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Abstract. Many MAC (Message Authentication Code) algorithms have
security bounds which degrade linearly with the message length. Often
there are attacks that confirm the linear dependence on the message
length, yet PMAC has remained without attacks. Our results show that
PMAC’s message length dependence in security bounds is non-trivial.
We start by studying a generalization of PMAC in order to focus on
PMAC’s basic structure. By abstracting away details, we are able to
show that there are two possibilities: either there are infinitely many in-
stantiations of generic PMAC with security bounds independent of the
message length, or finding an attack against generic PMAC which estab-
lishes message length dependence is computationally hard. The latter
statement relies on a conjecture on the difficulty of finding subsets of a
finite field summing to zero or satisfying a binary quadratic form. Using
the insights gained from studying PMAC’s basic structure, we then shift
our attention to the original instantiation of PMAC, namely, with Gray
codes. Despite the initial results on generic PMAC, we show that PMAC
with Gray codes is one of the more insecure instantiations of PMAC, by
illustrating an attack which roughly establishes a linear dependence on
the message length.
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1 Introduction

When searching for optimal cryptographic schemes, security bounds pro-
vide an important tool for selecting the right parameters. Security bounds,
as formalized by Bellare et al. [1], capture the concept of explicitly mea-
suring the effect of an adversary’s resources on its success probability in
breaking the scheme. They enable one to determine how intensively a
scheme can be used in a session. Therefore, provably reducing the impact
of an adversary’s resources from, say, a quadratic to a linear term, can



mean an order of magnitude increase in a scheme’s lifetime. Conversely,
finding attacks which confirm an adversary’s success rate, relative to its
allotted resources, prove claims of security bound optimality.

MAC algorithms provide a good example of schemes which have been
studied extensively to determine optimal bounds. A MAC’s longevity is
defined as the number of times the MAC can be used under a single key:
it can be measured as a function of the number of tagging queries, q,
and the largest message length, `, used before a first forgery attempt is
successful. The impact of an adversary’s resources, q and `, on its success
probability in breaking a MAC is then described via an upper bound of
the form f(q, `) · ε, where f is a function, often a polynomial, and ε is
a quantity dependent on the MAC’s parameters. The maximum number
of queries qmax with length `max one can make under a key is computed
by determining when f(qmax, `max) · ε is less than some threshold success
probability. For example, if one is comfortable with adversaries which have
a one in a million chance of breaking the scheme, but no more, then one
would determine qmax and `max via

f(qmax, `max) · ε ≤ 10−6 . (1)

Given that qmax and `max depend only on f , it becomes important to find
the f which establishes the tightest upper bound on the success probabil-
ity.

The optimality of f depends on the environment in which the MAC
operates, or in other words, the assumptions made on the MAC. For in-
stance, stateful MACs, such as the Wegman-Carter construction [21], can
achieve bounds independent of q and `. In this case, an adversary’s success
remains negligible regardless of q and `, as long as the construction receives
nonces, that is, additional unique input. Therefore, determining qmax and
`max for Wegman-Carter MACs amounts to solving ε � 1, which is true
under the assumption that nonces are unique. Similarly, XOR MAC [3]
with nonces achieves a security upper bound of ε = 1/2τ , with τ the tag
length in bits, which is the optimal bound for any MAC. Randomized, but
stateless MACs can achieve bounds similar to stateful MACs, as shown
by Minematsu [14].

In contrast, deterministic and stateless MACs necessarily have a lower
bound of q2/2n, where n is the inner state size, due to a generic attack by
Preneel and van Oorschot [18]. This means that for any f ,

f(q, `) · ε ≥ q2

2n
, (2)



hence any deterministic, stateless MAC must use fewer than 2n/2 tagging
queries per key.

Given this lower limit on f , one would perhaps expect to find schemes
for which the proven upper bound is q2/2n. Yet many deterministic, state-
less MACs have upper bounds including an `-factor. Block cipher based
MACs, such as CBC-MAC [4], OMAC [12], and PMAC [7], were originally
proven with an upper bound on the order of q2`2/2n, growing quadrat-
ically as a function of `. Much effort has been placed in improving the
bounds to a linear dependence on `, resulting in bounds of the form
q2`/2n [5,11,15,16].

For certain deterministic, stateless schemes the dependence on ` has
been proven to be necessary. Dodis and Pietrzak [9] point out that this is
the case for polynomial based MACs, and try to avoid the dependence by
introducing randomness. Pietrzak [17] notes that the EMAC bound must
depend on `. Gazi, Pietrzak, and Rybár [10] give an attack on NMAC
showing its dependence on `. Nevertheless, there are no known generic
attacks establishing a lower bound of the form `ε/2n for any ε > 0.

PMAC, introduced by Black and Rogaway [7], stands out as a con-
struction for which little analysis has been performed showing the neces-
sity of ` in the bound. It significantly differs in structure from other MACs
(see Fig. 1 and Def. 3), which gives it many advantages:

1. it is efficient, since nearly all block cipher calls can be made in parallel,
2. it is simple, which in turn enables simple analysis,
3. and its basic structure lends itself to high-security extensions, such as

PMAC-Plus [22], PMAC-with-Parity [23], and PMACX [24].

The disadvantage of having such a different structure is that no known
attacks can help to establish `-dependency.

Contributions. We start by abstracting away some details of PMAC
in order to focus on its basic structure. We do so by considering generic
PMAC, which is a generalized version of PMAC accepting an arbitrary
block cipher and constants, and with an additional independent key. We
prove that one of the following two statements is true:

1. either there are infinitely many instances of generic PMAC for which
there are no attacks with success probability greater than 2q2/2n,

2. or finding an attack against generic PMAC with success probability
greater than 2q2/2n is computationally hard.

The second statement relies on a conjecture which we explain below.



Then we focus on an instantiation of generic PMAC, namely PMAC
with Gray codes, introduced by Black and Rogaway [7]. We show that
PMAC with Gray codes is an instantiation which does not meet the
optimal bound of 2q2/2n, by finding an attack with success probability
(2k−1−1)/2n with ` = 2k, establishing a dependence on ` for every power
of two.

Approach. Proving the above results requires viewing the inputs to
PMAC’s block cipher calls in a novel way: as a set of points P lying
in a finite affine plane. Keys are identified as slopes of lines in the affine
plane. A collision is guaranteed to occur under a specific key w if and only
if each line with slope w covers an even number of points in P; in this case
we say that w evenly covers P.

Maximizing the collision probability means finding a set of points P for
which there is large set of slopes W evenly covering P. But finding such
a set W is non-trivial: the x-coordinates of the points in P must either
contain a subset summing to zero, or satisfying some quadratic form.

Finding a subset summing to zero is the subset sum (SS) problem,
which is known to be NP-complete. The second problem we call the bi-
nary quadratic form (BQF) problem (see Def. 9), and there is reason to
believe this problem is NP-complete as well (see App. B). As a result,
we conjecture that finding solutions to the union of the two problems is
computationally hard.

By reducing SS and the BQF problem to finding slopes W evenly cov-
ering points P, we establish our results.

Related Work

Rogaway [19] has shown that the dependence on ` disappears if you con-
sider a version of PMAC with an ideal tweakable block cipher. PMAC’s
basic structure has also been used to design schemes where the impact of `
is reduced by construction: Yasuda’s PMAC-with-Parity [23] and Zhang’s
PMACX [24] get bounds of the form q2`2/22n.

For EMAC, Pietrzak [17] proved that if ` ≤ 2n/8 and q ≥ `2, then the
bound’s order of growth is independent of `. The proven bound is

128 · q
2`8

22n
+ 16 · q

2

2n
+
q(q − 1)

2n+1
. (3)

Note that the condition on ` means that EMAC’s bound is not truly
independent of `. An example of a construction which has a bound which



is truly independent of ` is a variant of PMAC described by Yasuda [23,
Sect. 1]. This construction achieves a bound that does not grow as a
function of `, with the limitation that ` ≤ 2n/2 and at a rate of two block
cipher calls per block of message. The construction works by splitting the
message into half blocks, and then appending a counter to each half-block,
to create a full block. Each full block is input into a block cipher, and all
the block cipher outputs are XORed together, and finally input into a
last, independent block cipher.

2 Preliminaries

2.1 Notation

If X is a set then X is its complement, Xq is the Cartesian product of
q copies of X, X≤` =

⋃`
i=1 X

i, and X+ =
⋃∞
i=1 X

i. If x ∈ Xq, then its
coordinates are (x1, x2, . . . , xq). If f : X→ Y then define f̃ : X+ → Y+ to
be the mapping

f̃(x1, . . . , xq) = (f(x1), . . . , f(xq)) . (4)

If a ∈ X`1 and b ∈ X`2 , then a‖b is the concatenation of a and b, that
is,

a‖b := (a1, a2, . . . , a`1 , b1, b2, . . . , b`2) ∈ X`1+`2 . (5)

If a ∈ X` and µ ≤ `, then a≤µ := (a1, a2, . . . , aµ). If X is a field, then for
a ∈ X`, 1 ·a =

∑`
i=1 ai. Furthermore, when considering elements (x, y) of

X2, we call the left coordinate of the pair the x-coordinate, and the other
the y-coordinate.

2.2 Primitives

A uniformly distributed random function (URF) from M to T is a uni-
formly distributed random variable over the set of all functions from M to
T. A uniformly distributed random permutation (URP) on X is a uniformly
distributed random variable over the set of all permutations on X.

A pseudo-random function (PRF) is a function Φ : K×M→ T defined
on a set of keys K and messages M with output in T. We write Φk(m)
for Φ(k,m). The PRF-advantage of an adversary A against the PRF Φ
is the probability that A distinguishes Φk from $, where k is a uniformly
distributed random variable over K, and $ is a URF. More formally, the
advantage of A can be described as∣∣∣Pr

[
AΦk = 1

]
−Pr

[
A$ = 1

]∣∣∣ , (6)



where AO = 1 is the event that A outputs 1 given access to oracle O.
A pseudorandom permutation (PRP) is a function E : K × X → X

defined on a set of keys K, where E(k, ·) is a permutation for each k ∈ K.
As with PRFs, we write Ek(x) for E(k, x). The PRP-advantage of an
adversary A versus E is defined similarly to the PRF-advantage, and can
be described as follows:∣∣Pr

[
AEk = 1

]
−Pr [Aπ = 1]

∣∣ , (7)

where k is uniformly distributed over K, and π is a URP.

2.3 Message Authentication

A MAC consists of a tagging and a verification algorithm. The tagging
algorithm accepts messages from some message set M and produces tags
from a tag set T. The verification algorithm receives message-tag pairs
(m, t) as input, and outputs 1 if the pair (m, t) is valid, and 0 otherwise.
The insecurity of a MAC is measured as follows.

Definition 1. Let A be an adversary with access to a MAC. The advan-
tage of A in breaking the MAC is the probability that A is able to produce
a message-tag pair (m, t) for which the verification algorithm outputs 1,
where m has not been previously queried to the tagging algorithm.

PRF-based MACs use a PRF Φ : K × M → T to define the tagging
algorithm. The verification algorithm outputs 1 if Φk(m) = t, and 0 oth-
erwise. As shown by the following theorem, the insecurity of a PRF-based
MAC can be reduced to the insecurity of the PRF, allowing us to focus
on Φ.

Theorem 1 ([2]). Let α denote the advantage of adversary A in breaking
a PRF-based MAC with underlying PRF Φ. Say that A makes q tagging
queries and v verification queries. Then there exists a PRF-adversary B
making q + v PRF queries such that

α ≤ v

|T|
+ β , (8)

where β is the advantage of B.

Some PRFs are constructed using a smaller PRP Ek : K × X → X. If
ΦEk denotes a PRF using Ek, then one can reduce the PRF-advantage of
an adversary against ΦEk to the PRF-advantage of an adversary against
Φπ, where π is a URP over X. The result is well-known, and used, for
example, to prove the security of PMAC [7].



Theorem 2. Let α denote the PRF-advantage of adversary A against
ΦEk . Say that A makes q queries to the PRF. Then there exists a PRF-
adversary B against Φπ making q queries and a PRP-adversary C against
E such that

α ≤ β + γ , (9)

where β is the advantage of B and γ is the advantage of C.

The above theorem lets us focus on PRFs built with URPs instead of
PRPs.

3 PMAC

PMAC is a PRF-based MAC, which means we can focus on the underlying
PRF. Throughout this paper we identify PMAC with its PRF. Further-
more, we focus on PMAC defined with a URP.

The original PMAC specifications [7,19] have as message space the
set of arbitrary length strings. Although our results focus on the depen-
dency of PMAC on message length, it will suffice to consider strings with
length a multiple of some block size in order to illustrate how the security
bounds evolve as a function of message length. With this in mind, we de-
fine PHASH, first introduced by Minematsu and Matsushima [15]. Fig. 1
depicts a diagram of PHASH.

Definition 2 (PHASH). Let X be a finite field of characteristic two with
N elements. Let M := X≤N and let c ∈ XN be a sequence containing all
elements of X. Let π be a URP over X. Let ω = π(0), then PHASH : M→
X is defined to be

PHASH(m) := 1 · π̃ (m+ ωc≤`) , (10)

where m has length `.

0 m1 m2 m3 m4

+ + + +

π π π π π

c1ω c2ω c3ω c4ω

ω + + + PHASH(m)

Fig. 1: PHASH evaluated on a message m = (m1,m2,m3,m4).



PHASH maps messages to a single block. PMAC sends this block
through a last transformation, whose output will be the tag. We describe
two different generic versions of PMAC, one in which the last transforma-
tion is independent of PHASH, and one in which it is not.

Definition 3 (PMAC). Consider PHASH : M → X with URP π and
let c∗ denote the last element of c. If y is the output of PHASH under
message m, PMAC evaluated on m is π(y + c∗ω).

Definition 4 (PMAC*). Consider PHASH : M → X with URP π. Let
φ : X → X be an independent URF. Then PMAC* is the composition of
PHASH with φ.

Although PMAC* is defined with an independent outer URF instead of
a URP, all the results in the paper hold with slight modifications to the
bounds if a URP is used.

The two specifications of PMAC define the sequence c differently. Our
attack against PMAC applies to the specification with Gray codes [7],
which we will define in Sect. 6.4. As pointed out by Nandi and Mandal [16],
in order to get a PRF-advantage upper bound of the form q2`/N , the only
requirement on c is that each of its components are distinct.

4 PHASH Collision Probability

Definition 5. The collision probability of PHASH is

max
m1,m2∈M,m1 6=m2

Pr
[
PHASH(m1) = PHASH(m2)

]
. (11)

PHASH’s collision probability is closely linked with the security of PMAC
and PMAC*. In particular, if an adversary finds a collision in PHASH,
then it is able to distinguish PMAC and PMAC* from a URF. The con-
verse is true for PMAC*, which is a well-known result; see for example
Dodis and Pietrzak [9]. Concluding that a distinguishing attack against
PMAC results in a collision found for PHASH has not been proven and is
outside of the scope of the paper, although we conjecture that the state-
ment holds. In either case, understanding the effect of the message length
on PHASH’s collision probability will give us a good understanding of
PMAC’s message length dependence.

In this section we compute bounds on the collision probability for
PHASH. Minematsu and Matsushima [15] prove an upper bound for the
collision probability of PHASH. We use their proof techniques and provide
a lower bound as well.



Throughout this section we fix two different messages m1 and m2 in
M of length `1 and `2, respectively, and consider the collision probability
over these messages. Let m = m1‖m2 and d = c≤`1‖c≤`2 .

If there exists i such that m1
i = m2

i , then these blocks will cancel each
other out in equation (11) and will not affect the collision probability,
hence we remove them. Let i1, i2, . . . , ik denote the indices of the blocks for
which m1 equals m2, then define m∗ to be m with the entries indexed by
i1, i2, . . . , ik and i1+`1, i2+`1, . . . , ik+`1 removed; d∗ is defined similarly
and `∗ denotes the length of m∗ and d∗.

Let xw := m∗ + wd∗ for w ∈ X. The vector xw represents the in-
puts to the permutation π when π(0) equals w, meaning the equality
PHASH(m1) = PHASH(m2) can be written as

1 · π̃ (xw) = 0 , (12)

given that π(0) = w. If there is a component of xw which does not equal
any of the other components, then equation (12) will contain a π-output
which is roughly independent of the other outputs, thereby making a
collision unlikely when π(0) = w. For example, say that xw = (a, b, c, b),
then equation (12) becomes π(a)+π(b)+π(c)+π(b) = π(a)+π(c), which
equals 0 with negligible probability.

Similarly, if there are an odd number of components of xw which
equal each other, but do not equal any other components, then they will
not cancel out, resulting again in an unlikely collision. For example, if
xw = (a, a, a, b, b), then equation (12) becomes π(a). In fact, a collision
is only guaranteed under a given key w when each component of xw is
paired with another component so that each pair cancels each other out in
equation (12). Bounding the collision probability in equation (11) amounts
to determining how many keys w there are for which each component of
xw is paired.

We formalize these “equality classes” of components of xw as follows.
Define I to be the set of integers from 1 to `∗, {1, . . . , `∗}, then the compo-
nents of xw = (xw1 , x

w
2 , . . . , x

w
`∗), induce the following equivalence relation

on I: i is equivalent to j if and only if xwi = xwj . For i ∈ I, let [i] denote
i’s equivalence class, and #[i] the number of elements in [i]. Let Rw de-
note the set of equivalence class representatives where each representative
is the smallest element of its class. Let Rwe be those i ∈ Rw such that
#[i] is even, and Rwo the complement of Rwe in Rw. Taking the example
xw = (c, c, c, b, b, b, b, a), then Rw would equal {1, 4, 8} and Rwe is {4}.



DefineW to be the set of w ∈ X such that Rwo is empty. In other words,
the set W is the set of keys w for which m1 and m2 are guaranteed to
collide.

Proposition 1. Let F = PHASH, then

|W|
N
≤ Pr

[
F (m1) = F (m2)

]
≤ |W|

N
+

1

N − `∗ + 1
. (13)

Proof. Let Π be the set of permutations on X. Let δw be the number of
distinct components in 0‖xw and let Sw be the set of y such that 1 ·y = 0
and w‖y matches 0‖xw, where two sequences a and b of the same length
match if ai = aj if and only if bi = bj , for all i, j. We have that

Pr
[
F (m1) + F (m2) = 0

]
= Pr

[
1 · π̃(xω) = 0

]
(14)

=
1

N !
·
∣∣∣{p ∈ Π ∣∣∣ 1 · p̃(xp(0)) = 0

}∣∣∣ (15)

=
1

N !
·
∑
w∈X

∑
y∈Sw

∣∣{p ∈ Π ∣∣ p̃(0‖xw) = w‖y
}∣∣ .
(16)

Note that for all w and y ∈ Sw,∣∣{p ∈ Π ∣∣ p̃(0‖xw) = w‖y
}∣∣ = (N − δw)! , (17)

hence we get

Pr
[
F (m1) = F (m2)

]
=

1

N !
·
∑
w∈X

(N − δw)! · |Sw| . (18)

Let y be such that w‖y matches 0‖xw. Note that yi = yj if and only
if i is equivalent to j, and for any i ∈ Rw,

∑
j∈[i]

yj =

{
0 if #[i] is even
yi otherwise .

(19)

Then y ∈ Sw if and only if w‖y matches 0‖xw and
∑

i∈Rwo yi = 0.
Let w be such that xwi 6= 0 for all i. The number of y such that w‖y

matches 0‖xw and
∑

i∈Rwo yi = 0 can be counted as follows. Consider
y = (y1, . . . , y`∗) satisfying the requirements, and enumerate the values
in Rwe : i1, i2, . . . , ik. By fixing yi1 , yi2 , . . . , yik , we determine all compo-
nents of y contained in the equivalence classes of Rwe . Since yi1 , yi2 , . . . , yik



is a sequence of k distinct values, all different from w, there are (N −
1)!/(N − k − 1)! possibilities for yi1 , yi2 , . . . , yik . If Rwo 6= ∅, then we
enumerate the elements of Rwo : j1, j2, . . . , jl. Similar to Rwe , by deter-
mining yj1 , yj2 , . . . , yjl we will determine the remaining components of y.
The sequence yj1 , yj2 , . . . , yjl contains l distinct values, all different from
yi1 , yi2 , . . . , yik and w, and such that yj1 + yj2 + · · · + yjl = 0, resulting
in at most (N − k − 1)!/(N − k − l)! possibilities. Putting this together,
and observing that k+ l = |Rwe |+ |Rwo | = δw− 1, we get |Sw| ≤ (N−1)!

(N−δw+1)!

when Rwo 6= ∅ and xwi 6= 0 for all i. If Rwo = ∅, then |Sw| = (N−1)!
(N−δw)! .

By following similar reasoning, we get that if w is such that there exists
xwi = 0, |Sw| ≤ (N−1)!

(N−δw+1)! when R
w
o 6= ∅, and |Sw| =

(N−1)!
(N−δw)! otherwise.

Putting the above together, we have

Pr
[
F (m1) = F (m2)

]
≤ |W|

N
+

1

N

∑
w∈W

1

N − δw + 1
, (20)

and since the computation of |Sw| is exact when Rwo = ∅, we get

|W|
N
≤ Pr

[
F (m1) = F (m2)

]
. (21)

ut

5 Necessary Conditions For a Collision

This section provides a geometric interpretation of the set W which fa-
cilitates finding necessary conditions for W to contain more than two
elements.

5.1 Evenly Covered Sets

Recall that an element w of X is in W only if Rwo = ∅, meaning #[i] is
even for all i ∈ Rw. Two components xwi and xwj of xw are equal if and
only if

w =
m∗i −m∗j
d∗j − d∗i

, (22)

since the points such that (di,mi) = (dj ,mj) were removed earlier when
forming m∗ from m. In particular, equation (22) says that xwi equals xwj
if and only if the points (d∗i ,m

∗
i ) and (d∗j ,m

∗
j ) lie on a line with slope

w. Since #[i] is even, we know that there are an even number of points
on the line through (d∗i ,m

∗
i ) with slope w, which motivates the following

definition.



Definition 6. Let P ⊂ X2 be a set of points. A line evenly covers P if it
contains an even number of points from P. A slope w ∈ X evenly covers P
if all lines with slope w evenly cover P. A subset of X evenly covers P if
all slopes in the subset evenly cover P.

We letP denote the set of points (di,mi) for 1 ≤ i ≤ `. Applying the above
definition together with equation (22), we get the following proposition.

Proposition 2. An element w ∈ X is in W if and only if w evenly covers
P.

Using this geometric interpretation, we obtain the upper bound proved by
Minematsu and Matsushima [15] for the collision probability of PHASH.

Proposition 3.

|W| ≤ `∗ − 1 (23)

Proof. Given a point p0 ∈ P, all possible slopes connecting p0 to another
point in P can be generated from the lines connecting the points. This
results in at most |P| − 1 different slopes covering P, hence an upper
bound for |W| is |P| − 1 = `∗ − 1. ut

It is easy to construct sets evenly covered by two slopes. Consider P :=
{(x1, 0), (x1, 1), (x2, 0), (x2, 1)}, depicted in Fig. 2. The possible slopes are
0 and (x1 + x2)

−1. Throughout the paper we do not consider ∞ to be a
slope, since such a slope would only be possible if d∗i = d∗j in equation (22),
which happens only if m∗i = m∗j . The lines with slope 0, from (x1, 0) to
(x2, 0) and from (x1, 1) to (x2, 1), evenly cover P. Similarly, the lines with
slope (x1 + x2)

−1, from (x1, 0) to (x2, 1) and from (x1, 1) to (x2, 0), also
evenly cover P. Therefore P is evenly covered by

{
0, (x1 + x2)

−1}.

x1 x2
0

1 (x1 + x2)
−1

0

Fig. 2: A set of four points evenly covered by the slopes 0 and (x1+x2)
−1.

The x-coordinates of the points are x1 and x2, and the y-coordinates are
0 and 1.

The above set can be converted into two messages: m1 = (0, 0) and
m2 = (1, 1). Setting x1 = c1 and x2 = c2, then we know that the collision
probability of m1 and m2 is at least 2/N .



Proposition 4. There exist messages m1 and m2 such that |W| ≥ 2.

Note that P constructed from m∗ contains at most two points per x-
coordinate.

5.2 Properties of Evenly Covered Sets

Although Prop. 3 gives a good upper bound for the collision probability
of PHASH, it does not use any of the structure of evenly covered sets. In
this section we explore various properties of evenly covered sets, allowing
us to relate their discovery to NP-hard problems in Sect. 5.3.

The following lemma shows that removing an evenly covered subset
from an evenly covered set results in an evenly covered set.

Lemma 1. Let P ⊂ X2 and let W ⊂ X be a set evenly covering P. Say
that P contains a subset P′ evenly covered by W as well, then P \ P′ is
evenly covered by W.

Proof. Let Q := P \ P′. The set W evenly covers Q if and only if every
every line with slope w ∈W contains an even number of points in Q. Let
p ∈ Q and w ∈ W and consider the line λ with slope w through point
p. By hypothesis, λ evenly covers P and P′. By removing P′ from P, an
even number of points are removed from λ, resulting in λ evenly covering
Q. ut

If a set P is evenly covered by at least two slopes u and v, then all the
points in the set lie in a loop.

Definition 7. Let P ⊂ X2 be evenly covered by W ⊂ X. A (u, v)-loop
in (W,P) is a sequence of points (p1, p2, . . . , pk) with two different slopes
u, v ∈W such that pi and pi+1 (mod k) lie on a line with slope u for i odd,
and on a line with slope v otherwise.

The set from Fig. 2 contains (0, (x1 + x2)
−1)-loops. In fact, there are

always at least four points in any (u, v)-loop. Note that there must be
at least three points since there are two distinct slopes. If there are only
three points then p1 is connected to p2 via u, p2 is connected to p3 via
v, and p3 must be connected to p1 via u, resulting in all three lying on
the same line with slope u, but also p2 lying on a line with slope v with
p3, resulting in a contradiction. Fig. 3 shows a set with more complicated
loops, including two which loop over all points in the set.

Lemma 2. Let P ⊂ X2 be evenly covered by W ⊂ X. Let u, v ∈ W, then
every point in P is in a (u, v)-loop starting with slope u and ending with
slope v.
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Fig. 3: A set of points evenly covered by the slopes u, v, and w. Each
point is accompanied by another point with the same x-coordinate. The
x-coordinates of the pairs are indicated below the lower points.

Proof. Let p0 ∈ P, then by hypothesis there is another point p1 in P
lying on a line with slope u connecting to p0. Similarly, there is a point
p2 different from p0 and p1 lying on a line with slope v connected to p1.
Continuing like this, we can create a sequence of points p0, p1, . . . , pk until
pk+1 = pi for some i ≤ k, with the property that adjacent points in the
sequence are connected by lines alternating with slope u and v.

If i = 0, then we are done. Otherwise, consider pi−1, pi, pi+1, and
pk. Say that pi−1 is connected to pi via a line with slope u, so that pi is
connected to pi+1 via a line with slope v. If pk is connected to pi via a
line with slope v, then there are three points on the same line with slope
v: pi, pi+1, and pk. This means there is a fourth point p∗ on the same line.
Since pk is connected to pi+1 via v, the sequence pi+1, pi+2, . . . , pk forms
a (u, v)-loop. We remove the (u, v)-loop from P, which is evenly covered
by u and v, resulting in a set evenly covered by u and v, and we continue
by induction. Similar reasoning can be applied when pk is connected to pi
via u. ut

Proposition 5. The sum of the x-coordinates in a (u, v)-loop must be
zero.

Proof. Say that (x1, y1), (x2, y2), . . . , (xk, yk) are the points in the loop.
Then

yi + yi+1 = δi(xi + xi+1 (mod k)) , (24)

where δi is u if i is odd, and v otherwise. Since

(y1 + y2) + (y2 + y3) + · · ·+ (yk−1 + yk) + (yk + y1) = 0 , (25)

we have that

u(x1 + x2) + v(x2 + x3) + u(x3 + x4) + · · ·
+ u(xk−1 + xk) + v(xk + x1) = 0 , (26)



therefore

(u+ v)(x1 + x2 + · · ·+ xk) = 0 . (27)

Since u 6= v, it must be the case that x1 + x2 + · · ·+ xk = 0. ut

Adversaries can only construct sets P where there are at most two
points per x-coordinate. Therefore, either all loops only contain points
(x, y) for which there is exactly one other point (x, y′) with the same x-
coordinate, or there exists a loop with a point which is the only one with
that x-coordinate. For example, Fig. 2 and Fig. 3 depict evenly covered
sets where every loop always contains all x-coordinate pairs. If we consider
the only loop in Fig. 2, then we get

0·(x1+x2)+(x1+x2)
−1(x2+x1)+0·(x1+x2)+(x1+x2)

−1(x2+x1) , (28)

which trivially equals zero. All loops in Fig. 3 also trivially sum to zero. In
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Fig. 4: A set of points evenly covered by the slopes u, v, and w. None of
the points are accompanied by another point with the same x-coordinate.
The points are labelled by their x-coordinates.

contrast, Fig. 4 depicts an evenly covered set in which we get a non-trivial
sum of the x-coordinates:

u · a+ v(a+ c) + u(c+ b) + v · b = (u+ v)(a+ b+ c) = 0 , (29)

hence such a set only exists if a+ b+ c = 0.
Therefore, Prop. 5 only poses a non-trivial restriction on the x-coordinates

if there is a loop which contains a point without another point sharing
its x-coordinate. If the loop contains all pairs of points with the same x-
coordinates, then the x-coordinates will trivially sum to zero. This is why
in the case of Fig. 2 there are no restrictions on the x-coordinates, other
than the fact that they must be distinct, resulting in the existence of sets
evenly covered by two slopes.



In the case of Fig. 3 however, there are additional restrictions on the
x-coordinates. Consider the two points at x-coordinate 0. Then there is
part of a (u, v)-loop connecting them, and part of a (u,w)-loop connecting
them, and combining both parts we get a full loop using all three slopes;
see the left hand side of Fig. 5. A similar loop involving all three slopes

0 a

b c

0 a

b c
u

v

w

Fig. 5: Illustration of loops with three slopes.

can be constructed around the points with x-coordinate b. Using these two
loops, we get the following equations. From the left hand side of Fig. 5 we
have

ua+ va = wb+ u(b+ c) + w(a+ c) + ua (30)
(u+ v)a = (w + u)(a+ b+ c) . (31)

From the right hand side of Fig. 5 we have

(u+ v)(b+ c) = wb+ ua+ w(a+ b) (32)
(u+ v)(b+ c) = (w + u)a . (33)

Combining both, we get the following:

a+ b+ c

a
=

a

b+ c
(34)

a2 + b2 + c2 + ab+ ac = 0 . (35)

The last equation above can be described as a so-called quadratic form.
A quadratic form over X is a homogeneous multivariate polynomial of
degree two. In our case, the quadratic form can be written as xTQx,
where x ∈ Xn is the list of variables, and Q ∈ {0, 1}n×n is a matrix with
entries in {0, 1}. We say that x∗ is a solution to Q if xT∗Qx∗ = 0, and the
quadratic form Q is non-trivial if there exists x 6= 0 such that xTQx 6= 0.

So the evenly covered set from Fig. 3 only exists if the x-coordinates
satisfy some non-trivial quadratic form. The same is true for any evenly
covered set where all loops always contain pairs of points with the same
x-coordinate.



Proposition 6. Let P ⊂ X2 be evenly covered by W ⊂ X with W ≥ 3. Say
that all loops in P contain only pairs of points with the same x-coordinates.
Then there exists a subset S of k x-coordinates, and a non-trivial quadratic
form described by a matrix Q ∈ {0, 1}k×k over k variables, such that when
the k elements of S are placed in a vector x∗ ∈ Xk, xT∗Qx∗ = 0.

Proof. Pick three slopes, u, v, w in W. We know that there are at least
four points in P. Pick two pairs of points with the same x-coordinates:
(p, p′) and (q, q′). Consider the (u, v)-loop starting at p. By hypothesis it
must contain p′. We let a = (a1, a2, . . . , aka) denote the sequence of x-
coordinates of the part of the (u, v)-loop from p to p′. Note that a1 equals
aka since p and p′ have the same x-coordinates. Similarly, the (u, v)-loop
starting at q must contain q′, and we denote the sequence of x-coordinates
of the part of the (u, v)-loop from q to q′ by b = (b1, b2, . . . , bkb). The
same holds for the (v, w)-loops containing p and q, and we define the
x-coordinate sequences e and f similarly.

Let y denote the difference in the y-coordinates of p and p′. For a we
have the following:

u(a1 + a2) + v(a2 + a3) + · · ·+ δ(u, v)ka(aka−1 + aka) = y , (36)

where δ(u, v)ka is u if ka is even and v otherwise. Collecting the terms, if
ka is even, we get

u(a1 + a2 + · · ·+ aka−1 + aka) + v(a2 + · · ·+ aka−1) = y , (37)

and since a1 = aka , we know that

(u+ v)(a2 + · · ·+ aka−1) = y . (38)

If ka is odd, then we get

(u+ v)(a1 + a2 + · · ·+ aka−1) = y . (39)

Note that it cannot be the case that
∑
ai = 0, since y 6= 0.

Similar reasoning applied to b gives

(v + w)(b2 + · · ·+ bkb−1) = y if kb is even
(v + w)(b1 + · · ·+ bkb−1) = y otherwise . (40)

Regardless of ka and kb’s parities, setting both equations equal to each
other results in the following equation:

u+ v

v + w
=

∑
bi∑
ai
. (41)



Applying the same result to e and f , we get

u+ v

v + w
=

∑
fi∑
ei
. (42)

As a result, we have(∑
bi

)(∑
ei

)
+
(∑

ai

)(∑
fi

)
= 0 , (43)

which is the solution to a quadratic form. ut

5.3 Computational Hardness

As shown in Prop. 5 and Prop. 6, either there is a loop where the x-
coordinates non-trivally sum to zero, or there is a subset of the x-coordinates
which form the solution to some non-trivial quadratic form. The former is
Subset Sum (SS), whereas the latter we name the binary quadratic form
(BQF) problem.

Definition 8 (Subset Sum Problem (SS)). Given a finite field X of
characteristic two and a subset S ⊂ X, determine whether there is a subset
S0 ⊂ S such that

∑
x∈S0

x = 0.

Definition 9 (Binary Quadratic Form Problem (BQF)). Given a
finite field X of characteristic two and a subset S ⊂ X, determine whether
there is a non-trivial quadratic form Q ∈ {0, 1}k×k with a solution x∗
made up of distinct components from S.

SS is know to be NP-complete. In App. B we show that BQF-t, a gener-
alization of BQF, is NP-complete as well. The problem of finding either
a subset summing to zero or a non-trivial quadratic form we call the SS-
or-BQF problem.

Conjecture 1. There do not exist polynomial time algorithms solving SS-
or-BQF.

Definition 10 (PHASH Problem). Given a finite field X of character-
istic two and a sequence of masks c, determine whether there is a collision
in PHASH with probability greater than 2/N , where N = |X|.

Given a collision in PHASH one can easily find a solution to SS-or-
BQF. The converse does not necessarily hold, which means SS-or-BQF
cannot be reduced to the PHASH problem in general, although we can
conclude the following.



Theorem 3. One of the following two statements holds.
1. There are infinitely many input sizes for which the PHASH problem

does not have a solution, but SS-or-BQF does.
2. For sufficiently large input sizes, SS-or-BQF can be reduced to the

PHASH problem.

Proof. Both the PHASH and SS-or-BQF problems are decision problems,
so the output of the algorithms solving the problems is a yes or a no,
indicating whether the problems have a solution or not. Note that the
inputs to both problems are identical. The reductions consist of simply
converting the input to one problem into the input of the other, and then
directly using the output of the algorithm solving the problem.

We proved that a yes instance for PHASH becomes a yes instance for
SS-or-BQF: if you have an instance of SS-or-BQF, then you can convert
it into a PHASH problem, and if you are able to determine that PHASH
has a collision with sufficient probability, then SS-or-BQF has a solution.
Similarly, a no instance for SS-or-BQF means a no instance for PHASH.

The issue is when there exists a no instance for PHASH and a yes
instance for SS-or-BQF for a particular input size. If there are finitely
many input sizes for which there is a no instance for PHASH and a yes
instance for SS-or-BQF simultaneously, then there exists an r such that for
all input sizes greater than r a no instance for PHASH occurs if and only if
a no instance for SS-or-BQF occurs, and a yes instance for PHASH occurs
if and only if a yes instance for SS-or-BQF occurs. Therefore, an algorithm
which receives a no instance for PHASH can say that the corresponding
SS-or-BQF problem is a no instance, and similarly for the yes instances,
which is our reduction. Otherwise there are infinitely many input sizes for
which PHASH is a no instance, and SS-or-BQF is a yes instance. ut

If statement 1 holds, then there are infinitely many candidates for an
instantiation of PMAC* with security bound independent of the message
length. If statement 2 holds, and we assume that SS-or-BQF is hard to
solve, then finding a collision for generic PHASH is computationally hard.

6 Finding Evenly Covered Sets

The previous section focused on determining necessary conditions for the
existence of evenly covered sets, illustrating the difficulty with which such
sets are found. Nevertheless, finding evenly covered sets becomes feasible
in certain situations. In this section we provide an alternative descrip-
tion of evenly covered sets in order to find sufficient conditions for their
existence.



6.1 Distance Matrices

Let (x1, y1), (x2, y2), . . . , (xn, yn) be an enumeration of the elements of P ⊂
X2. If w ∈ X covers P evenly, then the line with equation y = w(x−x1)+y1
must meet P in an even number of points. In particular, there must be
an even number of xi values for which w(xi − x1) + y1 = yi, or in other
words, the vector

w · (x1 − x1, x2 − x1, . . . , xn − x1) (44)

must equal

(y1 − y1, y2 − y1, . . . , yn − y1) (45)

in an even number of coordinates. The same must hold for the lines start-
ing from all other points in P.

Let ∆x be the matrix with (i, j) entry equal to xi − xj and ∆y the
matrix with (i, j) entry equal to yi − yj . We write A ∼ B if matrix
A ∈ Xn×n equals matrix B ∈ Xn×n in an even number of entries in each
row. Then, following the reasoning from above, we have that w ∈ X covers
P evenly only if ∆y ∼ w∆x.

The matrices ∆x and ∆y are so-called distance matrices, that is, sym-
metric matrices with zero diagonal. Entry (i, j) in these distance matrices
represents the “distance” between xi and xj , or yi and yj . In fact, starting
from distance matrices M and D such that M ∼ wD we can also recover
a set P evenly covered by w: interpret the matrices M and D as the dis-
tances between the points in the set P. This proves the following lemma.

Lemma 3. Let k ≤ n − 1 and let W ⊂ X be a set of size k. There exist
n by n distance matrices M and D such that M ∼ wD for all w ∈ W if
and only if there exists P with |P| = n and W evenly covers P.

From the above lemma we can conclude that the existence of P ⊂ X2

evenly covered by W ⊂ X is not affected by the following transformations:

1. Translating the set P by any vector in X2. This also preserves the set
W.

2. Subtracting any element w0 ∈W from the set W.
3. Scaling the set P in either x or y-direction by a non-zero scalar in X.
4. Scaling the set W by any non-zero element of X.



6.2 Connection with Graphs

Let P ⊂ X2 be evenly covered by W ⊂ P. The pair (P,W) has a natural
graph structure with vertices P and an edge connecting two vertices p1
and p2 if and only if the line connecting them has slope in W. Fig. 2
and Fig. 3 provide diagrams which can also be viewed as examples of the
natural graph structure. In this section we connect the existence of evenly
covered sets with so-called factorizations of a graph. See App. A for a
review of the basic graph theoretic definitions used in this section.

Each vertex in the natural graph has at least |W| neighbours, and if
there are two points per line in P, then the graph is |W|-regular. Vertices
have more than |W| neighbours only if they are on a line with more than
two points. Since we are not interested in the redundancy from connecting
a point with all points on the same line, we only consider graphs without
the additional edges.

Definition 11. A graph associated to (P,W) is a |W|-regular graph G
with P as its set of vertices and an edge between two vertices p1 and p2
only if the line connecting p1 with p2 has slope in W.

Any graph associated to (P,W) is a subgraph of the natural graph struc-
ture described above, and there could be multiple associated graphs, de-
pending upon what edges are chosen to connect multiple points lying on
the same line. For example, Fig. 6 depicts an evenly covered set with
twelve points, six of which lie on the same line. As depicted in Fig. 7, it
can easily be converted into an associated graph.

u

v

w

Fig. 6: Non-trivial example of a set with 12 points evenly covered by three
slopes. Horizontal points lie on the same y-coordinate, and vertical points
on the same x-coordinate. Since there are six points on a line with slope
u, the natural graph is not regular.

The following definition allows us to describe another property that
associated graphs have.



u

v

w

Fig. 7: The diagram from Fig. 6 converted into an associated graph. The
slopes u, v, and w induce a natural 1-factorization of the graph.

Definition 12. A k-factor of a graph G is a k-regular subgraph with the
same vertex set as G. A k-factorization partitions the edges of a graph in
disjoint k-factors.

Associated graphs have a 1-factorization induced by W, where each 1-
factor is composed of the edges associated to the same slope in W. See
Fig. 7 for an example.

We know that every pair (P,W) has an associated |W|-regular graph
with 1-factorization. In order to determine the existence of evenly covered
sets we need to consider when a k-regular graph with 1-factorization de-
scribes the structure of some pair (P,W) with |W| = k. By first fixing a
graph with a 1-factorization, it is possible to set up a system of equations
to determine the existence of distance matrices M and D, and slopes W
such thatM ∼ wD for all w ∈W. Then, by applying Lem. 3, we will have
our desired pair (P,W).

Definition 13. Let G be a regular graph with vertices (v1, . . . , vn) and a
1-factorization, and let Xn×n denote the set of matrices over X. Define
SG ⊂ Xn×n to be the matrices where entry (i, j) equals entry (k, l) if and
only if the edges (vi, vj) and (vk, vl) are in the same 1-factor of G.

Proposition 7. There exists a set P ⊂ X2 with n elements evenly covered
by W ⊂ X with |W| = k if and only if there exists a k-regular graph G of
order n with a 1-factorization such that there is a solution to

M = S ◦D , (46)

where S ∈ SG, M,D ∈ Xn×n are distance matrices, and ◦ denotes ele-
mentwise multiplication.

Therefore by picking a regular graph with a 1-factorization and solving a
system of equations, we can determine the existence of pairs (P,W) for
various sizes, in order to determine a lower bound for PHASH’s collision
probability.



6.3 Latin Squares and Abelian Subgroups

In this section we consider what happens when we solve equation (46)
with a 1-factorization of the complete graph of order n. Since we look
at complete graphs, finding a solution would imply the existence of sets
with n points evenly covered by n − 1 slopes, the optimal number as
shown by Prop. 3. We describe a necessary and sufficient condition on the
matrix D from equation (46), which in turn becomes a condition on the
x-coordinates of the evenly covered sets.

As described by Laywine and Mullen [13, Sect. 7.3], 1-factorizations
of a complete graph G of order n, with n even, are in one-to-one corre-
spondence with reduced, symmetric, and unipotent Latin squares, that is,
n by n matrices with entries in N such that

1. the first row enumerates the numbers from 1 to n,
2. the matrix is symmetric, that is, entry (i, j) equals entry (j, i),
3. the diagonal consists of just ones,
4. and each natural number from 1 to n appears just once in every row

and column.

The correspondence between 1-factorizations of complete graphs and
Latin squares works by identifying row i and column i with a vertex in
the graph, labelling the 1-factor containing edge (1, i) with i, and then
setting entry (i, j) equal to the label of the 1-factor containing edge (i, j).
This is exactly the structure of the matrices in SG.

Let n be a power of two. The abelian 2-group of order n is a commuta-
tive group in which every element has order two, that is, a+ a = 0 for all
elements a in the group. The Cayley table of the abelian 2-group of order
n can be written as a reduced, symmetric, and unipotent Latin square.
Fig. (??) provides an example of such a Cayley table, where 1 is identified
with the identity of the group.

Definition 14. The (i, j) entry of the Cayley table of the abelian 2-group
with ` elements is denoted γ(i, j).

Lemma 4. γ(i, γ(i, j)) = j.

Proposition 8. Let G denote the complete graph of order n, where n is
a power of two, with 1-factorization induced by the Cayley table of the
abelian 2-group of order n. Then Eq. (46) has a solution if and only if the
first row of D forms an additive subgroup of X of order n.

The above proposition shows that the graph structure correspond-
ing to the abelian 2-group induces the same additive structure on the



x-coordinates of the evenly covered set. This transfer of structure only
works with this particular 1-factorization of the complete graph. In gen-
eral, reduced, symmetric, and unipotent Latin squares do not even corre-
spond to the Cayley table of some group: associativity is not guaranteed.
Furthermore, 1-factorizations of non-complete graphs do not necessarily
even form Latin squares; see for example Fig. 6.

Proof. Denote the first row of S by s1, s2, . . . , sn, and the first row of D
by d1, . . . , dn. Note that D is entirely determined by its first row, since
the (i, j) entry of D is di + dj , and since S follows the form of γ, it is
entirely determined by its first row as well. In particular, the (i, j) entry
of S is sγ(i,j), where γ(i, j) is the (i, j) entry of the Cayley table.

We need to determine the conditions under which S ◦D is a distance
matrix, as a function of s1, . . . , sn and d1, . . . , dn. This happens if and
only if the (i, j) entry of S ◦D is equal to sidi + sjdj :

sidi + sjdj = sγ(i,j)(di + dj) . (47)

Furthermore, it must be the case that

sidi + sγ(i,j)dγ(i,j) = sj(di + dγ(i,j)) , (48)

since γ(i, γ(i, j)) = j. Therefore

sjdj + sγ(i,j)dγ(i,j) = sγ(i,j)(di + dj) + sj(di + dγ(i,j)) (49)

(sj + sγ(i,j))(di + dj + dγ(i,j)) = 0 . (50)

Since S must follow the Latin square structure, the first row of S must
consist of n distinct entries, hence sj 6= sγ(i,j) and so di+ dj + dγ(i,j) = 0.
Therefore, d1, . . . , dn satisfies the equations of the Cayley table, hence
they form an additive subgroup of X.

Continuing, we have the following equations:

sidi + sjdj + sγ(i,j)dγ(i,j) = 0 . (51)

In order for these equations to be satisfied, s1d1, . . . , sndn must form an
additive subgroup of X as well. In particular, there must exist an isomor-
phism φ mapping di to sidi, which can be written as d−1i φ(di) = si for
i > 1. The only requirement for the existence of such an isomorphism is
that x−1φ(x) must map to distinct values. Picking x 7→ x2 as the iso-
morphism, we have our desired result. Note that the di must be distinct,
otherwise the si are not distinct, contradicting the fact that S follows the
Latin square structure. ut



6.4 Application to PMAC

Before we present an attack, we first need the following lemma.

Lemma 5. Let P and P′ be disjoint subsets of X2 evenly covered by W ⊂
X. Then P ∪ P′ is evenly covered by W.

A collision in PHASH with probability (`− 1)/N can be found as fol-
lows. Take c and let k be the smallest index such that c≤k contains a subse-
quence c′ of length ` such that the elements {c′1 + c′1, c

′
1 + c′2, . . . , c

′
1 + c′`}

form an additive subgroup of X. Let µ be the mapping which maps indices
of c′ onto indices of c, so that c′i = cµ(i).

Let D be a distance matrix in X`×` such that its first row is equal to
(c′1 + c′1, c

′
1 + c′2, . . . , c

′
1 + c′`); recall that a distance matrix is completely

determined by its first row. Let G be the complete graph of order ` with
1-factorization determined by the abelian 2-group of order `. Solve equa-
tion (46), that is, find a distance matrix M such that there exists S ∈ SG
where

M = S ◦D . (52)

Let m1 denote the first row of M , and let W denote the elements making
up the first row of S, without the first row element. Then the set P :={
(c′1,m

1
1), . . . , (c

′
`,m

1
` )
}
is evenly covered byW, which contains `−1 slopes.

By translating P vertically by some constant, say 1, construct the
disjoint set P′, which is also evenly covered by W. Therefore, by Lem. 5,
the union of P and P′ is evenly covered by W. Let m2 denote the y-
coordinates of P′.

Definem1 to be the vector of length k where for all i ≤ `,m1
µ(i) = m1

i ,
and for all i not in the range of µ, m1

i = 0. Define m2 similarly. Then
m1 and m2 collide with probability (`− 1)/N .

For sufficiently large k, c≤k will always contain additive subgroups. In
particular, one can find such subgroups in PMAC with Gray codes [7],
where c is defined as follows. In this case X := {0, 1}ν is the set of ν-bit
strings, identified in some way with a finite field of size 2ν . We define the
following sequence of vectors λν :

λ1 = (0, 1) (53)

λν+1 = (0‖λν1 , 0‖λν2 , . . . , 0‖λν2ν , 1‖λν2ν , . . . , 1‖λν2 , 1‖λν1) . (54)

Note that λν contains all strings in X. Then c is λν without the first compo-
nent, meaning c contains all strings in X without the zero string. Similarly,
the sequence (c1, . . . , c2κ) contains all strings starting with ν − κ zeros,



i.e. 0ν−κ‖ {0, 1}κ, excluding the zero string. Note that c1 = 0ν−11. The
sequence (c1+ c1, c1+ c2, . . . , c1+ c2κ) contains all strings in 0ν−κ‖ {0, 1}κ
except for c1, meaning it contains an additive subgroup of order 2κ−1.
This results in an attack using messages of length k = 2κ with success
probability (2κ − 1)/2ν .

Acknowledgments. We would like to thank Tomer Ashur, Bart Men-
nink, and the reviewers for providing useful comments, and also Kazumaro
Aoki for his help in exploring subset sums in finite fields. This work was
supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007). In addition, this work was supported by the Research
Fund KU Leuven, OT/13/071. Atul Luykx and Alan Szepieniec are sup-
ported by Ph.D. Fellowships from the Institute for the Promotion of In-
novation through Science and Technology in Flanders (IWT-Vlaanderen).

A Basic Graph Theoretic Definitions

1. A neighbour of a vertex v in a graph G is a vertex with an edge
connecting it to v.

2. A graph G is said to be k-regular if every vertex of G has exactly k
neighbours.

3. A subgraph of a graph G is a graph with vertex set and edge set subsets
of G’s vertex and edge sets, respectively.

4. A complete graph is a graph in which every vertex is connected to
every other vertex via an edge.

B BQF-t is NP-complete

Definition 15 (BQF-t). Given a finite field X with characteristic 2 and
a vector x∗ ∈ Xk and a target element t ∈ X, determine if there is a
non-trivial binary quadratic form Q ∈ {0, 1}k×k such that xT∗Qx∗ = t.

Note. The word ‘binary’ in our use of the term ‘binary quadratic form’
refers to the coefficients of the quadratic form matrix Q and not to the
number of variables.

Proposition 9. BQF-t ∈ NP

Proof. Given a BQF-t yes-instance (X,x∗, t) of (k+2)×` bits, there exists
a certificate of k2×` bits that proves it is a yes-instance, namely the matrix
Q such that xT∗Qx∗ = t. Moreover, the validity of this certificate can be



verified by computing xT∗Qx∗ and testing if it is indeed equal to t. This
evaluation requires (n + 1) × n multiplications and the same number of
additions in the finite field X. After testing equality, the non-triviality of
Q is verified by testing whether QT + Q 6= 0, costing another n2 finite
field additions and as many equality tests. Thus, for every yes-instance of
BQF-t, there exists a polynomial-size certificate whose validity is verifiable
in polynomial time. Hence, BQF-t ∈ NP. ut

Proposition 10. BQF-t is NP-hard.

Proof. We show that BQF-t is NP-hard by reducing the subset-sum prob-
lem SS, another NP-hard problem, to it. In particular, we show that SS≤
BQF-t under deterministic polynomial-time Karp reductions.

Given an instance (X, S) of SS, the goal is to find a subset S0 ⊂ S such
that

∑
x∈S0

x = 1. Note the target of SScan be changed without loss of
generality. We transform this problem instance to an instance (X′,x∗, t)
of BQF-t as follows.

Let k = #S, the number of elements in S and let each unique element
si of S be indexed by i ∈ {1, . . . , k}. Choose a degree 2k + 1 irreducible
polynomial ψ(z) ∈ X[z] and define the extension field X′ = X[z]/〈ψ(z)〉.
Then define the vector x∗ as follows:

x∗ =



z1s1
z2s2
...

zksk
z−1

z−2

...
z−k


.

The BQF-t instance is (X′,x∗, 1). It now remains to be shown that 1)
this transformation is computable in polynomial time; 2) if the SSproblem
instance is a yes-instance, then the BQF-t problem instance is yes-instance;
3) conversely, if the SSproblem instance is a no-instance, then the BQF-t
problem instance is a no-instance.

1. It is known to be possible to deterministically select an irreducible
polynomial over a finite field of small characteristic in polynomial
time [20]. After selecting the polynomials, the inverse of z is com-
puted using the polynomial-time extended GCD algorithm and all the



necessary powers of z and z−1 are found after two times k multi-
plications. Lastly, the proper powers of z are combined with the si
elements using k multiplications for the construction of the first half
of the vector x∗; the second half of this vector has already been com-
puted. So since this transformation consists of a polynomial-number
of polynomial-time steps, its total running time is also polynomial.

2. If the SSinstance is a yes-instance, then there exist k binary weights
wi ∈ {0, 1} for all i ∈ {1, . . . , k} such that

∑k
i=1wisi = 1. The exis-

tence of these weights imply the existence of the matrix Q, as defined
below. This matrix consists of four k× k submatrices and only the di-
agonal of the upper right submatrix is nonzero. In fact, this diagonal
is where the weights wi appear.

Q =



w1

. . .
wk


(55)

Indeed, the BQF-t instance is guaranteed to be a yes-instance as

xT∗Qx∗ =
k∑
i=1

zisiwiz
−i = 1

if and only if
k∑
i=1

wisi = 1 ,

which is the solution to the SSproblem. Also, Q is non-trivial if there
exists at least one nonzero weight wi.

3. If the SSinstance is a no-instance, then no set of weights wi such that∑k
i=1wisi = 1 exists. Consequently, no Q satisfying xT∗Qx∗ = 1 can

exist. The reason is that all the elements of the Q-matrix except for
the upper right diagonal are multiplied with higher or lower powers of
z, which make them linearly independent from 1. Hence, neither the
upper right diagonal nor any other set of nonzero elements in Q can
make the total quadratic form equal to one.

ut

Corollary 1. BQF-t is NP-complete.
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