
Circuit Compilers with O(1/ log(n))
Leakage Rate

Marcin Andrychowicz?1, Stefan Dziembowski?1, and Sebastian Faust??2

1 University of Warsaw
2 Ruhr University Bochum

Abstract. The goal of leakage-resilient cryptography is to construct
cryptographic algorithms that are secure even if the devices on which
they are implemented leak information to the adversary. One of the main
parameters for designing leakage resilient constructions is the leakage
rate, i.e., a proportion between the amount of leaked information and
the complexity of the computation carried out by the construction. We
focus on the so-called circuit compilers, which is an important tool for
transforming any cryptographic algorithm (represented as a circuit) into
one that is secure against the leakage attack. Our model is the “probing
attack” where the adversary learns the values on some (chosen by him)
wires of the circuit.

Our results can be summarized as follows. First, we construct circuit
compilers with perfect security and leakage rate O(1/ log(n)), where n
denotes the security parameter (previously known constructions achieved
rate O(1/n)). Moreover, for the circuits that have only affine gates we
obtain a construction with a constant leakage rate. In particular, our
techniques can be used to obtain constant-rate leakage-resilient schemes
for refreshing an encoded secret (previously known schemes could toler-
ate leakage rates O(1/n)).

We also show that our main construction is secure against constant-rate
leakage in the random probing leakage model, where the leaking wires
are chosen randomly.

1 Introduction

Side-channel attacks are an omnipresent threat for the security of cryptographic
implementations. In contrast to traditional cryptanalytical attacks that attempt
to break the mathematical properties of the cryptographic algorithm, a side-
channel adversary targets the implementation by, e.g., observing the running
time of a device [29] or measuring its power consumption [30]. An important
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countermeasure against side-channel attacks – in particular against power anal-
ysis attacks – is the so-called masking countermeasure. A masking scheme ran-
domizes the intermediate values of the computation in order to conceal sensitive
information.

Circuit compilers and the probing model. A formalization of the masking
countermeasure has been introduced in the seminal work of Ishai et al. [26] with
the concept of leakage resilient circuit compilers. At a high-level, a circuit com-
piler takes as input a description of a circuit Γ and compiles it into a protected
circuit Γ̂ that has the same functionality as Γ but additionally is secure in a
well-defined leakage model. One of the most prominent leakage models is the so-
called t-threshold probing model of Ishai et al., where the adversary is allowed
to observe up to t intermediate values computed by Γ̂ . The threshold probing
model is widely used in practice to analyze the soundness of a masking scheme
against higher order attacks [32, 28, 22, 9, 5, 8, 4, 3].

On the importance of the leakage rate. An important parameter to evalu-
ate the security of a masking scheme in the probing model is the value of t. At
first sight it may seem that a higher value for t automatically implies a higher
level of security as the adversary obtains more knowledge about the internals.
To see why such an approach may not always lead to better security imagine two
compilers that on an input circuit Γ output the following: the first one produces
a circuit Γ1 that has 1 thousand gates and tolerates leakage of 10 wires, while
the second one produces a circuit Γ2 of size 1 million gates that tolerates leakage
of 100 wires. Which construction provides a higher level of security (even dis-
carding the production costs)? The first one has to be implemented on hardware
that leaks at most 1% of its wires, while the second one requires hardware that
leaks at most 0.01% of the wires! Therefore, the second construction is actually
weaker (although it “tolerates more leakage” in absolute terms). The above sim-
ple example illustrates that in many case it may be more natural to look at the
leakage rate of a given construction (i.e.: the “amount of leakage” divided by the
circuit size), than at the “total amount of leakage” itself.3

Despite the practical importance of the threshold probing model it is not well-
understood how close we can get to the optimal leakage rate of O(1). Indeed,
the best known construction is still the circuit compiler of Ishai et al., which
remains secure if the adversary learns a O(1/n)-fraction of the wires in the

transformed circuit Γ̂ (for security parameter n). The main contribution of our
work is to significantly improve this rate and build new leakage resilient circuit

3 We note that this model still ignores many aspects of the side channel attacks, for
example the fact that some operations (like writing bits to the memory) leak more
information than some other ones (like the arithmetic operations). We stress that a
certain level of abstraction is inevitable in every formal model. Moreover, the fact
that a wire w leaks more information than the wires can be reflected by having
several copies of w in Γ (where Γ is an input for the circuit compiler, see Section
1.1 for more on the circuit compilers).



compilers that achieve O(1/ log(n)) leakage rate, and if the circuit Γ is only
affine computation we achieve the optimal leakage rate of O(1).

At this point, we want to briefly comment about what we mean by “optimal-
ity” of leakage rate and the efficiency of our constructions. First, it shall be clear
that we cannot leak everything and, hence, a leakage rate of O(1) is asymptot-
ically optimal. Of course, concretely there can be big differences depending on
the hidden constants. Some of our constructions are asymptotically optimal (for
affine circuits), but their constants are far from the optimal 1. We believe it is an
important question for future work to optimize these constants. We sometimes
also talk about optimality in terms of efficiency. In this case, we mean optimality
for circuit compilers that compute with encodings and offer information theo-
retic security. One may get asymptotically better efficiency by using solutions
based on FHE.4

1.1 The work of Ishai, Sahai and Wagner

The threshold probing model. Ishai et al. consider two different types of
probing adversaries: the first type of adversary is allowed to probe up to t inter-
mediate values in the entire transformed circuit Γ̂ . Notice that this implies that
for a growing number of gates in the circuit Γ̂ the number of corrupted wires
stays the same, and hence the fraction of wires of the circuit that are corrupted
decreases. To improve the leakage rate, [26] also considers a significantly stronger
adversary where the transformed circuit is structured into so-called regions and
the adversary can probe up to t wires in each such region. In the following we
call the later model the t-region probing model, which will be the focus of our
work. Notice that in the following a region will correspond to a sub-circuit of the
transformed circuit, and we will describe below how we structure the transformed
circuit into such regions.

The circuit compiler of Ishai, Sahai and Wagner (ISW). Ishai et al. con-
sider Boolean circuits Γ with internal state m, which can, e.g., store the secret
key of an AES. The basic ingredient of the compiler of Ishai et al. is a leakage
resilient encoding scheme Enc(.) that encodes the computation in Γ̂ . For a fixed
number of probes t define the security parameter n = O(t).5 In the transformed
circuit each intermediate wire (including the state m) which carries a bit x in
the original circuit Γ is represented by n wires Enc(x) = (X1, . . . , Xn) that
are chosen uniformly at random such that

∑
iXi = x (the sum here represents

Boolean XOR, but the encoding scheme can be defined over an arbitrary finite
field). Since the above encoding scheme is a perfect (n−1) out of n secret sharing

4 Notice that even for such solutions our construction offers asymptotic improvements
over earlier works since the decryption circuit of the FHE scheme has to be protected
with an encoding-based circuit compiler.

5 In the rest of the work we will mostly give a concrete relation between the num-
ber of probes t and the security parameter n, which determine the blow-up of the
transformed circuit.



scheme, it is easy to see that an adversary that learns up to t = n− 1 values of
the codeword X obtains no information about the secret x.

The main difficulty in developing a secure circuit compiler is the transfor-
mation of the gates, i.e., the transformation of the AND and XOR gate in the
case of ISW. In Γ̂ gates are represented by so-called gadgets. A gadget, e.g.,
an AND gadget, takes as input two encodings Enc(a) and Enc(b) and outputs
Enc(c) such that c = ab. Of course, besides correctness, the gadgets have to be
specifically tailored such that they withstand t-region probing attacks, where for
the ISW construction each gadget corresponds to a region.

Security against t-region probing attacks is formalized by a simulation-based
argument. That is, any information that can be learnt by an adversary with
t-region probing access to Γ̂ , can also be obtained by an adversary that has only
black-box access to Γ . More formally, Ishai et al. show that for any t-region
probing adversary A against Γ̂ there exists a simulator Sim that can simulate
answers to all probes with just black-box access to Γ . Notice that the simulation
is assumed to be perfect, i.e., the distribution that an adversary obtains by
applying a t-probing attack against Γ̂ is identical to the distribution that the
simulator produces. The ISW compiler achieves security against a probing rate
of at least Ω(1/n) of the wires. In fact, it is easy to see that this bound is tight
for the construction of ISW due to the way in which transformed AND gadgets
are computed.6 Hence, to further improve the leakage rate, we need to develop
a new circuit transformation.

1.2 Our contributions

Protecting affine circuits. We first consider the seemingly simpler problem
of how to protect only affine operations against t-region probing adversaries. We
use the simple encoding function described above, i.e., a secret x ∈ F is encoded
by a random vector X := (X1, . . . , Xn) such that

∑
iXi = x. It is easy to see

that the addition of two encoded values and multiplication by a constant can
be done efficiently requiring only O(n) operations. Hence, if we consider only a
single affine operation, then the adversary may learn up to t = O(n) wires from
such an operation without violating security. Unfortunately, the above does not
easily scale for larger circuits. If we allow the adversary to probe in each gadget
t wires then the adversary may eventually reveal secret information.

To avoid this problem, the construction of Ishai et al. (and essentially any
leakage resilient circuit compiler) uses a so-called refresh algorithm that refreshes
the encoding by introducing new randomness into X, thereby rendering previ-
ous leakage on X useless. The basic idea of the algorithm Y ← refresh(X) is to
sample Z ← Enc(0) and compute Y = X + Z. Of course, the main difficulty is
to generate Z in a way that is secure against t-region probing adversaries. Ishai

6 For readers familiar with the construction of [26] the transformation for the AND
gate computes on input A = (A1, . . . , An) and B = (B1, . . . , Bn) the values Ai · Bj
for all i, j ∈ [n]. Hence, each share Ai appears at least n times and hence it is
impossible to obtain leakage rate better than O(n−1).



et al. propose an implementation of the refresh algorithm that requires O(n2)
operations leading to a leakage rate of O(n−1). Surprisingly, it is non-trivial to
improve the complexity of refresh to O(n) – in fact, we are not aware of any
secure refresh algorithm that has the optimal complexity of O(n). The first con-
tribution of our work is to propose the first refreshing algorithm that is perfectly
secure against O(n) adversarial chosen probes and has (asymptotically) optimal
complexity and randomness usage of O(n). Inspired by the work of Ajtai [1]
who studies security against the weaker model of random probing attacks (we
will compare our work with the work of Ajtai below), we build our refreshing
scheme from expander graphs with constant degree. We emphasize that while
our refreshing scheme is similar to the one used by Ajtai, the security proofs
differ significantly as we show security in the much stronger model of adaptive
probing attacks.

Using the above expander-based scheme for refreshing and combining it with
the fact that transformed gadgets for affine operations have complexity O(n),
we obtain the first compiler for affine circuits that asymptotically achieves both
the optimal complexity of O(n) and remains secure against t-region probing
adversaries for t = O(n), where each region is of size O(n).

Protecting any circuit against probing attacks. To extend our result to
work for arbitrary circuits, we need to develop a secure transformation for the
multiplication operation. Notice that the transformed multiplication gadget of
ISW can be broken when the adversary can probe Ω(n) wires.7 Our construc-
tion borrows techniques from perfectly secure multiparty computation [14] and
combines them in a novel way with our transformation for affine circuits from
the previous paragraph. We give some more details below.

Instead of using the simple additive encoding scheme that can be used to
protect affine computation, we use a linear secret sharing scheme that has the
multiplicative property [11]. Informally speaking, a linear secret sharing scheme
is multiplicative if from two encodings X,Y , we can compute the product xy
just by computing a linear combination of all the values Zi = Xi · Yi and then
taking a linear combination of Zi to compute xy. An example of a secret sharing
scheme that satisfies the above property is Shamir’s scheme. In Shamir’s scheme
a secret x from some field F is encoded into n = 2t + 1 shares such that any
(t+1) shares can be used to reconstruct the secret x but any subset of at most t
shares reveals no information about x. In the following we denote a multiplicative
sharing of a secret x with threshold t by [x]t. Notice that since the above encoding
scheme is linear, we can easily implement t-region probing resistant addition and
multiplication by a constant. We now turn to the description of the protected
multiplication operation.

To simplify exposition, let us first assume that the transformed multiplication
has access to a leak-free source of randomness that outputs for a random field

7 One may object that by structuring the computation of the ISW AND transforma-
tion into regions of size O(n) one can achieve an improved probing rate. However, it
is easy to see by a counting argument that such structuring is impossible.



element r ∈ F random encodings [r]t and [r]2t for Shamir’s scheme. In this
setting, we can use ideas from [14] to carry out the multiplication. On input two
vectors A = [a]t and B = [b]t, first compute Zi = Xi · Yi. It is easy to see that
Zi defines shares that lie on a polynomial of degree 2t with the shared secret
being xy, i.e., we have Z = [xy]2t. The good news is that the vector Z already
yields an encoding of the desired value xy, however, the threshold for Z has
increased by a factor 2. To solve this problem we use the encodings [r]t and [r]2t
output by the leak-free component, which enables us to decrease the degree of
the encoding [xy]t. Similar techniques have been used in the context of circuit
compilers by [23, 2], but it is easy to see that their constructions are not secure
when ω(1/n) of the wires are corrupted.

Assuming that [r]t and [r]2t are produced by the leak-free gates, we can prove
that the above construction remains secure in the presence of an adversary that
learns up to t wires where n = 2t + 1. Of course, for our final transformation
we do not want to assume that the computation of [r]t and [r]2t is done in a
leak-free way. Instead, we seek for a t-region probing resistant implementation
of it. The crucial observation to achieve this goal is the fact that the encodings
[r]t and [r]2t can be produced by a circuit solely consisting of affine operations
(for Shamir’s scheme Lagrange polynomial interpolation – but this can be easily
generalized). Hence, the problem of protecting arbitrary computation, can be re-
duced to protecting the affine computation against t-region probing attacks! As
the later can be solved by the expander-based transformation described above,
we obtain a circuit transformation that works for arbitrary circuits Γ and pro-
duces protected circuits Γ̂ that remain perfectly secure even if in each region of
size O(n) the adversary can learn O(n/ log(n)) wires.

The above description omits several technical challenges – in particular, when
combining the protected computation operating with the multiplicative secret
sharing with our expander-based transformation for affine computation. One
problem that we need to address is how to do a secure “conversion” between
different types of encodings. More precisely, when we apply our transformation
for affine computation in a naive way, then the resulting circuit outputs “en-
codings of encodings” (so-called “double-encodings”), That is, each share of [r]t
and [r]2t is again encoded using the simple additive sharing used by our affine
compiler. Hence, we need to design a t-probing resistant way to “peal-off” the
outer layer of the “double-encoding” without revealing the secret value r. To this
end, we propose special sub-circuits – so-called tree decoders – that can do the
decoding without breaking security in the presence of an adversary that probes
a O(n/ log(n))-fraction of the wires.8

On the relation to the noisy leakage model. An important leakage model
that has recently been considered in several works is the noisy leakage model [6,
20, 31, 17]. The noisy leakage model matches with the engineering perspective
as it is closely related to what happens in real-world side-channel attacks based

8 Notice that the tree-decoding is also the technical reason why we do not achieve the
optimal rate of O(1).



on the power consumption [31]. Recently, it was shown by Duc et al. [16] that
security in the probing model can be translated into security in the noisy leakage
model. In particular, using a Chernoff bound and the reduction of [16] security
in the t-region probing model implies security in the noisy leakage model of [31].
As the noise parameter is directly related to the leakage rate, by improving the
leakage rate, we also get quantitatively better bounds for the Prouff-Rivain noise
parameter. More precisely, by applying [16] we directly achieve security when
we set the PR noise parameter to O(1/ log(n)|F|) (compared to O(1/n|F|)).
We also show in Section 6 that by a more careful analysis our construction
actually achieves security for O(1/|F|) noise level. This is done by showing that
our construction is actually secure in the p-random probing model when p is a
constant. Using the reduction in [16] and instantiating the multiplicative secret
sharing with codes based on algebraic geometry [7], we obtain circuit compilers
that are secure for the optimal noise rate of O(1).

On perfect security and adaptive probing attacks. We notice that all
our result in the t-region probing model achieve perfect security, i.e., there is no
statistical error in the theorem statements. This is important, as from a practical
point of view such a statistical error term often matters as for small values of
the security parameter the error term can be significant.

Another advantage that perfect security has (over statistical security, say)
is that one can show that security against adaptive and non-adaptive probing
attacks is equivalent. Indeed, in our security analysis we typically consider an
adversary that chooses together with the input to the circuit a set of probes P
that specifies for which wires the adversary will learn the corresponding value
when the circuit is evaluated. While the adversary can choose a different set
of probes P before each execution of the circuit, most of our analysis does not
explicitly allow the adversary to adaptively choose the position of the probes
within one execution (i.e., the adversary cannot observe the value of some wire
and then depending on the value on that wire decide which wire to probe next).
Since all our constructions achieve perfect security, we can apply results from [10]
to get security even against fully adaptive probing adversaries.

On the efficiency of our construction. Our basic construction blows up the
size of the circuit by a factor of O(n3). In contrast the construction of Ishai et
al. achieves better efficiency and only increases the size of the circuit by a fac-
tor of O(n2). We note that the efficiency of our construction can most likely be
improved by a linear factor by using packed secret sharing as the multiplicative
encoding scheme (in a similar way as recently done in [2, 23]), hence asymptot-
ically achieving the same efficiency as the construction of Ishai et al. We omit
the details in this extended abstract.

1.3 Comparison to other related work

Due to space limitations we only compare with the most relevant literature
on circuit compilers. Notice also that our focus is not on protecting against



active attacks – so-called fault attacks [25, 19, 12], and hence, we omit a detailed
comparison.

The work of Ishai et al. [26]. Besides the main construction that was al-
ready outlined above, Ishai et al. propose a second transformation that achieves
improved leakage rate with statistical security (i.e., with a small error proba-
bility a probing adversary will break security). In particular, from Theorem 3
of [26] one gets statistical security against t := O(n) probes with a circuit of
size s · O(n log(n)) · poly(k), where k is the statistical security parameter and
s the size of the initial circuit Γ . The above result can be transformed to the
t-region probing model considered in our work. In this case, one obtains gadgets
of size n(log n)poly(k). Since each region is represented by a gadget this yields
asymptotically a leakage rate of O(1/ log n), which is as in our paper. There are,
however, several important differences:

1. While [26] achieve statistical security, we obtain perfect security. Perfect
security is important as it gives full adaptivity for free.

2. The “constant” in O(1/ log n) depends on the statistical security parameter,
i.e., it is poly(k).

3. The results from [26] do not easily generalize to the noisy leakage model.
The reason for this comes from the statistical security loss poly(k) that is
hidden in the O(.) notation.

4. Compared to our main construction that has complexity blow-up O(n3) per
multiplication, [26] obtains asymptotically better efficiency of O(n log(n)).
We notice, however, that we can trivially improve efficiency of our construc-
tion to O(n2 log(n)), and further efficiency improvements are probably pos-
sible using the packed secret sharing.

The work of Ajtai [1]. At STOC’11 Ajtai proposed a construction that achieves
constant rate in the so-called p-random probing model. Ajtai’s construction
achieves statistical security for “sufficiently” large n and “sufficiently” small
constant p, and hence in total a constant fraction of the wires is corrupted.
While similar to Ajtai, we use expander graphs to refresh additive encodings,
our construction for the transformed multiplication follows a different path. In
particular, it is not clear if Ajtai’s involved construction for the multiplication
operation can be proven secure in the much stronger t-region probing model. Be-
sides the fact that we prove security in the strictly stronger adversarial model,
where the adversary can control which wires he wants to corrupt, our construc-
tion also improves the efficiency of Ajtai’s construction by a factor O(n log(n))
and our security proof is significantly simpler. Hence, one contribution of our
work is to simplify and generalize the important work of Ajtai [1].

The use of Shamir’s secret sharing in context of leakage-resilient compliers.
Shamir’s secret sharing was used in this context before [22, 9], however what
is achieved there is the leakage rate of O(1/n). Let us stress that the combina-
tion of Shamir secret sharing and the expander-based circuit compiler for affine



computation was not known before and can be interesting on its own (before it
was not known how to get the O(n) overhead and constant fraction rate even
for affine computation).

Circuit compilers in other leakage models. Various other works [27, 18, 21, 13]
build circuit compilers in leakage models that are different from the threshold
probing model. We notice that all these works achieve security with leakage rate
O(1/n) or worse. The work of [13] also gives a nice overview of compilers for the
bounded independent leakage model (which is more general than the probing
model).

2 Definitions

For two field elements a, b ∈ F, addition and multiplication in F are denoted by
a+ b and ab. For two vectors A,B ∈ Fn, A+B is the vector-wise addition in F.
For a constant c ∈ F, we denote by cA = (cA1, . . . , cAn), i.e., component-wise
multiplication with the constant c. Let [n] = {1, . . . , n} and [a, b] = {a, . . . , b}.
If S ⊆ [n] and X ∈ Fn then XS = {Xi}i∈S . We write M ∈ Fr×c for a matrix

{mi,j}j∈[c]i∈[r] with r rows and c columns. For distinct elements z1, . . . , zr ∈ F we

use Vanr×c(z1, . . . , zr) to denote the Vandermonde matrix {zji }
j∈[c]
i∈[r] .

2.1 Leakage resilient encoding schemes

An important building block to construct a circuit with resilience to leakage is
a leakage resilient encoding scheme [15]. An encoding scheme Π = (Enc,Dec)
consists of two algorithms. The probabilistic Enc algorithm takes as input some
secret x ∈ F for a field F and produces a codewordX = (X1, . . . , Xn) ∈ Fn, where
Xi are called the shares of the encoding. The deterministic decoding function Dec
takes as input a codeword and outputs the encoded message. A coding scheme
satisfies the correctness property if for any x ∈ F we have Pr[Dec(Enc(x))) =
x] = 1. Moreover, we want that the encoding scheme is secure against t-probing
attacks. An encoding scheme is t-probing secure if for any x, x′ ∈ F the adversary
cannot distinguish t shares of Enc(x), from t shares of Enc(x′). In this paper we
will be interested in two different probing resilient encoding schemes.

Additive encoding schemes. The most simple encoding scheme is to encode
a secret element x ∈ F by a vector X sampled uniformly at random from Fn
such that

∑
iXi = x. Formally, we define the additive encoding scheme ΠAE

n,F =
(EncAE,DecAE) as:

– EncAE : F→ Fn: On input x ∈ F choose X1, . . . , Xn−1 uniformly at random
and compute Xn = x−X1 − . . .−Xn−1. Output X = (X1, . . . , Xn).

– DecAE : Fn → F works as follows: On input a vector X ∈ Fn output x =∑
iXi.

It is easy to see that any adversary that learns up to n − 1 shares of X has no
knowledge about the secret x.



Encoding based on multiplicative secret sharing. Additionally to ΠAE
n,F

which will mainly be used in Section 4 to protect affine computation against
t-region probing attacks, we need an additional code for protecting arbitrary
circuits. In particular, we need a linear secret sharing scheme that additionally
satisfies the multiplicative property [11]. Informally speaking, a linear secret
sharing scheme is multiplicative if from two encodings X,Y , we can compute the
product xy just by computing a linear combination of all the values Zi = XiYi.
We formally define the encoding scheme ΠMSS

n,t,F,M = (EncMSS,DecMSS) with
n = 2t + 1 and M being the generator matrix of the linear code (representing
the secret sharing scheme) as follows:

– EncMSS : F→ Fn: On input x ∈ F choose uniformly at random (a1, . . . , at)←
Ft and compute X = (x1, . . . , xn) = M · (x, a1, . . . , at). We will often denote
encodings of x ∈ F using ΠMSS with [x]t.

– DecMSS : Fn → F: On input X ∈ Fn compute X ·M−1 ∈ Ft+1, where the
first element represents the recovered secret.

We require that ΠMSS
n,t,F,M is multiplicative meaning that there exists a n-elements

vector R ∈ Fn such that
∑
iRiXiYi, where all operations are in F.9 If two

encodings [x]t and [y]t are multiplied then we obtain [xy]2t, where the decoding
now requires a slightly adjusted generator matrix M̃ .

To simplify exposition, for most of this paper the reader may think of the
code as the standard code representing Shamir’s secret sharing and as M of
the Vandermonde matrix Vann×(t+1)(z1, . . . , zn) for distinct elements zi. Using
alternative codes, e.g., packed secret sharing schemes or codes based on algebraic
geometry, we can improve the efficiency and the tolerated leakage rate of our
construction in the case of random probing from Boolean circuits (we discuss
this briefly in Section 7). It is easy to see that the encoding scheme ΠMSS

n,t,F,M based
on Shamir’s scheme is secure against any t-probing adversary, when n = 2t+ 1.
To simplify notation we omit the parameters F and M and simply denote this
scheme ΠMSS

n,t .

2.2 Circuit transformations

We recall the formalization of circuit transformation of [20, 26]. A circuit trans-
formation TR takes as input a security parameter n, a circuit Γ , and an initial
state m0 and produces a new circuit Γ̂ and a new initial state M̂0.

The original circuit Γ . We assume that the original circuit Γ carries values from
an (arbitrary) finite field F on its wires and is composed of the following gates
(in addition to the memory gates which will be discussed later):

– +,−, and ∗, which compute, respectively, the sum, difference, and product in
F, of their two inputs; moreover, for every α ∈ F, the constant gate Constα,
which has no inputs and simply outputs α.

9 The above can be generalized but we stick to this simple requirement for simplicity.



– the “coin flip” gate Rand, which has no inputs and produces a uniformly
random independently chosen element of F,

Fan-out in Γ is handled by a special Copy gate that takes as input a single value
and outputs two copies. Circuits that only contain the above types of gates are
called stateless.

Stateful circuits. In addition to the gates described above, stateful circuits also
contain memory gates, each of which has a single incoming and a single outgoing
edge. Memory gates maintain state between the consecutive executions of the
circuit. At any execution of the circuit (called a round or a cycle), a memory
gate sends its current state down its outgoing edge and updates it according to
the value of its incoming edge. Let mi be the state of all memory gates of the
circuit after the i-th round and m0 be the initial state of the circuit. During the
i-th round the circuit is run in the state mi−1 on the input xi and the execution
results in the output yi and the new state mi. The above execution will be
denoted as (yi,mi)← Γ [mi−1](xi) for the circuit Γ . For instance, the state m0

of an AES circuit may be its secret key.

The transformed circuit Γ̂ . Our circuit transformation TR is encoding-based,
i.e., it uses as a main building block an encoding scheme that is resilient to t-
probing adversaries. TR takes as input (C,m0) and outputs a protected state M̂0

and the description of the protected circuit Γ̂ . As in earlier work the transfor-
mation of the initial state m0 is easy: instead of storing m0 we store an encoding
of m0 using a leakage resilient encoding described in the previous section. We
denote the transformed state by M̂0. The transformation of the gates in Γ works
gate-by-gate: each gate in the original circuit Γ is represented by a sub-circuit –
a so-called gadget – that carries out the same computation as the corresponding
gate in Γ in encoded form. Notice that the transformed circuit also uses special
sub-circuits to encode the input xi and decode the output of the circuit. As
in previous works [20] we deal with this situation with so-called Decoder and
Encoder gates. These gadgets are simple and just execute the underlying decod-
ing, respectively, encoding function of the underlying leakage resilient encoding
scheme.

2.3 Probing attacks against circuits

As discussed in the introduction, we are interested in security against so-called
t-region probing adversaries, i.e., adversaries that learn up to t wires in a region
of a transformed circuit Γ̂ . Typically, a region is a sub-circuit of size O(n) (this
is the same in the case of the work of [26]) of the transformed circuit, where in
most cases in our transformation a region corresponds naturally to a transformed
gadget. We will call a set of probes P t-region admissible if P contains at most
t probes for each region of the transformed circuit.

Security against a t-region probing adversary is formalized by a simulation-
based argument and given in Def. 1. To this end, we first define a real and ideal



security game shown in Figure 1. In the following, we use WΓ̂ (X|Y ) to denote

the wire assignment of Γ̂ when run on inputs X = (xi, M̂i−1) conditioned that

the output is Y = (yi, M̂i). The set Pi denotes the set of wires that the adversary
wants to probe in the i-th clock cycle and Pi(WΓ̂ (X|Y )) the leakage during the
i-th clock cycle.

Game RealTR(A, n, Γ,m0)

(Γ̂ , M̂0)← TR(Γ,m0)

(x1,P1)← A(Γ̂ , 1n). Set i = 1.
Repeat until the adversary A holds:

(yi, M̂i)← Γ̂ [M̂i−1](xi);

Set X = (xi, M̂i−1) and Y = (yi, M̂i);
(xi+1,Pi+1)← A(yi,Pi(WΓ̂ (X|Y )))
i = i+ 1

Output {Pi(WΓ̂ ((xi, M̂i−1)|(yi, M̂i)))}i and {(xi, yi)}i.

Game IdealTR(Sim,A, n, Γ,m0)

(Γ̂ , M̂0)← TR(Γ,m0)

(x1,P1)← A(Γ̂ , 1n). Set i = 1.
Repeat until the adversary A holds:

(yi,mi)← Γ [mi−1](xi)
Leaki ← Sim(xi, yi,Pi)
(xi+1,Pi+1)← A(yi, Leaki)
i = i+ 1

Output {Leaki}i and the set {(xi, yi)}i.

Fig. 1. The real world with the adversary A observing the computation of the trans-
formed circuit Γ̂ [M̂i] is shown on the left side. On the right side we describe the
simulation.

Definition 1 (Security of Circuit Transformation). Recall that n is the
security parameter. A circuit transformation TR is (perfectly) t-region probing
secure if for any t-region probing adversary A there exists a PPT simulator
Sim such that for any (stateful) circuit Γ with initial state m0 the distributions
RealTR(A, n, Γ,m0) and IdealTR(Sim,A, n, Γ,m0) are identical, where the proba-
bilities are taken over all the coin tosses.

Leakage from stateless circuits. In spirit of earlier works on leakage resilient
circuit compilers [26, 20] the main difficulty for proving that a compiler satisfies
Definition 1 is to show that leakage from stateless transformed circuits can be
simulated with probing access to just its encoded inputs and outputs. In the
following we will focus on proving such a simulation property for stateless circuits
and only provide a high-level discussion how this property can be extended to
prove that the circuit transformation is secure according to Def. 1.

We adapt the notion of reconstructability from Faust et al. [20] to the probing
setting with perfect security. To this end we define a leakage oracleΩ(X(1), X(2), . . .)
for some sequence of encodings (X(1), X(2), . . .). The oracle can be queried on

(i, j), and returns the value X
(i)
j , i.e., the j-th position of the i-th encoding. We

will use the notation SimΩ(X(1),X(2),...) to denote the run of the simulator Sim
with the access to the oracle Ω(X(1), X(2), . . .). We call the simulator q-bounded
if for each of the input encodings given to the oracle he queries at most for q
different elements of the encoding.

Definition 2 ((t, q)-region reconstructible). Let Γ̂ be a (transformed) state-
less circuit with ς input encodings and producing τ output encodings. We say that



a pair of strings (X,Y ) is plausible for Γ̂ if Γ̂ might output Y = (Y (1), . . . , Y (τ))

on input X = (X(1), . . . , X(ς)), i.e., if Pr[Γ̂ (X) = Y ] > 0. We say that Γ̂ is
(t, q)-region reconstructible, if for any t-region admissible set of probes P, there
exists q-bounded simulator SimΓ̂ such that for any plausible (X,Y ), the following

two distributions are identical: P(WΓ̂ (X|Y )) and Sim
Ω(X,Y )

Γ̂
(P).

To better understand the above definition, consider the transformed multipli-
cation gadget. The multiplication gadget takes as input two encoded inputs
A,B and produces an encoding C such that Dec(C) = Dec(A) · Dec(B). If the
multiplication gadget is (t, q)-region reconstructible, then we need to show that
for any t-region admissible set of probes P and any plausible inputs/outputs
((A,B), C) there exists a q-bounded simulator Sim such that the following holds:

P(WΓ̂ ((A,B)|C)) ≡ Sim
Ω(A,B,C)

Γ̂
(P).

In addition to the region-reconstructible property we need that gadgets are
re-randomizing [20]. Informally, this means that the output encoding of a gadget
is independent from the input encodings, except that it encodes the correct
result. Before we describe our new circuit compiler we present in the next section
our new refreshing scheme that achieves optimal parameters both in terms of
complexity and leakage rate.

3 Leakage resilient refreshing from expander graphs

A fundamental building block of any leakage resilient circuit compiler is a leakage
resilient refreshing scheme. Informally, a refreshing scheme updates the encoding
of a secret value such that continuous/repeated leakage from the execution of
the refresh procedure does not reveal the encoded secret. More precisely, for a
secret x ∈ F let X ← Enc(x) be an encoding of x. A refreshing scheme refresh
is a randomized algorithm that takes as input X and outputs Y ← refresh(X)
such that Y is a fresh encoding of x. Informally, a refreshing scheme refresh is
said to be secure if even given continuous probing leakage from the refreshing
procedure the adversary cannot distinguish the leakage from an encoding of any
two secrets x, x′ ∈ F.

The refreshing procedure of [26] is described by a circuit of size Θ(n2) which
uses Θ(n2) fresh random values per refresh execution and achieves security
against a t-probing adversary when n = 2t + 1. While it is easy to construct
refreshing schemes that achieve security against a O(1/n) fraction of probes per
execution, it appears to be much harder to construct a refreshing scheme that
achieves the optimal size of Θ(n) and requires only Θ(n) random field elements
while tolerating t = Ω(n) probes. This is quite surprising as various candidate
schemes look secure at first sight.

As outlined in the introduction the main ingredient of our refreshing scheme
(and essentially of most leakage resilient refreshing schemes) is a method to sam-
ple form EncAE(0). Given a “leakage resilient way” to sample R← EncAE(0) we
can implement a refreshing algorithm in a simple way: to refresh X(i−1) we com-
pute X(i) = X(i−1) + R, where R is sampled from EncAE(0). Our construction



to sample from EncAE(0) uses a undirected expander graph G = (V,E), with
V = {1, . . . , n} (see, e.g., [24] for an excellent exposition). Informally speak-
ing expander graphs are sparse graphs with strong connectivity properties. Let
G = (V,E) be an undirected graph with V being the set of vertices and E being
a set of edges (hence E is a multiset). Assume G can have self-loops and paral-

lel edges. We define the edge expansion of the graph as: minS⊂V :|S|≤|V |/2
|∂(S)|
|S| ,

where ∂(S) denotes the edge boundary of S in G, i.e, the set of edges with ex-
actly one endpoint in S. We say that an undirected d-regular graph G is an
(d, h)-expander if d > 0 and its edge expansion is at least h.

To describe our construction we will write the edges of G as ordered pairs
(i, j) where always i ≤ j. Given such a G one can construct an arithmetic circuit
RefSampG(1n) (over some additive field F) that produces random additive en-
codings (X1, . . . , Xn) of zero. This is done as follows. The circuit RefSampG(1n)
consists of |E| coin flip gates Rand — to each e ∈ E we associate one of them.
Let re denote the output of each Rande. To compute the encoding (X1, . . . , Xn)
we start with each Xi := 0 and for every edge (i, j) ∈ E we add re to it, and for
every edge (j, i) ∈ E we subtract re from it. In other words each Xi is defined
as follows:

Xi :=
∑

(i,j)∈E

r(i,j) −
∑

(j,i)∈E

r(j,i). (1)

The gate-level implementation of the sum computations in (1) is pretty straight-
forward: we attach a Copy gate to each Rande gate. Let ve and we be the output
wires of this gate. Then we sum and subtract the appropriate ve’s and we’s in
order to compute the sums in (1). It is easy to see that every r(i,j) is counted
twice in the sum X1 + . . . + Xn: once with a “plus” sign (for the vertex i),
and once with a “minus” sign (for the vertex j). Therefore (X1, . . . , Xn) is an
additive encoding of zero.

3.1 Reconstructibility of RefSampG

In this section we show that the circuit RefSampG is (t, q)-region reconstructible
for an appropriate choice of t and q. To this end, we start by giving some useful
properties about the connectivity of expander graphs and the circuit RefSampG .
Recall that a connected component of a graph is a subgraph in which any two
vertices are connected to each other by a path, and which is connected to no
additional vertices. It will be useful to analyze the properties of expanders and
their connected components when some number T of their edges is removed (for
some parameter T ). Call a set of vertices S ⊂ V small if |S| ≤ T/h, call it
medium if T/h < |S| < n− T/h, and call it large otherwise. We can then show
the following simple lemma about the sizes of connected components when T
vertices are removed from the expander graph. We can then show the following
simple lemma about the sizes of connected components when T vertices are
removed from the expander graph.



Lemma 1. Suppose T < nh/3 and G is an (d, h)-expander. Let G′ be an arbi-
trary graph that resulted from removing up to T edges from G. Then G′ contains
exactly one large connected component.

Proof. We first prove that G′ contains no medium components. We actually show
something slightly stronger, namely, that for every medium subset of vertices S
there exists an edge in G′ between S and V \ S. Take such a medium S and
consider two cases. First, assume that S ≤ n/2. From the definition of edge
expansion we get that the number x of edges between S and V \S in the original
graph G is equal at least h · |S|. Since we assumed that S is medium, thus
|S| > T/h, and hence x > T . It is also easy to see that if |S| > n/2, then we can
use a symmetric reasoning, as |S| < n− T/h implies that |V \S| > T/h. Hence,
also in this case we get that x ≥ h · |V \ S| > T . In other words: that there are
more than T edges between S and V \ S in G. Thus, even if we remove at most
T edges from G there is still one edge remaining. Hence there must be an edge
between S and V \ S in G′.

Therefore G′ cannot have medium connected components, and hence each
connected component has to be either small or large. Recall that we defined
a large subgraph to have more than n − T/h vertices. Since we assumed that
T < nh/3, which implies that T/h < n/3, thus a large connected component
must have more than 2n/3 vertices, which means that there can be at most one
such a component (as obviously two connected components cannot overlap). To
finish the proof we need to show that there is at least one large component. For
the sake of contradiction suppose there is no large connected component. Hence,
all the connected components need to be small. Let V1, . . . , Vm ⊂ V be these
small components. Obviously |V1 ∪ · · · ∪ Vm| = n. Since each Vi is such that
|Vi| ≤ T/h < n/3, thus there has to exists j such that n/3 < |V1 ∪ · · · ∪ Vj | <
2n/3. Hence V1 ∪ · · · ∪ Vj is a medium set. Therefore, from what we have shown
at the beginning of this proof, there has to exist an edge in G′ connecting this
union with a vertex outside of it. Hence at least one of the sets V1, . . . , Vj cannot
be a connected component. This yields a contradiction. ut

We next give a lemma that states that after removing edges from the ex-
pander graph, the circuit induced by the remaining connected component results
into a random additive encoding of a fixed constant value. More technically, we
have:

Lemma 2. Suppose G∗ = (V ∗, E∗) is a connected subgraph of G, where G is as
in Lemma 1. Let (X1, . . . , Xn) ← RefSampG(1n) and let v1 ≤ · · · ≤ vm be the
elements of V ∗. Consider an adversary A that learns all re’s corresponding to
G’s edges that are not in G∗. Note that in paricular he knows Xv for every v 6∈ V ∗
and can compute C =

∑
v 6∈V ∗ Xv. Then, from A’s point of view (Xv1 , . . . , Xvm)

is distributed uniformly over the set U−Cm := {(xv1 , . . . , xvm) : xv1 + · · ·+ xvm =
−C}.
Before we give a proof of Lemma 2 let us first show that the expander based-
construction indeed outputs random encodings of 0. To this end, we need the
following auxiliary lemma.



Lemma 3. Let G∗ = (V ∗, E∗) be a graph as above except that the set of vertices
is a subset of {1, . . . , n}. Let v1 ≤ · · · ≤ vm be the elements of V ∗. Suppose G∗
is connected. Then the variable (Yv1 , . . . , Yvm) ← RefSampG∗(1

n) is distributed
uniformly over the set U0

m := {(yv1 , . . . , yvm) ∈ Fm : yv1 + . . .+ yvm = 0}.

This fact will be useful, since if G′ results from removing some edges from an
expander, then (by Lemma 1) it is guaranteed to contain a large connected
component G∗, and hence the variables Yv1 , . . . , Yvm obtained by “summing”
the re’s from G∗ will have a uniform distribution over U0

m.

Proof (of Lemma 3). Induction over m. Consider the base case m = 1 first. In
this case G∗ contains one node v and no edges. Then clearly Yv = 0 what is
distributed uniformly over the set U0

m = {0}.
Now suppose we know that the lemma holds for some m, and let us prove it

for m+ 1. Let v be an arbitrary leaf in an arbitrary spanning tree of G∗. Notice
that the graph G∗ with the vertex v (and all edges adjacent to it) removed is con-
nected. To simplify the notation we will assume that v = vm+1. Let R1, . . . , Rb
be all the values produced by the Rand gates corresponding to the edges in
G∗ with one endpoint being vm+1. Clearly Yvm+1 = −

∑
i=1Ri, and hence it is

uniform. On the other hand, by the induction hypothesis (Yv1 , . . . , Yvm) is uni-
formly distributed over U0

m if one does not consider the edges going to vm+1, i.e.,
if one does not count the values R1, . . . , Rb in the sums. Therefore, if we cosider
also these values then (Yv1 , . . . , Yvm) will be uniformly distributed over the set
{(yv1 , . . . , yvm) : yv1 + · · ·+ yvm =

∑
i=1Ri}. Hence, altogether (Yv1 , . . . , Yvm+1

)
is uniformly disributed over U0

m+1. This concludes the proof. ut

The Lemma 2 is a consequence on Lemma 3. The proof is given below.

Proof (of Lemma 2). Look at the graph G∗∗ := (V,E \ E∗). Each Xvi can
be expressed as X∗vi + X∗∗vi , where X∗vi and X∗∗vi denote the sum of re’s from
respectively G∗ and G∗∗. Since all re’s that correspond to the edges of G∗∗ are
known to A, thus for each vi he can compute X∗∗vi . Clearly X∗∗v1 +· · ·+X∗∗vm = −C.
Moreover, by Lemma 3 the distribution of (X∗v1 , . . . , X

∗
vm) is uniform over U0

m.
Hence the distribution of (Xv1 , . . . , Xvm) is uniform over U−Cm . ut

Finally, we need the following simple fact, where we denote by PrX|Y the
conditional distribution of X conditioned on Y .

Lemma 4. Consider an execution of (X1, . . . , Xn)← RefSampG(1n). Let {Re}e∈E
denote the random variables corresponding to the re values in the circuit com-
puting RefSampG(1n). Take some W ⊆ {1, . . . , n}. Then there exists an efficient
procedure that for every input {xi}i∈W produces as output {r′e}e∈E distributed
according to the conditional distribution Pr{Re}e∈E |∀i∈WXi=xi

.

Proof. Clearly every Xi is a linear combination o the re’s. Hence the condition
∀i∈WXi = xi can be understood as a system of linear equations (with re’s being
the unknowns), and the set of its solutions is a linear subspace L whose base
can be efficiently computed. To sample a random value of Pr{Re}e∈E |∀i∈WXi=xi

one can simply output a uniform vector from L. ut



We are now ready to prove our first technical theorem.

Theorem 1. Let n ∈ N be the security parameter, G = (V,E) be a d-regular
graph with edge expansion h > 0. Then for any t < nh

3d the gadget RefSampG
treated as one region is (t, q)-region reconstructible for q = btd/hc.

The simulator SimRefSamp
Ω(X)
G (P)

1. Compute the set of compromised edges L ⊂ E. This set consists of all edges e ∈ E
for which:
(a) at least one of the input or output wires of the corresponding Copy gate leaks

(i.e. is included in the set P), or
(b) at least one output wires of a + or − gate corresponding to a node incident

to e leaks.
2. Compute the graph consisting of uncompromised edges G′ = (V,E \ L).
3. Compute the largest (in terms of a number of nodes) connected component in G′

and denote it G∗ = (V ∗, E∗).
4. Obtain the values Xi for each i ∈ V \V ∗ by querying the oracle Ω(X). Denote the

leaked value of Xi as xi.
5. Using the procedure from Lemma 4 draw a sequece {re}e∈E from a conditional

distribution Pr{Re}e∈E |∀i∈V \V ∗Xi=xi .

6. Simulate the execution of RefSampG(1n) assuming that Rand gates has outputted
the sequence {re}e∈E . Let W be the obtained wire assignment.

7. Output P(W).

Fig. 2. The SimRefSampG simulator for RefSampG(1n).

Proof. Let X be a plausible output of RefSampG(1n), i.e.,
∑
iXi = 0. The sim-

ulator SimRefSamp
Ω(X)
G has to simulate the leakage from a t-admissible set of

probes P from the execution of X ← RefSampG(1n) with only q-bounded access
to its oracle Ω(X) where q = btd/hc. We will sketch it now informally, the full
description is presented on Fig. 2. The simulator SimRefSampG computes the set
of edges L ⊂ E s.t. the values of the random gates associated with the edges from
L are sufficient to compute the values on all leaking wires. Then, it computes
the large connected subgraph G∗ = (V ∗, E∗) such that the output variables with
indices in V ∗ are independent of the leakage, he then probes the output variables
with Xi for i ∈ V \ V ∗ from its oracle Ω(X), and simulates a random execution
consistent with the probed values Xi.

We start by proving that SimRefSampG is indeed btd/hc-bounded. To this
end we analyse the possible sizes of connected components in the graph G′. It
is easy to see that each wire that is revealed according to the set of probes P
increases the set L by at most d elements, and therefore |L| ≤ td. Since we
assumed that t < nh/(3d), thus |L| < nh/3. We can therefore apply Lemma
1 to G′ with T = |L|. In this way we obtain that the number of vertices in



the largest component G∗ in G′ is at least n − |L|/h, which is clearly at least
n− td/h. Therefore the number of vertices in V \V ∗ is smaller than td/h. Since
these are exactly the indexes probed by the simulator SimRefSampG , thus it is
btd/hc-bounded.

The definition of reconstructability states that for each fixed X1, . . . , Xn

s.t. X1 + . . . + Xn = 0 the distribution of the leakage in the execution of the
real circuit RefSampG(1n) assuming that it outputted the sequence X1, . . . , Xn

is identical to the distribution produced by the simulator SimRefSampG(P) that
uses q-probing leakage from X1, . . . , Xn. This is equivalent to saying that the
joint distribution of the output (X1, . . . , Xn) and the leakage is the same in the
real and simulated case (this follows from the definition of conditional proba-
bility). Let us define the two joint distributions more formally by considering
two experiments. In the first one the values (XREAL

1 , . . . , XREAL
n ) are sampled

using XREAL ← RefSampG(1n) and the leakage obtained from this execution is
denoted by P(WRefSampG (XREAL)), where P are a set of probes that is t-region

admissible. In the simulated case the values (XSIM
1 , . . . , XSIM

n ) are drawn using
XSIM ← EncAE(0) and the leakage is computed by the simulator leaking from

XSIM and denoted SimRefSamp
Ω(XSIM)
G (P). Hence, we need to show that(

XSIM,SimRefSamp
Ω(XSIM)
G (P)

)
≡
(
XREAL,P(WRefSampG (XREAL))

)
.

First observe that (
XSIM
V \V ∗ ,SimRefSamp

Ω(XSIM)
G (P)

)
(2)

and (
XREAL
V \V ∗ ,P(WRefSampG (XREAL))

)
(3)

are identically distributed. This is because SimRefSamp
Ω(XSIM)
G (P) is computed

based on the perfect simulation given in Lemma 4 using the values XSIM
V ∗\V ,

which are leaked and hence distributed appropriately. Let U−Cm be as in Lemma
2. Clearly, given (2) the remaining values XSIM

V ∗ have a uniform distribution over
the set U−C|V ∗|, where C =

∑
i∈V \V ∗ X

SIM
i , because they have not been leaked.

By Lemma 2 also XREAL
V ∗ have a uniform distribution over the set U−C|V ∗|, where

C =
∑
i∈V \V ∗ X

REAL
i given XREAL

V \V ∗ and all the re values corresponding to the

edges in the set E \E∗. Since these values fully determine P(WRefSampG (XREAL))

thus XREAL
V ∗ have a uniform distribution over the set U−C|V ∗| given (3). This finishes

the proof. ut

4 Circuits for affine computation

In this section we build a circuit transformation TRAff that allows to transform
arbitrary circuits implementing affine computation into protected circuits that
are resilient to t-region probing adversaries. In the transformed circuit Γ̂ that are



produced by TRAff each region is represented by a gadget. Hence, if the original
circuit Γ has size s then Γ̂ ← TRAff(1n, Γ ) has s regions. Notice that we assume
that the input and output encoding of each gadget are part of two consecutive
regions, and consequently the adversary may leak twice from them.

4.1 The transformation TRAff

Our transformation TRAff is an encoding-based transformation as described in
Section 2.2. The transformation uses as building blocks the additive encoding
scheme ΠAE. The initial state m0 of the original circuit Γ will be stored in
encoded form using the code ΠAE, i.e., M̂0 ← EncAE(1n,m0). One can view the
encoded state as an initial encoded input that is given as input to the transformed
circuit, and hence security of stateful circuits is just a special case of security of
stateless circuits.

We need to define transformations for the basic operations of affine compu-
tation. Let Γ be a circuit that takes ς inputs x1, . . . , xς and produces τ outputs
y1, . . . , yτ . The outputs are computed from the inputs using solely the following
types of operations:

1. Addition in F and multiplication by a (known) constant x ∈ F.
2. The randomness gate Rand that outputs a random element r ∈ F.
3. The constant gate Constx that for a constant x ∈ F outputs x.
4. The copy gate Copy that for input x outputs two wires carrying the value x.

Notice that the Copy gate in Γ is needed for fan-out.

Our transformation TRAff is very simple. Each gate of the above form is replaced
by a gadget from Figure 3. The wires connecting the gadgets are called wire
bundles and carry the corresponding encoding of the values using the code ΠAE.
The gadgets presented in Figure 3 use as a sub-circuit X ← RefSampG(1n) for
some expander graph G. In the following, we will omit to mention explicitly the
graph G and assume that G is d-regular with edge expansion h. We will assume
that it is fixed once and for all.

4.2 (t, q)-reconstructability of gadgets in TRAff

In this section, we show that the operations of TRAff from Figure 3 are (t, q)-
region reconstructible and re-randomizing. The proofs are given in the full ver-
sion.

Lemma 5. Recall that n ∈ N is the security parameter and let d and h be
constants defining the underlying expander graph on n vertices. For any t < nh

3d
we set q = btd/hc. The gadget PlusAE is (t, q)-region reconstructible and re-
randomizing, where the region is defined by the gadget itself.

We can also show that the remaining gates are region reconstructible.

Lemma 6. The gadgets MultAEx, ConstAEx, CoinAE and CopyAE are (t, q)-
region reconstructible and re-randomizing, where the region is defined by each
gadget itself.



The gadgets of the transformation TRAff

1. Transformation for addition in F, i.e., a + b = c: An addition operation in the
circuit Γ̂ is handled by the gadget C ← PlusAE(A,B). On input encodings A,B it
computes Z = A+B and samples Y ← RefSamp(1n). Then, it outputs C = Z+Y .

2. Transformation for multiplication with a constant x ∈ F, i.e., xa = c: Multiplica-
tion with a constant x ∈ F is handled by the gadget C ← MultAEx(A). For the
fixed constant x and on input encoding A, it computes Z = xA (by component-wise
multiplication) and samples Y ← RefSamp(1n). Then, it outputs C = Z + Y .

3. Transformation of Rand gate x ← F: The transformation for sampling a random
element in F is denoted by C ← CoinAE(1n) in Γ̂ . The circuit uses n coin gates
Ci ← Rand and outputs C = (C1, . . . , Cn).

4. Transformation of Constx gate for some x ∈ F: For some x the gadget C ←
ConstAEx computes X = (Constx,Const0, . . . ,Const0). Then, it samples Y ←
RefSamp(1n) and outputs C = X + Y .

5. Transformation of Copy gate: The fan-out in Γ̂ is handled using the gadget
(B,C) ← CopyAE(A). On input encoding A, it samples Y ← RefSamp(1n) and
Z ← RefSamp(1n). Then, it outputs B = A+ Y and C = A+ Z.

Fig. 3. The transformation TRAff has gadget transformations for each of the elementary
operations. RefSamp(1n) samples EncAE(0) using an expander graph.

4.3 Security of composed circuits

In this section we discuss briefly that arbitrary composed circuits build from the
transformed gadgets defined in Section 4.2 are (t, q)-region reconstructible, where

in the composed transformed circuit Γ̂ each gadget corresponds to a region. We
state the lemma in a slightly more general form (similar to Lemma 13 from [20]).
This will allow us to later apply it when we consider circuits that are made out
of arbitrary transformed gadgets.

Lemma 7. Recall that n is the security parameter and q and t are functions in
n. Let Γ be a stateless circuit over some finite field F with ς inputs, τ outputs and
s gates. Assume that the gates in Γ all have fan-in and fan-out at most 2 elements
in F. Let Π = (Enc,Dec) be a 2q-probing resilient code. Let Γ̂ ← TR(1n, Γ ) be

the transformation of Γ based on Π = (Enc,Dec) and let Γ̂ be composed from

(t, q)-probing reconstructible and re-randomizing gadgets, then Γ̂ is (t, q)-probing
reconstructible and re-randomizing.

The proof uses a hybrid argument and is provided in the full version. The above
lemma together with Lemma 5 - Lemma 6 immediately implies that any stateless
circuit Γ̂ ← TRAff(1n, Γ ) is (t, q)-reconstructible for choices of t and q that are
given in the lemma below.

Lemma 8. Recall that n is the security parameter and let d and h be constants
defining the underlying expander graph on n vertices. Let Γ be a stateless circuit
over field F using only affine operations. Then, the transformed circuit Γ̂ ←



TRAff(1n, Γ ) is re-randomizable and (t, q)-reconstructible for t < nh
3d and q =

btd/hc and regions that correspond to gadgets in Γ̂ .

It is easy to see that all transformed gadgets have size O(n) which together
with t < nh

3d for constants h and d asymptotically shows that a constant fraction

of all wires in Γ̂ can be learnt by the adversary.

5 Circuits for arbitrary computation

To protect non-affine computation, we also need a transformation for multipli-
cation in the underlying field. Before we present our transformation TR, we first
discuss a special protected circuit called RandSamp(1n) that is mostly produced
by TRAff and will be used in the transformed multiplication operation as an
important building block. In the following, for some τ ∈ N we let n = 2τ + 1
be the security parameter and require that |F| > n such that we can use the
coding scheme ΠMSS

n,τ = (EncMSSn,τ ,DecMSSn,τ ) based on Shamir secret sharing
as described in Section 2.1 (as we mentioned we can use other encoding schemes
to improve the asymptotic complexity of our construction).

5.1 The circuit RandSamp

The goal of the circuit RandSamp(1n) is to sample correlated randomness that
can be used in the transformed multiplication operation even in the presence of a
t-region probing adversary. More precisely, the randomized circuit RandSamp(1n)
takes no inputs and outputs two random encodings [r]τ ← EncMSSn,τ (r) and
[r]2τ ← EncMSSn,2τ (r) 10, where r ← F is a uniformly and independently chosen
field element. The main difficulty is to ensure that the computation of [r]τ and
[r]2τ do not reveal anything about r even in the presence of a t-region probing
adversary. Hence, the goal is to design a circuit that samples these two encodings
in an oblivious way. Our main observation that enables us to achieve this goal
is the fact that [r]τ and [r]2τ can be computed (in a natural way) by an affine
circuit Γ ′ that can be protected using TRAff .

A technical difficulty is that the sub-circuit RandSamp′(1n)← TRAff(1n, Γ ′)
outputs additive encodings of ([r]τ , [r]2τ ), i.e., (EncAE([r]τ ),EncAE([r]2τ )). The
protected multiplication operation, however, requires access to ([r]τ , [r]2τ ). To
decode one level of the “double-encoding” and obtain the final circuit RandSamp,
we append two MultiDecoder sub-circuits to the output of RandSamp′ to decode
EncAE([r]τ ) and EncAE([r]2τ ), respectively. A MultiDecoder sub-circuit takes as
input a double encoding EncAE([r]τ ) and outputs [r]τ by “peeling off” one layer
of the code. More precisely, we let (U1, . . . , Un) := [r]τ and (X(1), . . . , X(n)) :=
(EncAE(U1), . . . ,EncAE(Un)). The deterministic MultiDecoder circuit takes as
input (X(1), . . . , X(n)) and outputs (U1, . . . , Un). To this end, it runs n Decoder
sub-circuits (corresponding to the decoding function of the code ΠAE

n,F), where

10 We present here the parameters n, t to indicate that the value [r]2τ comes from the
encoding ΠMSS

n,2τ (and not ΠMSS
n,τ ).



each such sub-circuit takes as input an encoding X(i) and outputs Ui. For the
security of our construction it will be important that each such Decoder circuit
computes the sum of the shares in a natural way by representing the summation
as a binary tree. More precisely, the shares of X(i) represent the leaves of the
tree, the internal nodes of the tree correspond to the sum of the values assigned
to its children and the root is the corresponding result of the decoding procedure.
The high-level structure of the RandSamp circuit is given in Figure 4.

Fig. 4. The architecture of the RandSamp and MultiDecoder circuit. The RandSamp
circuit consists of the RandSamp′ sub-circuit and two MultiDecoder sub-circuits. Each
MultiDecoder circuit consists of n Decoder sub-circuits. Notice that regions in the
MultiDecoder circuit does not correspond to the Decoder sub-circuits. More precisely,
each region in the MultiDecoder circuit consists of n wires — one in each of the Decoder
sub-circuits, such that each of them correspond to the same edge in the summing tree.
For example, both dotted wires on the figure belong to the same region.

It remains to discuss how RandSamp is structured into regions. First notice
that for RandSamp′ the structure of the regions is inherited from the compiler
TRAff . Hence, the regions in RandSamp′ correspond to a transformed gadget in
RandSamp′. Next, notice that each of the decoder sub-circuits MultiDecoder has
size Θ(n2), and we need an appropriate way to structure its computation into
regions of size Ω(n). To illustrate, why for the MultiDecoder we cannot use a
natural representation where each region corresponds to a computation of one
output value Ui, consider the following example. Let the decoding process of the
n encodings be structured into n regions, where each region corresponds to a
Decoder gadgets that decodes X(i) into Ui. Unfortunately, however, it is easy to
see that already a single probe in each such region allows the adversary to learn
the entire output of the MultiDecoder circuit, i.e., the adversary may learn Ui
in the i-th region, which allows to recover the secret value r. To prevent this
attack, we instead structure the computation of the MultiDecoder in regions of
size O(n), where each region corresponds to one node (or one edge) in each of
the n Decoder trees.11 Recall that the MultiDecoder consists of n Decoder trees.
The i-th region in MultiDecoder contains the wires associated with the output

11 Notice that in reality regions constitute a partition of wires, not gates. Whenever,
we say that a particular gate is in a particular region, it simply means that that
gate’s output is in that region.



of the i-th gate in each of the n Decoder trees. Given the above structuring into
regions, we can show the following property about the RandSamp circuit.

Lemma 9. Recall that n ∈ N is the security parameter and let d and h be
constants defining the underlying expander graph on n vertices. For any t < nh

3d
the circuit RandSamp(1n) is (t, q)-region reconstructible for q = 3

2 t(dlog(n)e+1),
where the regions are defined as described above in the description of RandSamp′

and the MultiDecoder sub-circuit. Moreover, RandSamp has circuit size O(n3).

A consequence of the above lemma is that in order to guarantee that the en-
coded random values r produced (in encoded form) by ([r]τ , [r]2τ )← RandSamp(1n)
are hidden for a t-probing adversary, we need to set: t < n

3(dlog(n)e+1) . Notice

that we need an additional factor of 1/2 since the code ΠMSS is only resilient
against τ < n/2 probes.

5.2 Protecting arbitrary computation against probing

Our final transformation follows the general paradigm of encoding-based circuit
transformations from Section 2, where we use as the underlying code the scheme
ΠMSS
n,τ with n = 2τ + 1. The initial state m0 of the circuit is transformed into

M̂0 ← EncMSS(m0), and the wires in Γ are represented in Γ̂ by wire bundles
carrying an encoding of the value carried on the wire in Γ . The transformation
for the individual operations is presented in Figures 5-7. In Figure 5, we present
the main ingredient of our new transformation – the transformation for the
multiplication operation, which we describe in further detail below.

The C ← MultSS(A,B) gadget of TR

On input (A,B) = ([a]τ , [b]τ ) proceed as follows:
1. Sample (U, V ) = ([r]τ , [r]2τ )← RandSamp(1n) for some random r ∈ F as described

in Section 5.1. Notice that in a real circuit RandSamp can be implemented by a
single sub-circuit that is queried by all MultSS gadgets.

2. For each i ∈ [n] compute the products Ti = AiBi (using n field operations).
3. Compute W = T + V and compute w = DecMSS2τ (W ) (the decoding uses the

constant coefficients of a particular instance of the code ΠMSS, cf. Section 2.1).
4. Set Z := (Z1, . . . , Zn) where Zi = w and compute as output C = Z − U .

Fig. 5. The transformation for the multiplication operation in F. RandSamp(1n) sam-
ples ([r]τ , [r]2τ ) as described in Section 5.1.

The transformation for the multiplication uses ideas from secure multiparty
computation – in particular, the use of [r]τ , [r]2τ that allows to decodeW = T+V
without revealing sensitive information follows the approach from [14]. There are
two important differences to the protocol of [14] – most notably, for our purposes
we need to sample ([r]τ , [r]2τ ) in a way that is secure against t-region probing



Fig. 6. The architecture of the MultSS circuit. The whole MultSS circuit consists of
one region except the RandSamp sub-circuit, which is divided into smaller regions
accordingly to the TRAff compiler.

adversaries. Second, in Step 4 of Figure 5 we use a trivial encoding of the value
w with the code ΠMSS. In particular, instead of using EncMSS(w) to sample Z,
we just use the trivial encoding of w as n-elements vector Z := (w, . . . , w). While
clearly this encoding procedure does not offer any security, it guarantees that
we can encode w in complexity O(n). This will be relevant when we structure
the computation of MultSS into region, which will be explained next.

We structure MultSS into the following regions. The first set of regions cor-
responds to Step 1 when MultSS queries the external source RandSamp(1k) for
(U, V ) and corresponds to the set of regions defined in the previous section. Be-
sides the regions that are naturally inherited from RandSamp, we introduce one
additional region that includes all operations of MultSS from Step 2-4. Clearly,
this region has size of O(n), which will be important for our security argument.

To complete the description of the transformation it remains to propose con-
structions for the addition operation, the Rand operation and how to implement
fan-out. The transformation is rather straightforward and details are given in
Figure 7. Notice that the transformations from Figure 7 use the multiplication
gadget as a sub-routine to implement a refreshing scheme for the ΠMSS encoding
scheme. The refreshing algorithm for ΠMSS works as follows. We first sample once
and for all a fixed encoding D ← EncMSS(1), where 1 denotes the multiplicative
identity in F. To refresh X, we compute Z ← MultSS(X,D).12

Finally, notice that each gadget of Figure 7 represents a single region, where
the execution of MultSS(., D) to refresh the output of the gadgets is structured
into regions as explained above (and not part of the region of the gadgets itself).
This completes the description of the transformation TR and the structuring of
computation into regions. We can show the following about the above construc-
tion.

Theorem 2. Let n be the security parameter and d, h be constants defining the
underlying expander graph on n vertices. The transformation TR described above
is perfectly t-region probing secure for t < n

12(dlog(n)e+1) . Moreover, for a circuit

Γ of size s, the transformed circuit Γ̂ ← TR(Γ, 1n) has size O(sn3).

12 We note that the expander-based refreshing from Section 3 unfortunately does not
easily transfer to a refreshing scheme for the code ΠMSS.



The PlusSS, CoinSS and CopySS gadget of TR

1. Transformation for addition in F, i.e., a + b = c: An addition operation in the
circuit Γ̂ is denoted by C ← PlusSS(A,B). On input two encodings A,B compute
Z = A+B and output C ← MultSS(Z,D), where D is a fixed encoding of 1, i.e.,

D ← EncMSS(1) and Di is hard-wired into the description of Γ̂ .
2. Transformation of Rand gate x ← F: The gadget CoinSS computes (U, V ) ←

RandSamp(1n) and outputs U .
3. Fan-out in Γ : Fan-out in the circuit Γ is handled by the sub-circuit (B,C) ←

CopySS(A) in the transformed circuit Γ̂ . On input an encoding A, output B ←
MultSS(A,D) and C ← MultSS(A,D).

Fig. 7. The transformation of the remaining operations used by TR. RandSamp(1n)
samples ([r]τ , [r]2τ ) as described in Section 5.1 and MultSS is the transformed multi-
plication operation from Figure 5.

We notice that it is straightforward to improve the complexity of the con-
struction to O(sn2 log n) using FFT. Moreover, as mentioned in the introduction,
further improvements of the efficiency are possible using packed secret sharing.

6 Application to the noisy leakage model

As shown by Duc et al. [16] security in the so-called p-random probing model
implies security in the noisy leakage model. In the random probing model the
adversary has no control over the choice of the probes and instead corrupts each
wire of the circuit independently with a probability p. By applying Chernoff,
it is straightforward that security in the threshold probing model with rate r
implies security in the random probing model with p = cr for some constant
c < 1. Hence, applying Theorem 2, we straightforwardly get security in the
p-random probing model for p = O(log−1(n)). As argued in the introduction
we can further improve p to a constant when we directly prove security in the
p-random probing model instead of taking the detour via the much stronger
threshold probing model. In particular, we can get the following result.

Theorem 3. The transformation TR described in Section 5 is p-random probing
secure for a sufficiently small constant p < 1/12. For a circuit Γ of size s, the

transformed circuit Γ̂ ← TR(Γ, 1n) has complexity O(sn3).

Proof. To distinguish the random probing model from the t-region probing model
that we discussed in the last section, we will call the later in the following the t-
threshold probing model. To show security against a p-random probing adversary
observe that clearly security against a t-region probing adversary for regions of
size O(n) and t = Ω(n) probes implies security in the random probing model
for a constant p. This worst-case to average case reduction is a straightforward
application of the Chernoff bound. Recall that in our transformation TR from
Section 5 all parts of the transformed circuit tolerate a constant corruption



rate in the threshold probing model13 except for the MultiDecoder sub-circuits,
which are the reason that we only can allow O(n/ log(n)) probes (cf. Section
5.1). Therefore, to show that our construction achieves security in the random
probing model for constant p we only need to show that the MultiDecoder sub-
circuits remain secure in the p-random probing model for a constant p. To this
end, we need the following fact:

Lemma 10. Let MultiDecoder be a deterministic circuit as described in Sec-
tion 5.1 that takes as input n encodings X := (X(1), . . . , X(n)) and outputs their
decodings U := (U1, . . . , Un). Let P be a set of probes for MultiDecoder drawn by
a p-random probing adversary. There exists a simulator SimMultiDecoder such that
for any plausible inputs X := (X(1), . . . , X(n)) and corresponding output vector
U := (U1, . . . , Un), we have:

P(WMultiDecoder(X|U)) ≡ Sim
Ω(X)
MultiDecoder(P).

Moreover, for each i ∈ [n] (independently) we have the following: the proba-
bility (over sampling of the set P) that the value X(i) is fully leaked by the

Sim
Ω(X)
Decoder(P) (i.e., the value X

(i)
j is leaked for every j ∈ [n]) is equal at most

p
1−p .

The proof is given in the full version.
We now continue the proof of Theorem 3. Note the only requirement we

have in Lemma 10 is that that for each i (independently) it holds that with
probability at least 1−p/(1−p) the t-th Decoder is not fully covered. Hence, we
also need to prove (as in was done in Lemma 9) that not too many of the input
encodings to the Decoder are fully leaked by the simulator for the composed
circuit RandSamp′. Fix one input encodings X(i) to one of the Decoder sub-
circuits. Recall that there are two simulator, which leak from the encoding X(i):

Sim
Ω(X)
Decoder(P) and the simulator for the gadget, which outputsX(i) in RandSamp′,

which will be denoted Sim′.
Recall that all gadgets except the MultiDecoder sub-circuit are (t, q)-reconstru-

ctible for t = cn and q = c′n for an appropriate choice of constants c, c′ < 1/6.
Since all regions are of size O(n) (where the O-notation only hides small con-
stants), there exists a constant p < p/(1−p) < 1/6 such that with overwhelming
probability a set of probes P when sampled by a p-random probing adversary is
t-region admissible. Therefore, with overwhelming probability (over the choice
of P) at most q positions are leaked from X(i) by the simulator Sim′ in order
to simulate answers to the probes in the part of RandSamp′ producing X(i). To
simplify the description, we assume that P produced by the p-random probing
adversary is indeed t-admissible, and we do not explicitly mention the bad event
when it is not (as this event is negligible anyway).

From Lemma 10 we know that with probability at least 1− p
1−p ≥

5
6 there ex-

ists a random j, s.t. the valueX
(i)
j is not queried by the simulator Sim

Ω(X)
MultiDecoder(P).

13 This is true for all gadgets of the transformation TR as well as for RandSamp′.



Notice, that the index j of the share, which is not leaked by the Sim
Ω(X)
MultiDecoder(P)

is uniformly random over [n] due to the symmetry of the MultiDecoder sub-circuit
with respect to the input shares indexes14. Hence, the probability that the par-

ticular value X
(i)
j (recall that j was drawn at random) is queried by the Sim′ is

equal at most q
n < c′ < 1

6 . Therefore, the probability that the encoding X(i) is
fully leaked by both simulators is not greater than 1

6 + 5
6 ·

1
6 <

1
3 , where the first

term in the sum comes from Lemma 10 and the fact that with probability 1/6 the
simulator SimMultiDecoder reveals the entire encoding, and the second term comes
from the analysis above (i.e., with probability 5/6 we have at least one random

share X
(i)
j that is not queried by SimMultiDecoder and Sim′ only asks for a 1/6

fraction to its leakage oracle. Given this bound, we can now use again Chernoff
to prove that with overwhelming probability (in n) less than 1

2 of all the input
encodings to the MultiDecoder circuit are fully leaked. The rest of the security
proof is analogous to the case of the threshold probing adversary. Putting the
above together we obtain Theorem 3. ut
We emphasize that the above is mainly a feasibility result and the constant is
rather small due to the properties of the expander graph.

7 Extensions

7.1 Security of Boolean circuits

As outlined in the introduction our transformation TR presented in the last sec-
tion requires that the computation is carried out over a field F of size O(n). This
implies that the values carried on the wires are from F and the basic gates used in
Γ̂ represent the operations from the underlying field F. Notice that the later also
means that we require leak-free operations that are of size O(log(n) log log(n)),
which is required to carry out, e.g., the multiplication in the field F. While we
emphasize that this assumption is used by most works that consider leakage
resilient circuit transformations, we observe that for our particular construction
we can eliminate this assumption by getting slightly weaker parameters (weaker
by a constant factor only). The basic idea to achieve this is as follows: instead
of using Shamir’s secret sharing as underlying code, we can use codes based on
algebraic geometry that exhibit the multiplicative property. Such codes are for
instance constructed in the work of Chen and Cramer [7]. These codes operate
over fields of constant size and hence there basic operations can be implemented
by constant size Boolean circuits.

The above is in particular useful for Theorem 3 where we obtain security
against constant random probing rate. Using algebraic geometric codes the cor-
ruption probability p stays constant even if Γ̂ is implemented with Boolean gates
– which is optimal.

14 Recall that we assume that n is a power of two and T is then a full binary tree.
Moreover, the simulator Sim

Ω(X)
MultiDecoder(P) is also symmetric with respect to the input

share indexes. Furthermore, if there is more than one index j, s.t. the value X
(i)
j is

not leaked by the Sim
Ω(X)
MultiDecoder(P) we pick one of them uniformly at random.



7.2 From non-adaptive to adaptive security.

In our analysis we assumed that for each clock cycle the adversary chooses a
set of Pi that defines what wires leak. This implies that within a clock cycle
the adversary is non-adaptive and cannot change the position of his probes,
e.g., he cannot learn the first share of an encoding and upon the value of this
share decide what wire he wants to probe next. Fortunately, we can easily get
fully adaptive security since our construction achieves perfect security against
a threshold probing adversary [10]. We stress that the same does not hold for
construction that are only statistical secure [10].
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