cipher inheriting
from the constant noise property offered by block ciphers, and the lower noise levels
of stream ciphers (due to the lower algebraic degree of their outputs), leading to the
following contributions.

First, we introduce a new stream cipher construction, next denoted as a filter
permutator (by analogy with filter generators). Its main design principle is to filter a
constant key register with a variable (public) bit permutation. More precisely, at each
cycle, the key register is (bit) permuted with a pseudorandomly generated permutation,
and we apply a non-linear filtering function to the output of this permuted key register.
The main advantage of this construction is to always apply the non-linear filtering

directly on the key bits, which allows maintaining the noise level of our outputs
constant. Conceptually, this type of construction seems appealing for any FHE scheme.

Second, and going deeper in the specification of a concrete scheme, we discuss
the optimization of the components in a filter permutator, with a focus on the filtering
function (which determines the output noise after homomorphic evaluation). For this
purpose, we first notice that existing FHE schemes can be split in (roughly) two main
categories. On one hand the so-called 2nd-generation FHE (such as [9, 15]) where
the metric for the noise growth is essentially the multiplicative depth of the circuit
to homomorphically evaluate. On the other hand, the so-called 3rd-generation FHE
(such as [2, 32]) where the error growth is asymmetric, and in particular quasi-additive
when considering a multiplicative chain. From these observations, we formalize a comb
structure which can be represented as a (possibly long) multiplicative chain, in order to
take the best advantage of 3rd-generation FHE schemes. We then design a filtering
function based on this comb structure (combined with other technical ingredients in
order to prevent various classes of possible attacks against stream ciphers) and specify
a family of filter permutators (called FLIP).

Third, and in order to stimulate further investigations, we instantiate a few version of
FLIP designs, for 80-bit and 128-bit security. We then provide a preliminary evaluation
of their security against some of the prevailing cryptanalysis from the open literature
– such as (fast) algebraic attacks, (fast) correlation attacks, BKW-like attacks [6],
guess and determine attacks, etc. – based on state-of-the-art tools. We also analyze
the noise brought by their filtering functions in the context of 3rd-generation FHE.
In this respect, our main result is that we can limit the noise after the homomorphic
evaluation of a decryption to a level of the same order of magnitude as for a single
homomorphic multiplication - hence essentially making the impact of the symmetric
encryption scheme as small as possible.

We finally observe that our FLIP designs have a very reduced multiplicative depth,
which makes them suitable for 2nd-generation FHE schemes as well, and provide
preliminary results of prototype implementations using HElib that confirm their good
behavior compared to state-of-the-art block and stream ciphers designed for efficient
FHE.

Overall, filter permutators in general and FLIP instances in particular open a large
design space of new symmetric constructions to investigate. Hence, we conclude the
paper with a list of open problems regarding these algorithms, their best cryptanalysis,
the Boolean functions used in their filter and their efficient implementation if concrete
applications.

2 Background

2.1 Boolean functions

In this section, we recall the cryptographic properties of Boolean functions that we will
need in the rest of the paper (mostly taken from [12]).

Definition 1 (Boolean Function). A Boolean function f with n variables is a function
from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn.

Definition 2 (Walsh Transform). Let f ∈ Bn a Boolean function. Its Walsh Transform
Wf at a ∈ Fn2 is defined as:

Wf(a) =
∑
x∈Fn2

(−1)f(x)+〈a,x〉,

where 〈a, x〉 denotes the inner product in Fn2 .

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its
outputs are uniformly distributed over {0, 1}.

Definition 4 (Non-linearity). The non-linearity NL of a Boolean function f ∈ Bn,
where n is a positive integer, is the minimum Hamming distance between f and all the
affine functions g:

NL(f) = min
g
{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g.
The non-linearity of a Boolean function can also be defined by its Walsh Transform:

NL(f) = 2n−1 −
1

2
max
a∈Fn2

|Wf(a)|.

Definition 5 (Resiliency). A Boolean function f ∈ Bn is said m-resilient if any of its
restrictions obtained by fixing at most m of its coordinates is balanced. We will denote
by res(f) the resiliency m of f and set res(f) = −1 if f is unbalanced.

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean function
f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the degree of g. The function g is called an annihilator of f (or (f⊕1)).

Definition 7 (Fast Algebraic Immunity). The fast algebraic immunity of a Boolean
function f ∈ Bn, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3deg(g)])}.

Summarizing, the good balancedness, non-linearity and resiliency properties have
to be ensured to widthstand correlation attacks [56] and fast correlation attacks [48]. The
high algebraic immunity and fast algebraic immunity have to be ensured to widthstand
algebraic attacks [13].

2.2 (Ring) Learning With Errors

In this section, we recall useful notations and definitions needed about the decisional
LWE problem and its ring variation. For an integer modulus q, we denote by Zq the
quotient ring of integers modulo q. We denote vectors with bold letters e and matrices

with bold capital letters A. The notation s←$ S (resp. s←$ χ) denotes that s is picked
uniformly at random from a finite set S (resp. from a distribution χ).

The decisional Learning With Error problem (dLWE) was introduced by Regev [53].

Definition 8 (dLWE). For an integer q = q(n) ≥ 2, an adversary A and an error
distribution χ = χ(n) over Zq , we define the following advantage function:

Adv
dLWEn,m,q,χ
A := |Pr[A(A, z0) = 1]− Pr[A(A, z1) = 1]|,

where

A←$ Zn×mq , s←$ Znq , e←$ χ
m, z0 := s>A+ e> and z1 ←$ Zmq .

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the advantage
Adv

dLWEn,m,q,χ
A is a negligible function in n.

The ring variant was introduced by Lyubashevsky, Peikert and Regev in [46].

Definition 9 (dR-LWE). For a polynomial ring R = Z[X]/f(X) with f of degree n,
an integer q ≥ 2, an adversary A and an error distribution χ over Rq = R/qR, R∨

being R dual fractional ideal, we define the following advantage function:

Adv
dRLWER,q,χ

A := |Pr[A(a, z0) = 1]− Pr[A(a, z1) = 1]|,

where

a←$ Rq, s←$ R∨q , e←$ χ, z0 := a · s+ e and z1 ←$ R .

With f(X) a cyclotomic polynomial, the dRLWER,q,χ assumption asserts that for all
PPT adversaries A, the advantage Adv

dRLWER,q,χ

A is a negligible function in n.

For our constructions, we need to take the distribution χ as a subgaussian random
variable which we define hereafter. More details about the subgaussian distribution and
the lemmas’ proof can be found in [2, 58].

Definition 10 (Subgaussian Random Variables). Let X be a random variable. We
say X is subgaussian with parameter σ if there exists σ such that:

∀t ∈ R,E[etX] ≤ eσ
2t2/2,

where E[etX] is the moment generating function of X .

Lemma 1 (Subgaussian Random Variables properties). Let X , X ′ be independent
subgaussian random variables of parameter σ and σ′ respectively. Assuming E(X) =
E(X ′) = 0 we have the following properties:

– Tails: ∀t ≥ 0 we have Pr[|X| ≥ t] ≤ 2e−πt
2/σ2

.
– Homogeneity: ∀c ∈ R, cX is subgaussian with parameter |c|σ.
– Pythagorean additivity: X +X ′ is subgaussian with parameter

√
σ2 + σ′2.

We extend the notion of subgaussianity to vectors and polynomials. Since the
coefficients of a polynomial are seen as a vector, we call subgaussian vector of
parameter σ a vector where each coefficient follows an independent subgaussian
distribution with parameter σ.

Lemma 2 (Subgaussian Vector Norm, adapted from [2], Lemma 2.1). Let x ∈ Rn
be a random vector where each coordinates follows an independent subgaussian
distribution of parameter σ. Then for some universal constant C > 0 we have
Pr [||x||2 > Cσ

√
n] ≤ 2−Ω(n) and therefore ||x||2 = O(σ

√
n).

2.3 Fully Homomorphic Encryption

In this section we recall the definition of (Fully) Homomorphic Encryption and present
the Homomorphic Encryption schemes we will use, both based on GSW [32].

Definition 11 (Homomorphic Encryption Scheme). LetM be the plaintext space, C
the ciphertext space and λ the security parameter. A homomorphic encryption scheme
consists of four algorithms:

– H.KeyGen(1λ). Output pkH and skH the public and secret keys of the scheme.
– H.Enc(m,pkH). From the plaintextm ∈M and the public key, output a ciphertext
c ∈ C.

– H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, output m′ ∈M.
– H.Eval(f, c1, · · · , ck,pkH). With ci = H.Enc(mi,pkH) for 1 ≤ i ≤ k, output a

ciphertext cf ∈ C such that H.Dec(cf) = f(m1, · · · ,mk).

A homomorphic encryption scheme is called a Fully Homomorphic Encryption
(FHE) scheme when f can be any function and |C| is finite. A simpler primitive to
consider is the SomeWhat Homomorphic Encryption (SWHE) scheme, where f is
restricted to be any univariate polynomial of finite degree.

Since the breakthrough work of Gentry [30], the only known way to obtain
FHE consists in adding a bootstrapping technique to a SWHE. As bootstrapping
computational cost is still expensive in comparison to the other FHE algorithms, in
the following part of the article we will only consider SWHE for our applications.

GSW Homomorphic Encryption Scheme. In 2013, Gentry, Sahai and Waters [32]
introduced a Homomorphic Encryption scheme based on LWE using a new technique
stemming from the approximate eigenvector problem. This new technique led to a new
family of FHE, called 3rd-generation FHE, consisting in Homomorphic Encryption
schemes such that the multiplicative error growth is quasi-additive. Hereafter, we
present two schemes belonging to this generation, the first one with security based
on dLWE and the second one based on dRLWE. We first set some useful notations
considering the different schemes.

For a matrix E we refer to the i-th row as e>i and to the j-th column as ej . The log q
notation refers to the logarithm in base 2 of q. The notation [a]q is for a mod q and
b[a]qe2 ∈ {0, 1} is a function in a ∈ Zq giving 1 if b q4c ≤ a ≤ b 3q4 c mod q and 0
otherwise. We denote by [n] the set of integers {1, · · · , n}. We finally use |x| and ||x||2
for the standard norms 1 and 2 on vectors x ∈ Rn.

Batched GSW. This scheme is a batched version of GSW presented in [36], enabling
to pack independently r plaintexts in one ciphertext. From the security parameter λ
and the considered applications, we can derive the parameters n, q, r, χ of the scheme
described below.

H.KeyGen(n, q, r, χ). On inputs the lattice dimension n, the modulus q, the number
of bits by ciphertext r and the error distribution χ do:

– Set ` = dlog qe, m = O(n`), N = (r + n)`,M = {0, 1}r and C = Z(r+n)×N
q .

– Pick A←$ Zn×mq , S′ ←$ χ
r×n and E←$ χ

r×m.

– Set S = [I| − S′] ∈ Zr×(r+n)q and B =

[
S′A+E

A

]
q

∈ Z(r+n)×m
q .

– For all m ∈ {0, 1}r:
• Pick Rm ←$ {0, 1}m×N .

• Set Pm =

BRm +

m1 · s>1

...
mr · s>r

0

G

q

∈ Z(r+n)×N
q .

with s>i the i-th row of S and G = (20, · · · , 2`−1)> ⊗ I ∈ Z(r+n)×N
q .

– Output pkH := ({Pm},B) and skH := S.

H.Enc(pkH ,m). On input pkH , and m ∈ {0, 1}r, do:
– Pick R←$ {0, 1}m×N , and output C = [BR+Pm]q ∈ Z(r+n)×N

q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:
– For all i ∈ [r] : m′i = b[〈s>i , ci`〉]qe2 where cil is the column i` of C.
– Output m′1, · · · ,m′r ∈ {0, 1}r.

Note that SC = SBR+SPm = ER+ERm+

m1 · s>1

...
mr · s>r

G = E′+

m1 · s>1

...
mr · s>r

G.

TheH.Eval algorithm finally consists in iterating, following a circuit f , the homomor-
phic operations H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 +C2.
– H.Mul(C1,C2) : C× = C1 × G−1C2 with G−1 a function such that ∀C ∈
Z(r+n)×N
q ,GG−1(C) = C and the values of G−1(C) follow a subgaussian

distribution with parameter O(1) (see [49] for the existence and proof of G−1).

The correctness and security of this scheme are proven in the extended version of
this paper.
Remark 1. For practical use, we only need to store r + 1 matrices Pm, namely the
r + 1 ones with m of hamming weight equal to 0 or 1 are sufficient to generate
correct encryption of all m ∈ {0, 1}r with at most r additions of the corresponding
Pm matrices.

Ring-GSW This scheme is a ring version of GSW presented in [38], transposing the
approximate eigenvector problem into the ring setting. From λ the security parameter
and the considered applications, we can derive the parameters n, q andM of the scheme
described below.

H.KeyGen(n, q, χ,M). On inputs the lattice dimension n, which is set to a power of
2, the modulus q, the error distribution χ and the plaintext spaceM do:

– Set R = Z[X]/(Xn + 1), Rq = R/qR, ` = dlog qe, N = 2` and C = R2×N
q .

– Set R0,1 = {P ∈ Rq, pi ∈ {0, 1}, 0 ≤ i < n}.
– Pick a←$ Rq , s′ ←$ χ and e←$ χ.

– Set s = [1| − s′]> ∈ R1×2
q and b =

(
s′a+ e

a

)
∈ R2×1

q .

– Output pkH := b and skH := s.

H.Enc(pkH ,m). On input pkH , and m ∈M, do:

– Pick E←$ χ
2×N .

– Pick r←$ RN0,1, and output C = [br> +mG+E]q ∈ R2×N
q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:

– Compute m′ = b[< s, cl >]qe2.
– Output m′ ∈ Rq .

The H.Eval algorithm finally consists in iterating H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 +C2.
– H.Mul(C1,C2) : C× = C1 ×G−1C2.

The correctness and security of this scheme are proven in the extended version of
this paper.

Remark 2. The plaintext spaceM has a major influence on the considered application
in terms of quantity of information contained in a single ciphertext and error growth.
For our application we choose M as the set of polynomials with all coefficients of
degree greater than 0 being zero, and the constant coefficient being bounded.

3 New stream cipher constructions

In this section, we introduce our new stream cipher construction. We first describe the
general filter permutator structure. Next we list a number of Boolean building blocks
together with their necessary cryptographic properties. Third, we specify a family of
filter permutators (denoted as FLIP) and analyze its security based on state-of-the art
cryptanalysis and design tools. Finally, we propose a couple of parameters to fully
instantiate a few examples of FLIP designs.

. Key register K

Pi

F

plaintext

ciphertext

PRNG

Permutation
Generator

Fig. 2. Filter permutator construction.

3.1 Filter permutators

The general structure of filter permutators is depicted in Figure 2. It is composed of three
parts: a register where the key is stored, a (bit) permutation generator parametrised by a
Pseudo Random Number Generator (PRNG) [7, 37] (which is initialized with a public
IV), and a filtering function which generates a keystream. The filter permutator can
be compared to a filter generator, in which the LFSR is replaced by a permuted key
register. In other words, the register is no longer updated by means of the LFSR, but
with pseudorandom bit permutations. More precisely, at each cycle (i.e. each time the
filtering function outputs a bit), a pseudo-random permutation is applied to the register
and the permuted key register is filtered. Eventually, the encryption (resp. decryption)
with a filter permutator simply consists in XORing the bits output by the filtering
function with those of the plaintext (resp. ciphertext).

3.2 Boolean building blocks for the filter permutator

We will first exploit direct sums of Boolean functions defined as follows:

Definition 12 (Direct Sum). Let f1(x0, · · · , xn1−1) and f2(xn1
, · · · , xn1+n2−1) be

two Boolean functions in respectively n1 and n2 variables. The direct sum of f1 and f2
is defined as f = f1 ⊕ f2, which is a Boolean function in n1 + n2 variables such that:

f(x0, · · · , xn1+n2−1) = f1(x0, · · · , xn1−1)⊕ f2(xn1
, · · · , xn1+n2−1).

They inherit from the following set of properties, proven in the extended version of
this paper.

Lemma 3 (Direct sum properties). Let f be the direct sum of f1 and f2 with n1 and
n2 variables respectively. Then f has the following cryptographic properties:

1. Non Linearity: NL(f) = 2n2NL(f1) + 2n1NL(f2)− 2NL(f1)NL(f2).
2. Resiliency: res(f) = res(f1) + res(f2) + 1.
3. Algebraic Immunity: AI(f1) + AI(f2) ≥ AI(f) ≥ max(AI(f1),AI(f2)).
4. Fast Algebraic Immunity: FAI(f) ≥ max(FAI(f1),FAI(f2)).

Our direct sums will then be based on three parts: a linear function, a quadratic
function and triangular functions, defined as follows.

Definition 13 (Linear functions). Let n > 0 be a positive integer, the Ln linear
function is a n-variable Boolean function defined as:

Ln(x0, · · · , xn−1) =
n−1∑
i=0

xi.

Definition 14 (Quadratic functions). Let n > 0 be a positive integer, the Qn linear
function is a 2n-variable Boolean function defined as:

Qn(x0, · · · , x2n−1) =
n−1∑
i=0

x2ix2i+1.

Definition 15 (Triangular functions). Let k > 0 be a positive integer. The k-th
triangular function Tk is a k(k+1)

2 -variable Boolean function defined as:

Tk(x0, · · · , x k(k+1)
2 −1) = Σk

i=1Π
i−1
j=0xj+Σi−1

`=0`
.

For example, the 4th triangular function T4 is:

T4 = x0 ⊕ x1x2 ⊕ x3x4x5 ⊕ x6x7x8x9.

These three types of functions allow us to guarantee the following properties.

Lemma 4 (Linear functions properties). Let Ln be a linear function in n variables,
then Ln has the following cryptographic properties:

1. Non Linearity: NL(Ln) = 0.
2. Resiliency: res(Ln) = n− 1.
3. Algebraic Immunity: AI(Ln) = 1.
4. Fast Algebraic Immunity: FAI(Ln) = 2.

Lemma 5 (Quadratic functions properties). Let Qn be a linear function in 2n
variables, then Qn has the following cryptographic properties:

1. Non Linearity: NL(Qn) = 22n−1 − 2n−1.
2. Resiliency: res(Qn) = −1.
3. Algebraic Immunity: AI(Q1) = 1 and ∀n > 1,AI(Qn) = 2.
4. Fast Algebraic Immunity: FAI(Q1) = 2 and ∀n > 1, FAI(Qn) = 4.

Lemma 6 (Triangular functions properties). Let k a positive integer and let Tk the
k-th triangular function. Then the following properties hold:

1. Non Linearity follows the recursive formula defined as:
(i) NL(T1 = 0),
(ii) NL(Tk+1) = (2k+1 − 2)NL(Tk) + 2k(k+1)/2.

2. Resiliency: res(Tk) = 0.
3. Algebraic Immunity: AI(Tk) = k.
4. Fast Algebraic Immunity: FAI(Tk) = k + 1.

The proof of Lemma 6 can be found in the extended version of this paper.

3.3 The FLIP family of stream ciphers

Based on the previous definitions, we specify the FLIP family of stream ciphers as
a filter permutator using a forward secure PRNG [5] based on the AES-128 (e.g. as
instantiated in the context of leakage-resilient cryptography [57]), the Knuth shuffle
(see below) as bit permutation generator and such that the filter F is the N -variable
Boolean function defined by the direct sum of three Boolean functions f1, f2 and f3 of
respectively n1, n2 and n3 variables, such that:

– f1(x0, · · · , xn1−1) = Ln1
,

– f2(xn1
, · · · , xn1+n2−1) = Qn2/2,

– f3(xn1+n2
, · · · , xn1+n2+n3−1) is the direct sum of nb triangular function Tk, i.e.

such that each Tk acts on different and independent variables, that we denote as
nb∆k.

That is, we have F : Fn1+n2+n3
2 → F2 the Boolean function such that:

F (x0, · · · , xn1+n2+n3−1) = Ln1
⊕Qn2/2 ⊕

nb⊕
i=1

Tk.

In the following section, we provide a preliminary security analysis of the FLIP
filter permutators against a couple of standard attacks against stream ciphers, based on
state-of-the-art tools. For this purpose, we will assume that no additional weaknesses
arise from its PRNG and bit permutation generator. In this respect, we note that our
forward secure PRNG does not allow malleability, so it should be hard to obtain a
collision in the chosen IV model better than with birthday probability. This should
prevent collisions on the generated permutations. Besides, the Knuth shuffle [41] (or
Fisher-Yates shuffle) is an algorithm allowing to generate a random permutation on a
finite set. This algorithm has the interesting property of giving the same probability to
all permutations if used with a random number generator. As a result, we expect that any
deviation between a bit permutation based on a Knuth shuffle fed with the PRNG will
be hard to exploit by an adversary. Our motivation for this assumption is twofold. First,
it allows us to focus on whether the filter permutator construction is theoretically sound.
Second, if such a choice was leading to an exploitable weakness, it remains possible to
build a pseudorandom permutation based on standard cryptographic constructions [45].

Remark 3. Since the permutation generation part of FLIP has only birthday security
(with respect to the size of the PRNG), it implies that it is only secure up to 264 PRNG
outputs when implemented with the AES-128. Generating more keystream using larger
block ciphers should be feasible. However, in view of the novelty of the FLIP instances,
our claims are only made for this limited (birthday) data complexity so far, which should
not be limiting for the intended FHE applications. We leave the investigation of their
security against attacks using larger data complexities as a scope for further research.
Besides, we note that using a PRNG based on a tweakable block cipher [44] (where a
part of the larger IV would be used as tweak) could be an interesting track to reduce the
impact of a collision on the PRNG output in the known IV model, which we also leave
as an open research direction.

3.4 Security analysis

Since the filter permutator shares similarities with a filter generator, it is natural
to start our investigations with the typical attacks considered against such types of
stream ciphers. For this purpose, we next study the applicability of algebraic attacks
and correlation attacks, together with more specialized cryptanalyses that have been
considered against stream ciphers. Note that the attacks considered in the rest of this
section frequently require to solve systems of equations and to implement a Gaussian
reduction. Our complexity estimations will consider Strassen’s algorithm for this
purpose and assume ω = log 7 to be the exponent in a Gaussian reduction. Admittedly,
approaches based on Gröbner bases [27] or taking advantage of the sparsity of the
matrices [59] could lead to even faster algorithms. We ignore them for simplicity in
these preliminary investigations. Note also that we only claim security in the single-key
setting.

Algebraic Attacks were first introduced by Courtois and Meier in [18] and applied
to the stream cipher Toyocrypt. Their main idea is to build an over-defined system of
equations with the initial state of the LFSR as unknown, and to solve this system with
Gaussian elimination. More precisely, by using a nonzero function g such that both g
and h = gF have low algebraic degree, an adversary is able to obtain T equations
with monomials of degree at most AI(f). It is easily shown that g can be taken equal
to the annihilator of F or of F ⊕ 1, i.e. such that gF = 0 or g(F ⊕ 1) = 0. After a
linearisation step, the adversary obtains a system of T equations in D =

∑AI(F)
i=0

(
N
i

)
variables. Therefore, the time complexity of the algebraic attack is O(Dω), that is,
O(NωAI(f)).

Fast Algebraic Attacks are a variation of the previous algebraic attacks introduced by
Courtois at Crypto 2003 [17]. Considering the relation gF = h, their goal is to find and
use functions g of low algebraic degree e, possibly smaller than AI(f), and h of low
but possibly larger degree d, and to lower the degree of the resulting equations by an
off-line elimination of the monomials of degrees larger than e (several equations being
needed to obtain each one with degree at most e). Following [4], this attack can be
decomposed into four steps:

1. The search of the polynomials g and h generating a system of D + E equations in
D+E unknowns, whereD =

∑d
i=0

(
N
i

)
and E =

∑e
i=0

(
N
i

)
. This step has a time

complexity in O(
∑d
i=0

(
n
i

)
+
∑e
i=0

(
n
i

)
)ω .

2. The search of linear relations which allows the suppression of the monomials of
degree more than e. This step has a time complexity in O(D log2(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-Massey
algorithm. This step has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(Eω).

Given the FAI of F , the time complexity of this attack is in O(NFAI), or more precisely
O(D log2D + E2D + Eω) (ignoring Step 1 which is trivial for our choice of F).

Correlation Attacks. In their basic versions, correlation attacks try to distinguish the
output sequence of a stream cipher from a random one, by exploiting the bias δ of the
filtering function. We can easily rule out such attacks by considering a (much) simplified
version of filter permutator where the bit permutations Pi’s would be made on two
independent permutations P 1

i and P 2,3
i (respectively acting on the n1 + 1 bits of the

linear part and the n2 + n3 − 1 bits of the non-linear part of F). Suppose for simplicity
that P 1

i is kept constant t times, then the output distribution of F has a bias δ and it
can be distinguished for the right choice of the n1 + 1 = res + 1 bits of the linear
part. In this case, a correlation attack would have a data complexity of O(δ−2) and a

time complexity ofO(2res(F)+1δ−2), with δ =
1

2
−

(
NL(F)

2N

)
. For simplicity, we will

consider this conservative estimation in our following selection of security parameters.
Yet, we note that since the permutation Pi of a filter permutator is acting on all the
N bits of the filter F , the probability that the linear part of F is kept invariant by
the permutations t times is in fact considerably smaller than what is predicted by the
resilience.

BKW-like Attack. The BKW algorithm was introduced in [6] as a solution to solve
the LPN problem using smart combinations of well chosen vectors and their associated
bias. Intuitively, our stream cipher construction simplified as just explained (with
two independent permutations P 1

i and P 2,3
i rather than a single one Pi) also shares

similarities with this problem. Indeed, we could see the linear part as the parity of an
LPN problem and the non-linear one (with a small bias) as a (large) noise. Adapting the
BKW algorithm to our setting amounts to XOR some linear parts of F in order to obtain
vectors of low Hamming weight, and then to consider a distinguishing attack with the
associated bias. Denoting h the target Hamming weight, x the log of the number of
XORs and δ the bias, the resulting attack (which can be viewed as an extension of the
previous correlation attack) has data complexityO(2hδ−2(x+1)) (more details are given
in the extended version of this paper).

Higher-Order Correlation Attacks were introduced by Courtois [16] and exploit
the so-called XL algorithm. They look for good correlations between F and an

approximation g of degree d > 1, in order to solve a linearised system based on the
values of this approximation. The value ε is defined such that g is equal to F with
probability greater than 1 − ε. Such attacks have a (conservative) time complexity
estimate:

O
((

N

D

)ω
(1− ε)−m

)
, where D ≥ d andm ≥

(
N
D

)(
N
D−d

).
Guess and Determine Attacks. Note that this section has been motivated by a private
communication from Sébastien Duval, Virginie Lallemand and Yann Rotella, of which
the details will be available in an upcoming ePrint report [25]. Guess and determine
attacks are generic attacks which consist in guessing ` bits of the key in order to cancel
some monomials. In our context, it allows an adversary to focus on a filtering function
restricted to a subset of variables. This weaker function can then be cryptanalyzed,
e.g. analyzed with the four aforementioned attacks, i.e. the algebraic attack, the fast
algebraic attack, the correlation/BKW-like attacks and the higher-order correlation
attack. The complexity of a guess and determine attack against a function F of N
variables is min`{2`C(F [`])} where F [`] is a function of N [`] variables obtained by
fixing ` variables of F ,C(F) is the complexity of the best of the four attacks considered
on the filtering function F and the minimum is taken over all `’s. The case ` = 0
corresponds to attack the scheme without guess and determine. We next bound the
minimal complexity over these four attacks considering the weakest functions obtained
by guessing. To do so, we introduce some notations and criteria allowing us to specify
the cryptographic properties of Boolean functions obtained by guessing ` variables of
Boolean functions being direct sums of monomials. As the impact of guessing is most
relevant for fast algebraic attacks and CA/BKW-like attacks, we defer the other part of
the analysis and extra lemmas to the extended version of this paper.

Definition 16 (Direct Sum Vector). For a boolean function F ofN variables obtained
as a direct sum of monomials we associate its direct sum vector : mF of length k =
deg(F) : [m1,m2, · · · ,mk] such that mi is the number of monomials of degree i of F
and N =

∑k
i=1 imi. We define two quantities related to this vector :

– m∗F is the number of nonzero values of mF .
– δmF

= 1
2 −

NL(F)
2N

.

These notations will be useful to quantify the impact of guessing some bits on
the cryptographic properties of a Boolean function obtained by direct sums. mF , m∗F
and δmF

are easily computable from the description of F , the latter can be computed
recursively using Lemma 3.

Lemma 7 (Guessing and Direct Sum Vector). For all guessing of 0 ≤ ` ≤ N
variables of a Boolean function F in N variables obtained by direct sums associated
with mF , we obtain a function F [`] in N [`] variables associated with mF [`] such that :

1.
∑deg(F [`])
i=1 mi[`] ≥ (

∑deg(F)
i=1 mi)− `.

2. m∗F [`] ≥m∗F − b `
min1≤i≤deg(F)mi

c.
3. δmF [`]

≤ δmF
2`.

Hereafter we describe the bounds we have used in order to assess the security of our
instances.

Lemma 8 (Guess And Determine & Fast Algebraic Attacks). Let F be a boolean
function inN variables and CGDFAA(F) be the minimum complexity of the Guess And
Determine with Fast Algebraic Attacks on F , then :

CGDFAA(F) ≥ min
0≤`≤N

[
2`(minN[`]

m∗
F [`]

) log2 (minN[`]

m∗
F [`]

)+(minN [`])2(minN[`]

m∗
F [`]

)+(minN [`])ω
]
,

where m∗F [`] = m∗F − b `
mini∈[deg(F)]mi

c.

Lemma 9 (Guess and Determine & CA/BKW-like Attacks). Let F be a boolean
function inN variables andCGDCA/BKW (F) be the minimum complexity of the Guess
And Determine with Correlation/BKW Attacks on F , then :

CGDCA/BKW (F) ≥ min
0≤`≤N

{2−`δ−2mF
}.

Other attacks. Besides the previous attacks that will be taken into account quantita-
tively when selecting our concrete instances of FLIP designs, we also investigated the
following other cryptanalyses. First, fast correlation attacks were introduced by Meier
and Staffelbach at Eurocrypt 1988 [48]. A recent survey can be found in [47]. The
attack is divided into two phases. The first one aims at looking for relations between the
output bits ai of the LFSR to generate a system of parity-check equations. The second
one uses a fast decoding algorithm (e.g. the belief propagation algorithm) in order to
decode the words of the code zi = F (ai) satisfying the previous relations, where the

channel has an error probability p =
NL(F)

2N
. The working principles of this attack are

quite similar to the ones of the previously mentioned correlation attacks and BKW-like
attacks. So we assume that the previous (conservative) complexity estimates rule out
this variation as well. Besides, note that intuitively, the belief propagation algorithm is
best suited to the decoding of low-density parities, which is what our construction (and
the LPN problem) typically avoid.

Second, weak keys (i.e. keys of low or high hamming weights) can produce a
keystream sufficiently biased to determine this hamming weight, and then to recover
the key among the small amount of possible ones. The complexity of such attacks can
be computed from the resiliency of F . However, since our N parameter will typically
be significantly larger than the bit-security of our filter permutator instances, we suggest
to restrict the key space to keys of Hamming weight N/2 to rule out this concern. For
this purpose, master keys can simply be generated by applying a first (secret) random
permutation to any stream with Hamming weight N/2.

Third, augmented function attacks are attacks focusing on multiple outputs of the
function rather than one. The goal is to find coefficients j1, · · · , jr such that a relation

between the key and the outputs si+j1 , · · · , si+jr can be exploited. This relation can be
a correlation (as explained in [3]) or simply algebraic [28]. In both cases, a prerequisite
is that the relation holds on a sufficient number of i. As each bit output by FLIP depends
on a different permutation, we believe that there is no exploitable relation between
different outputs.

Eventually, cube attacks were introduced by Dinur and Shamir at Eurocrypt
2009 [20] as a variant of algebraic attacks taking advantage of the public parameters
of a cryptographic protocol (plaintext in block ciphers, IV in stream cipher) in
order to generate a system of equations of low degree. However in filter permutator
constructions, the only such public parameter is the seed of the PRNG allowing to
generate the pseudo-random bit permutations Pi. Since controlling this seed hardly
allow any control of the F function’s inputs, such attacks do not seem applicable.
A similar observation holds for conditional differential cryptanalysis [39] and for
integral/zero-sum distinguishers [8, 40].

3.5 Cautionary note and design tweaks

As already mentioned, all the previous analyzes are based on standard cryptanalysis and
design tools. In particular, the security of our FLIP designs is based on properties of
Boolean functions that are generally computed assuming a uniform input distribution.
Yet, for filter permutators this condition is not strictly respected since the Hamming
weight of the key register is fixed (we decided to set it to N/2 in order to avoid
weak keys, but even without this condition, it would be fixed to an unknown value).
This means the input distribution of our linear, quadratic and triangle functions is not
uniform. We verified experimentally that the output of FLIP is sufficiently balanced
despite this non-uniformity. More precisely, we could not detect biases larger than 2

q
2

when generating 2q bits of keystream (based on small-scale experiments with q = 32).
But we did not study the impact of this non-uniformity for other attacks, which we leave
as an important research scope, both from the cryptanalysis and the Boolean functions
points-of-view.

Note that in case the filter permutator of Section 3.1 turns out to have weaknesses
specifically due to the imbalanced F function’s inputs, there are tweaks that could
be used to mitigate their impact. The simplest one is to apply a public whitening to
the input bits of the non-linear parts of F (using additional public PRNG outputs),
which has no impact on the homomorphic capacity. The adversary could then bias the
F function’s inputs based on his knowledge of the whitening bits, but to a lower extent
than with our fixed Hamming weight keys. Alternatively, one could add a (more or
less complex) linear layer before the non-linear part of F , which would then make the
filter permutator conceptually more similar to filter generators, and (at least for certain
layers) only imply moderate cost from the FHE point-of-view.

3.6 80- & 128-bit security instances

We selected a few instances aiming at 80- and 128-bit security based on the previous
bounds, leading to the attack complexities listed in Table 1, where FLIP(n1, n2, nb∆k)

denotes the instantiation of FLIP with linear part of n1 bits, quadratic part of n2 bits
and nb triangular functions of degree k. These instances are naturally contrasted. On
the one hand, the bounds taken are conservative with respect to the attacks considered:

Instance N AA ` FAA l CA/BKW ` HOC ` λ

FLIP(42, 128, 8∆9) 530 95 56 81 0 86 72 94 55 81
FLIP(46, 136, 4∆15) 662 91 52 81 52 80 72 90 48 80
FLIP(82, 224, 8∆16) 1394 156 112 140 40 134 120 155 109 134
FLIP(86, 238, 5∆23) 1704 149 105 137 105 133 124 128 74 128

Table 1. Attack complexities in function of n1, n2 and nb∆k. AA stands for algebraic
attacks, FAA stands for fast algebraic attacks, CA/BKW stands for correlation or BKW-
like attacks, HOC stands for higher-order correlation attacks and ` stands for the number
of bits guessed leading to the best complexity for guess and determine attacks. For the
CA/BKW column, we reported the minimum complexity between the correlation and
BKW-like attack. Eventually, λ stands for the security parameter of F and is simply
taken as the minimum between AA, FAA,CA/BKW and HOC.

if these attacks were the best ones, more aggressive instances could be proposed (e.g.
in order to reduce the key size). On the other hand, filter permutators are based on
non-standard design principles, and our security analysis is only preliminary, which
naturally suggests the need of security margins. Overall, we believe the proposed
instances are a reasonable trade-off between efficiency and security based on our
current understanding of filter permutators, and therefore are a good target for further
investigations.

3.7 Indirect sums

Before analyzing the FHE properties of filter permutators, we finally suggest FLIP
designs based on indirect sums as another interesting topic for evaluation, since they
lead to quite different challenges. Namely, the main motivation to use direct sums in
the previous sections was the possibility to assess their cryptographic properties based
on existing tools. By contrast, filter permutator designs based on indirect sums seem
harder to analyze (both for designers and cryptanalysts). This is mainly because in this
case, not only the inputs of the Boolean functions vary, but also the Boolean functions
themselves. For illustration, we can specify “multi-FLIP ” designs, next denoted as b-
FLIP designs, such that we compute b instances of FLIP in parallel, each with the same
filtering function but with different permutations, and then to XOR the b computed bits
in order to produce a keystream bit. We conjecture that such b-FLIP designs could lead
to secure stream ciphers with smaller states, and suggest 10-FLIP(10, 20, 1∆20) and
15-FLIP(15, 30, 1∆30) as exemplary instances for 80- and 128-bit security.

4 Application to FHE

4.1 80- & 128-bit security parameters

For the security parameters choices, we follow the analysis of Lindner and Peikert [43]
for the hardness of LWE and RLWE, considering distinguishing and decoding attacks
using BKZ [14,55]. We assume that the distribution χ in the considered LWE instances
is the discrete Gaussian distribution with mean 0 and standard deviation σ. First we
compute the best root Hermite factor δ of a basis (see [29]) computable with complexity
2λ from the conservative lower bound of [43]:

log(δ) = 1.8/(110 + λ). (1)

The distinguishing attack described in [43,50,54] is successful with advantage ε by
finding vectors of length α qσ with α =

√
ln(1/ε)/π. The length of the shortest vector

that can be computed is 22
√
n log q log δ , leading to the inequation:

α
q

σ
< 22

√
n log q log δ. (2)

Given σ ≥ 2
√
n from Regev’s reduction [53], we can choose parameters for n and

q matching equation (2) for the considered security parameter λ. The parameters we
select for our application are summarized in Table 2.

Security λ n log q

80 256 80

128 512 120

Table 2. (R)LWE parameters used in our applications.

4.2 Noise analysis

Considering our framework of Figure 1, Claude has at its disposal the homomorphic
encryption of the symmetric key CH(skSi), the homomorphic public key pkH and
the symmetric encrypted messages CS(mi). He has to perform the homomorphic
evaluation of the symmetric decryption circuit, i.e. to perform homomorphic operations
on the ciphertexts CH(skSi) in order to get CH(mi), the homomorphic encryption of
mi. In this section, we study the error growth in these ciphertexts after the application
of the homomorphic operations. As we are considering SWHE, we need to control the
magnitude of the error and keep it below a critical level to ensure the correctness of
a final ciphertext. This noise management is crucial for the applications, it is directly
linked with the quantity of computation that the server can do for the client. We now
study the error growth stemming from the homomorphic evaluation of FLIP. In this
case, all the ciphertexts used by the server in the computation step will have a same
starting error. The knowledge of this starting error (defined by some parameter) and its

growth for additions and multiplications (in a chosen order) is enough to determine the
amount of computation that can be performed correctly by the server.

In the remaining of this section we proceed in three steps. First we recall the error
growth implied by the H.Add and H.Mul operations: for GSW-like HE it has already
been done in [2, 10, 24, 32, 36]. As our homomorphic encryption schemes are slightly
differently written to fit our applications (batched version to perform in parallel the
same computations, generic notations for various frameworks), we give these error
growth with our notations for completeness and consistency of the paper. Then we
analyse the error for a sub-case of homomorphic product, namelyH.Comb, which gives
a practical tool to study the error growth in FLIP. As the asymmetric property of GSW
multiplication and plaintext norm have been pointed out relatively to the error growth,
we consider important to focus on both when analysing this error metric. Considering
H.Comb types of operations is therefore suited to be consistent with this metric and
is very important for practical purpose (in term of real life applications). Finally we
analyse the error in a ciphertext output by FLIP and study some optimizations to reduce
the noise growth further.

Error Growth in H.Add and H.Mul. We first need to evaluate the error growth of the
basic homomorphic operations, the addition and the multiplication of ciphertexts. We
use the analysis of [2] based on subgaussian distributions to study the error growth in
these homomorphic operations. From a coefficient or a vector following a subgaussian
distribution of parameter σ, we can bound its norm with overwhelming probability
and then study the evolution of this parameter while performing the homomorphic
operations. Hence we can bound the final error to ensure correctness.

For simplicity we use two notations arising in the error growth depending on the
arithmetic of the underlying ring of the two schemes, γ the expansion factor (see [9])
and Norm(mj) such that:

– Batched GSW: γ = 1 and Norm(mj) = |mj | (arithmetic in Z) .
– Ring GSW: γ = n and Norm(mj) = ||mj ||2 (arithmetic in R).

Lemma 10 (H.Add error growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a
GSW based Homomorphic Encryption scheme with error components ei of coefficients
following a distribution of parameter σi. Let Cf = H.Add(Ci, for 1 ≤ i ≤ k) and ef
the related error with subgaussian parameter σ′ such that:

σ′ =

√√√√ k∑
i=1

σ2
i or σ′ = σ

√
k if σi = σ, ∀i ∈ [k].

Lemma 11 (H.Mul error growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a
GSW based Homomorphic Encryption scheme with error components ei, of coefficients
following a subgaussian distribution of parameter σi, and plaintextmi. Cf is the result
of a multiplicative homomorphic chain such that:

Cf = H.Mul(C1, H.Mul(C2, H.Mul(· · · , H.Mul(Ck,G)))),

and ef the corresponding error with subgaussian parameter σ′ such that:

σ′ = O

√Nγ
√√√√σ2

1 +

k∑
i=2

(
σiΠ

i−1
j=1Norm(mj)

)2 .

Lemmas 10 and 11 are proven in the extended version of this paper.

Error Growth in H.Comb. For the sake of clarity, we formalize hereafter the
comb homomorphic product H.Comb and the quantity σcomb which stands for the
subgaussian parameter. We study the error growth of H.Comb as we will use it as a
tool for the error growth analysis of FLIP.

Definition 17 (homomorphic comb H.Comb). Let C1, · · · ,Ck be k ciphertexts of a
GSW based Homomorphic Encryption scheme with error coefficients from independent
distributions with same subgaussian parameter σ. We define H.Comb(y, σ, c, k) =
H.Mul(C1, · · · ,Ck,G) where:

– y =
√
Nγ is a constant depending on the ring,

– c = max1≤i≤k(Norm(mi)) is a constant which depends on the plaintexts,

and Ccomb = H.Comb(y, σ, c, k) as error components following a subgaussian
distribution of parameter O(σcomb).

Lemma 12 (σcomb quantity). Let C1, · · · ,Ck be k ciphertexts of a GSW based
Homomorphic Encryption scheme with same error parameter σ and Ccomb =
H.Comb(y, σ, c, k). Then we have:

σcomb(y, σ, c, k) = yσck, where ck =

√√√√k−1∑
i=0

c2i.

Proof. Thanks to Lemma 11 we obtain:

σcomb =
√
Nγ
√
σ2 +

∑k
i=2(σΠ

i−1
j=1Norm(mj))2,

σcomb = y
√
σ2 +

∑k
i=2(σc

i−1)2,

σcomb = yσ
√∑k

i=1(c
i−1)2,

σcomb = yσck.

The compatibility of this comb structure with the asymmetric multiplicative error
growth property of GSW enables us to easily quantify the error in our construction,
with a better accuracy than computing the multiplicative depth. In order to minimize
the quantity σcomb, we choose the plaintext space such that c = 1 for freshly generated
ciphertexts. The resulting σcomb(y, σ, 1, k) quantity is therefore yσ

√
k, growing less

than linearly in the number of ciphertexts. Fixing the constant c to be 1 is usual with
FHE. As we mostly consider Boolean circuits, it is usual to use plaintexts in {−1, 0, 1}
to encrypt bits, leading to c = 1 and therefore ck =

√
k.

Error Growth in FLIP In the previous paragraphs, we have evaluated the error growth
in the basic homomorphic operationsH.Add,H.Mul andH.Comb. We will use them as
building blocks in order to evaluate the error growth in the homomorphic evaluation of
FLIP. Coming back to the framework of Figure 1, the error in the ciphertexts CH(mi)
is of major importance as it will determine the possible number of homomorphic
computations f that Claude is able to perform.

The main feature of the filter permutator model, considering FHE settings, is that
it allows to handle with ciphertexts having the same error level, whatever the number
of output bits. Consequently all ciphertexts obtained by FLIP evaluation will have the
same constant and small amount of noise and will be considered as fresh start for more
computation.

Evaluating homomorphically the FLIP decryption (resp. encryption) algorithm
consists in applying three steps of homomorphic operations on the ciphertexts CH(skSi)
in our application framework, each one encoding one bit of the key register. For
each ciphertext bit, these steps are: a (bit) permutation, the application of the filtering
function F and a XOR with the ciphertext (resp. plaintext). The (bit) permutation
consists only in a public rearrangement of the key ciphertexts, leading to a noise-free
operation. The last XOR is done with a freshly encrypted bit. Hence the error growth
depends mostly on the homomorphic evaluation of F .

As H.Dec outputs quantities modulus 2, we can evaluate the XORs of F by H.Add
and the ANDs by H.Mul. We then determine the subgaussian parameter of the error
of a ciphertext from the homomorphic evaluation of F . For a given encrypted key, this
parameter will be the same for every homomorphic evaluation of FLIP and is computed
from σcomb.

Lemma 13 (Error growth evaluating F). Let F be the FLIP filtering function in N
variables defined in Section 3.3. Assume that Ci for 0 ≤ i ≤ N − 1 are ciphertexts of
a GSW HE scheme with same subgaussian parameter σ and c = 1. We define CF =
H.Eval(F,Ci) the output of the homomorphic evaluation of the ciphertexts Ci’s along
the circuit F . Then the error parameter σ′ is:

σ′ = O
(
σ
√
n1 + y2(n2 + n3)

)
≈ O

(
σy
√
N
)
.

Proof. We first evaluate the noise brought by F for each of its components Ln1
, Qn2

,
nb∆k, defining the respective ciphertexts CLn1

,CQn2
,CTk (the last one standing for

one triangle only) and the subgaussian parameter of the respective error distributions
(of the components of the error vectors) σLn1

, σQn2
, σTk :

– Ln1 : CLn1
= H.Eval(Ln1 ,C0, · · · ,Cn1−1) = H.Add(C0, · · · ,Cn1−1) then

σLn1
= σ
√
n1.

– Qn2 : CQn2
= H.Add(H.Mul(Cn1+2j ,Cn1+2j+1,G)) for 0 ≤ j ≤ n2.

H.Mul(Cn1+2j ,Cn1+2j+1,G) = H.Comb(y, σ, 1, 2) has subgaussian parameter
O(σcomb(y, σ, 1, 2)) = O(yσ

√
2) for 0 ≤ j ≤ n2.

Then σQn2
= O(yσ

√
2
√

n2

2) = O(yσ√n2).
– Tk: CTk = H.Add(H.Mul(Cn1+n2+j+(i−1)(i−2)/2; 1 ≤ j ≤ i); 1 ≤ i ≤ k).
CTk = H.Add(H.Comb(y, σ, 1, i), 1 ≤ i ≤ k).

then σTk = O(
√∑k

i=1(yσ
√
i)2) = O(yσ

√
k(k+1)

2).
As nb∆k is obtained by adding nb independent triangles, we get:
Cnb∆k = H.Add(CTk,i, 1 ≤ i ≤ nb),

and σnb∆k = O(yσ
√
nb
√

k(k+1)
2) = O(yσ√n3).

By Pythagorean additivity the subgaussian parameter of CF is finally:

σ′ = O(
√

(σ
√
n1)2 + (yσ

√
n2)2 + (yσ

√
n3)2) = O(σ

√
n1 + y2(n2 + n3)).

Optimizations The particular error growth in GSW Homomorphic Encryption enables
to use more optimizations to reduce the error norm and perform more operations
without increasing the parameter sizes. The error growth in H.Comb depends on the
quantity ck derived from bounds on norms of the plaintexts; these quantities can be
reduced using negative numbers. A typical example is in the LWE-based scheme to
use m ∈ {−1, 0, 1} rather than {0, 1}; the ck quantity is the same and in average
the sums in Z are smaller. Then the norm |

∑
mi| is smaller which is important

when multiplying. Conserving this norm as low as possible gives better bounds and
ck coefficients, leading to smaller noise when performing distinct levels of operations.
An equivalent way of minimizing the error growth is to still useM = {0, 1} but with
H.Add(C1,C2) = C1 ±C2. This homomorphic addition is still correct because:

S−C2 = −E′2 −

m2,1 · s>1

...
m2,r · s>r

G = E′′2 +

−m2,1 · s>1

...
−m2,r · s>r

 ,

where the coefficients in E′′2 rows follow distribution of same subgaussian parameter as
the one in E′2 by homogeneity and −m = m mod 2.

4.3 Concrete results

Contrary to other works published in the context of symmetric encryption schemes for
efficient FHE [1,11,31], our primary focus is not on the performances (see SHIELD [38]
for efficient implementation of Ring-GSW) but rather on the error growth. As pointed
out in [11], in most of these previous works, after the decryption process the noise inside
the ciphertexts was too high to perform any other operation on them, whereas it is the
main motivation for a practical use of FHE.

In this section, we consequently provide experimental results about this error growth
in the ciphertexts after different operations evaluated on the Ring GSW scheme. As the
link between subgaussian parameter, ciphertext error and homomorphic computation
is not direct, we make some choices for representing these results focusing on giving
intuition on how the error behaves.

The choice of the Ring GSW setting rather than Batched GSW is for convenience.
It allows to deal with smaller matrices and faster evaluations, providing the same
confirmation on the heuristic error growth. We give the parameters n and ` defining
the polynomial ring and fix σ = 2d

√
ne for the error distribution.

An efficient way of measuring the error growth within the ciphertexts is to compute
the difference by applying the rounding b·e2 inH.Dec between various ciphertexts with
known plaintext. This difference (for each polynomial coefficient or vector component)
corresponds to the amount of noise contained in this ciphertext. The correctness requires
this quantity to be inferior to 2`−2. Then, considering its logarithm in base 2, it
enables to have an intuitive and practical measure of the ciphertext noise: this quantity
grows with the homomorphic operations until this log equals ` − 2. Concretely, in our
experiments we encrypt polynomials being m = 0 or m = 1, compute on the constant
coefficient the quantity e = |(〈s, c`〉 − m2`−1) mod q|, and give its logarithm. We
give another quantity in order to provide intuition about the homomorphic computation
possibilities over the ciphertexts, by simply computing a percentage of the actual level
of noise relatively to the maximal level `− 2.

Remark 4. The quantity exhibited by our measures is roughly the subgaussian parame-
ter of the distribution of the error contained in the ciphertexts. Considering the simpler
case of a real Gaussian distribution N (0, σ2), the difference that we compute then
follows a half normal distribution with mean σ

√
2√
π

.

We based our prototype implementation on the NTL library combined with GMP
and the discrete gaussian sampler of BLISS [23]. We report in Table 3 experimental
results on the error growth for different RLWE and FLIP parameters, based on an
average over a hundred of samples.

The results confirm the quasi-additive error growth when considering the specific
metric of GSW given by the asymptotic bounds. The main conclusion of these results
is that the error inside the ciphertexts after a homomorphic evaluation of FLIP is of the
same order of magnitude as the one after a multiplication. The only difference between
these noise increases is a term provided by the root of the symmetric key register size,
that is linear in λ. Therefore, with the FLIP construction the error growth is roughly
the basic multiplicative error growth of two ciphertexts. Hence, we conclude that
filter permutators as FLIP release the bottleneck of evaluating symmetric decryption,
and lead the further improvement of the calculus delegation framework to depend
overwhelmingly on improvements of the homomorphic operations.

4.4 Performances for 2nd-generation schemes

Despite our new constructions are primarily designed for 3rd-generation FHE, a
look at Table 4 suggests that also from the multiplicative depth point of view, FLIP
instances bring good results compared to their natural competitors such as LowMC [1]
and Trivium/Kreyvium [11]. In Trivium/Kreyvium, the multiplicative depth of the
decryption circuit is at most 13, while the LowMC family has a record multiplicative
depth of 11 which is still larger than our FLIP instances. For completeness, we finally
investigated the performances of some instances of FLIP for 2nd-generation FHE

Ring (n, `) FLIP Fresh H.Add H.Mul H.Eval(FLIP)
log e % log e % log e % log e %

256 80 (42, 128, 8∆9) 13, 07 17 % 13, 96 18% 19, 82 25% 24, 71 31%

512 120 (82, 224, 8∆16) 14, 68 12 % 15, 14 13% 23, 27 20% 28, 77 24%

Table 3. Experimental error growth of Ring-GSW. Fresh, H.Add, H.Mul and
H.Eval(FLIP) respectively stands for the noise e measure after a fresh homomorphic
encryption, the homomorphic addition of two fresh ciphertexts, the homomorphic
multiplication of two fresh ciphertexts and the homomorphic evaluation of FLIP on
fresh ciphertexts. The first value is the log of the error e inside the corresponding
ciphertexts and the percentage represents the proportion of the noise with respect to
the capacity of decryption (i.e. `− 2).

schemes using HElib, as reported in Table 5, where the latency is the amount of time
(in seconds) needed to homomorphically decrypt (Nb * Number of Slots) bits, and the
throughput is calculated as (Nb * Number of Slots * 60)/latency. As in [11], we have

Algorithm Reference Multiplicative depth Security
SIMON-32/64 [42] 32 64

Trivium-12 [11] 12 80
Trivium-13 [11] 13 80
LowMc-80 [1] 11 80

FLIP(42, 128, 8∆9) This work dlog 9e = 4 80

AES-128 [15, 31] 40 128
SIMON-64/128 [42] 44 128

Prince [22] 24 128
Kreyvium-12 [11] 12 128
Kreyvium-13 [11] 13 128
LowMc-128 [1] 12 128

FLIP(82, 224, 8∆16) This work dlog 16e = 4 128

Table 4. Multiplicative depth of different symmetric ciphers.

considered two noise levels: a first one that does not allow any other operations on the
ciphertexts, and a second one where we allow operations of multiplicative depth up to 7.
Note that the (max) parenthesis in the Nb column recalls that for Trivium/Kreyvium, the
homomorphic capacity decreases with the number of keystream bits generated, which
therefore bounds the number of such bits before re-keying. We observe that for 80-bit
security, our instances outperform the ones based on Trivium. As for 128-bit security,
the gap between our instances and Kreyvium is limited (despite the larger state of FLIP),
and LowMC has better throughput in this context. Note also that our results correspond

Algorithm Security Nb L Number Latency Throughput
of Slots (sec) (bits/min)

Trivium-12
80 45 (max) 12 600 1417.4 1143.0
80 45 (max) 19 720 4420.3 439.8

Trivium-13
80 136 (max) 13 600 3650.3 1341.3
80 136 (max) 20 720 11379.7 516.3

Kreyvium-12
128 42 (max) 12 504 1715.0 740.5
128 42 (max) 19 756 4956.0 384.4

Kreyvium-13
128 124 (max) 13 682 3987.2 1272.6
128 124 (max) 20 420 12450.8 286.8

LowMC-128
? ≤ 128 256 13 682 3368.8 3109.6
? ≤ 128 256 20 480 9977.1 739.0

FLIP(42, 128, 8∆9)
80 1 5 378 4.72 4805.08
80 1 12 600 17.39 2070.16

FLIP(82, 224, 8∆16)
128 1 6 630 14.53 2601,51
128 1 13 720 102.51 421.42

Table 5. Timings of the homomorphic evaluation of several instances of the Boolean
function of FLIP using HElib on an Intel Core i7-3770. The other results are taken
from [11]. L and Number of Slots are HElib parameters which stand respectively for
the level of noise and the number of bits packed in one ciphertext. (Nb * Number of
Slots) corresponds to the number of decrypted bits.

to the evaluation of the F function of FLIP (we verified that the time needed to generate
the permutations only marginally affects the overall performances of homomorphic
FLIP evaluations). We finally mention that these results should certainly not be viewed
as strict comparisons, since obtained on different computers and for relatively new
ciphers for which we have limited understanding of the security margins (especially
for LowMC [19, 21] and FLIP). So they should mainly be seen as an indication that
besides their excellent features from the FHE capacity point-of-view, filter permutators
inherently have good properties for efficient 2nd-generation FHE implementations as
well.

5 Conclusions and open problems

In the context of our Homomorphic Encryption - Symmetric Encryption framework,
where most of the computations are delegated to a server, we have designed a
symmetric encryption scheme which fits the FHE settings, with as main goal to get the
homomorphic evaluation of the symmetric decryption circuit as cheap as possible, with
respect to the error growth. In particular the error growth obtained by our construction,
only one level of multiplication considering the metric of third generation FHE,
achieves the lowest bound we can get with a secure symmetric encryption scheme.
The use of zero-noise operations as permutations enables us to combine the advantages
of block ciphers and stream ciphers evaluation, namely constant noise on the one hand
and starting low noise on the other hand. As a result, the homomorphic evaluation of
filter permutators can be made insignificant relatively to a complete FHE framework.

The general construction of our encryption scheme – i.e. the filter permutator
– and its FLIP instances are admittedly provocative. As a result, we believe an
important contribution of this paper is to open a wide design space of symmetric
constructions to investigate, ranging from the very efficient solutions we suggest to
more classical stream ciphers such as filter generators. Such a design space leads to
various interesting directions for further research. Overall, the main question raised
by filter permutators is whether it is possible to build a secure symmetric encryption
scheme with aggressively reduced algebraic degree. Such a question naturally relates
to several more concrete problems. First, and probably most importantly, additional
cryptanalysis is needed in view of the non-standard design principles exploited in filter
permutators. It typically includes algebraic attacks tacking advantage of the sparsity of
their systems of equations, attacks exploiting the imbalances at the input of the filter,
and the possibility to exploit chosen IVs to improve those attacks. Second, our analyses
also raise interesting problems in the field of Boolean functions, e.g. the analysis of
such functions with non-uniform input distributions and the investigation of the best
fixed degree approximations of a Boolean function (which is needed in our study of
higher-order correlation attacks). More directly related to the FLIP instances, it would
also be interesting to refine our security analyses, with a stronger focus on the attacks
data complexity, and to evaluate whether instances with smaller key register could be
sufficiently secure. In case of new cryptanalysis results, the design tweaks we suggest
in the paper are yet another interesting research path. Eventually, and from the FHE
application point-of-view, optimizing the implementations of filter permutators, e.g. by

taking advantage of parallel computing clusters that we did not exploit so far, would be
useful in order to evaluate their applicability to real-world scenarii.

Acknowledgements. We are highly grateful to Sébastien Duval, Virginie Lallemand
and Yann Rotella for sharing their ideas about guess and determine attacks before the
publication of this paper, which allowed us to modify the instances of FLIP accordingly.
We are also indebted to Anne Canteaut for numerous useful suggestions about the
design of filter permutators, and for putting forward some important open problems they
raise. Finally, we would like to thank Thierry Berger, Sergiu Carpov, Raphaël Delpino,
Malika Izabachene, Nicky Mouha, Thomas Prest and Renaud Sirdey for their feedback
about early (and less early) versions of this paper. This work was funded in parts by
the H2020 ICT COST CryptoAction, by the H2020 ICT Project SAFECrypto, by the
H2020 ERC Staring Grant CRASH and by the INNOVIRIS SCAUT project. François-
Xavier Standaert is a research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS).

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC
and FHE. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. pp. 430–454 (2015)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I. pp. 297–314 (2014)

3. Anderson, R.J.: Searching for the optimum correlation attack. In: Fast Software Encryption:
Second International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings. pp.
137–143 (1994)

4. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks. In: Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings. pp. 147–164 (2006)

5. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. IACR Cryptology
ePrint Archive 2001, 35 (2001)

6. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM 50(4), 506–519 (2003)

7. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random
bits. SIAM J. Comput. 13(4), 850–864 (1984)

8. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and application to
keccak-f and hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas in
Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August
12-13, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6544, pp. 1–
17. Springer (2010)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science 2012, Cambridge,
MA, USA, January 8-10, 2012. pp. 309–325 (2012)

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Innovations in
Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014. pp. 1–12
(2014)

11. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P.,
Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-ciphertext. IACR
Cryptology ePrint Archive 2015, 113 (2015)

12. Carlet, C.: Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, chap. Boolean Functions for Cryptography and Error Correcting Codes., pp.
257–397, (2010)

13. Carlet, C., Tang, D.: Enhanced Boolean functions suitable for the filter model of pseudo-
random generator. Des. Codes Cryptography 76(3), 571–587 (2015)

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings. pp. 1–20 (2011)

15. Coron, J., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over
the integers. In: Public-Key Cryptography - PKC 2014 - 17th International Conference on
Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28,
2014. Proceedings. pp. 311–328 (2014)

16. Courtois, N.: Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of
Toyocrypt. In: Information Security and Cryptology - ICISC 2002, 5th International
Conference Seoul, Korea, November 28-29, 2002, Revised Papers. pp. 182–199 (2002)

17. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings. pp. 176–194 (2003)

18. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In:
Advances in Cryptology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings.
pp. 345–359 (2003)

19. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on lowmc. IACR
Cryptology ePrint Archive 2015, 418 (2015)

20. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. pp. 278–299 (2009)

21. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of lowmc. IACR
Cryptology ePrint Archive 2015, 407 (2015)

22. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic
evaluation of block ciphers using prince. In: Financial Cryptography and Data Security -
FC 2014 Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados, March 7, 2014,
Revised Selected Papers. pp. 208–220 (2014)

23. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal
gaussians. In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 40–56
(2013)

24. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than
a second. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. pp. 617–640 (2015)

25. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream ciphers.
Cryptology ePrint Archive, Report 2016/??? (2016), http://eprint.iacr.org/

http://eprint.iacr.org/

26. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

27. Faugre, J.C.: A new efficient algorithm for computing grbner bases (f4). Journal of Pure and
Applied Algebra 139(13), 61 – 88 (1999)

28. Fischer, S., Meier, W.: Algebraic immunity of s-boxes and augmented functions. In: Fast
Software Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg,
March 26-28, 2007, Revised Selected Papers. pp. 366–381 (2007)

29. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Advances in Cryptology -
EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. pp. 31–51
(2008)

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009. pp. 169–178 (2009)

31. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings. pp. 850–867 (2012)

32. Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In: Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I. pp. 75–92 (2013)

33. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.: Block ciphers that are easier
to mask: How far can we go? In: Cryptographic Hardware and Embedded Systems -
CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings. pp. 383–399 (2013)

34. Grosso, V., Leurent, G., Standaert, F., Varici, K.: Ls-designs: Bitslice encryption for
efficient masked software implementations. In: Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers. pp. 18–37
(2014)

35. Halevi, S., Shoup, V.: Algorithms in helib. In: Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I. pp. 554–571 (2014)

36. Hiromasa, R., Abe, M., Okamoto, T.: Packing Messages and Optimizing Bootstrapping in
GSW-FHE. In: Public-Key Cryptography - PKC 2015 - 18th IACR International Conference
on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 -
April 1, 2015, Proceedings. pp. 699–715 (2015)

37. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press
(2007)

38. Khedr, A., Gulak, P.G., Vaikuntanathan, V.: SHIELD: scalable homomorphic implementa-
tion of encrypted data-classifiers. IACR Cryptology ePrint Archive 2014, 838 (2014)

39. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of nlfsr-
based cryptosystems. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6477, pp. 130–145. Springer (2010)

40. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) Fast
Software Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2365, pp. 112–127.
Springer (2002)

41. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms.
Addison-Wesley (1969)

42. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and
YASHE. In: Progress in Cryptology - AFRICACRYPT 2014 - 7th International Conference
on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings. pp. 318–335
(2014)

43. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In:
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference
2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings. pp. 319–339 (2011)

44. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology 24(3), 588–
613 (2011)

45. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom
Functions. SIAM J. Comput. 17(2), 373–386 (1988)

46. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors
over Rings. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 3, 2010. Proceedings. pp. 1–23 (2010)

47. Meier, W.: Fast Correlation Attacks: Methods and Countermeasures. In: Fast Software
Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16,
2011, Revised Selected Papers. pp. 55–67 (2011)

48. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Stream Ciphers (Extended Abstract).
In: Advances in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application
of of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings. pp.
301–314 (1988)

49. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In:
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings. pp. 700–718 (2012)

50. Micciancio, D., Regev, O.: Lattice-based cryptography. Springer (2009)
51. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical?

In: Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
Chicago, IL, USA, October 21, 2011. pp. 113–124 (2011)

52. Piret, G., Roche, T., Carlet, C.: PICARO - A block cipher allowing efficient higher-order
side-channel resistance. In: Applied Cryptography and Network Security - 10th International
Conference, ACNS 2012, Singapore, June 26-29, 2012. Proceedings. pp. 311–328 (2012)

53. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005. pp. 84–93 (2005)

54. Rückert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems. IACR
Cryptology ePrint Archive 2010, 137 (2010)

55. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Math. Program. 66, 181–199 (1994)

56. Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Trans.
Computers 34(1), 81–85 (1985)

57. Standaert, F., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under
empirically verifiable assumptions. In: Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I. pp. 335–352 (2013)

58. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. CoRR
abs/1011.3027 (2010)

59. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Transactions on
Information Theory 32(1), 54–62 (1986)

	Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts
	Pierrick Méaux1, Anthony Journault2, François-Xavier Standaert2, Claude Carlet3.

