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Abstract. Noisy channels enable unconditionally secure multi-party com-
putation even against parties with unbounded computational power. But
inaccurate noise estimation and adversarially determined channel char-
acteristics render known protocols insecure. Such channels are known as
unreliable noisy channels. A large body of work in the last three decades
has attempted to construct secure multi-party computation from unre-
liable noisy channels, but this previous work has not been able to deal
with most parameter settings.
In this work, we study a form of unreliable noisy channels where the
unreliability is one-sided, that we name elastic noisy channels: thus, in
one form of elastic noisy channel, an adversarial receiver can increase
the reception reliability unbeknown to the sender, but the sender cannot
change the channel characteristic.
Our work shows feasibility results for a large set of parameters for the
elastic binary symmetric channel, significantly improving upon the best
results obtainable using prior techniques. In a key departure from existing
approaches, we use a more elemental correlated private randomness as an
intermediate cryptographic primitive that exhibits only a rudimentary
essence of oblivious transfer. Toward this direction, we introduce new
information-theoretic techniques that are potentially applicable to other
cryptographic settings involving unreliable noisy channels.
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1 Introduction

Secure multi-party computation [57,27] helps mutually distrusting parties to se-
curely compute a function of their private data. General secure computation is
impossible in the information-theoretic plain model for most cryptographically
interesting functionalities even when parties are semi-honest [36,31,42,3,43,41].
This necessitates restrictions on the power of the adversaries, for example, hon-
est majority [6,12,50,21], computational hardness assumptions [27,33] or phys-
ical cryptographic resources, like, noisy channels [17,37,4,38,19], correlated pri-
vate randomness [38,54,19,44], trusted resources [10,34] or tamper-proof hard-
ware [35,11,46,23,28].

Using cryptographic resources like noisy channels, it is possible to securely
compute arbitrary functionalities with unconditional security guarantees against
malicious computationally unbounded adversaries as well [17,37,4,38,19]. Aside
from unconditional security, this line of work also offers advantages in efficiency
[45,5,48]. Additionally, all invocations of the noisy channel can be performed in
an offline phase that is independent of the target functionality to be securely
computed [54]. But, the security analysis of these protocols crucially hinges on
accurate knowledge of the channel characteristic. Inaccurately estimated or, even
worse, adversarially determined channel characteristic can violate the security
guarantees of known secure computation protocols that rely on noisy channels.
We broadly call such channels unreliable noisy channels.

Over the last three decades, a lot of effort has been focussed towards per-
forming information-theoretic secure multi-party computation using unreliable
noisy channels, but with limited success. Weak forms of oblivious transfer3
(OT) [17,22,7,8,55] and noisy channels [16,22,19,20,55,47,56] have been lever-
aged to perform secure computation with strong security guarantees, but only
for limited settings of parameters. For example, the notion of an unfair noisy
channel allows both the adversarial sender and the receiver to increase their
knowledge of the other party’s outputs or inputs to the channel. This model
captures extremely general physical systems. Unfortunately, strong impossibil-
ity results exist for unfair channels [22], thus, significantly limiting the potential
set of feasible parameters (Ref. Fig. 1).

Faced with these daunting impossibility results, in this work we ask whether
security is possible in meaningful relaxations of the unfair noisy channel model.
In particular, we study an unreliable noisy channel model, namely elastic noisy
channels, where only one party, either the receiver or sender, but not both, can
increase their knowledge of the other party’s inputs and outputs to the channel.
We show that an elastic noisy channel with sender advantage is equivalent to
an elastic noisy channel with receiver advantage (see Section 5), and thus in
the sequel, we focus on the case where the receiver can increase its knowledge

3 Oblivious Transfer [49,25,53] is a two-party functionality which takes (x0, x1) ∈
{0, 1}2 as input from the sender and c ∈ {0, 1} from the receiver and provides xc as
output to the receiver. Information-theoretic secure general multi-party computation
can be constructed in the OT-hybrid [10,34].
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Fig. 1: Unfair binary symmetric channel parameters for binary symmetric chan-
nels. Honest channel flips the input symbol with probability α, where 0 < α <
1/2. Both the sender and the receiver can make the channel more reliable with
flip probability β, where 0 < β 6 α.

of the sender’s inputs to the channel. Such a study is motivated, for example,
by transmission and reception of information over physical wireless channels be-
tween physically separated parties. This is because in physical wireless systems,
thermal noise is always present at the receiver’s end and cannot be observed by
a physically distant sender. Thus, the sender, even if malicious, cannot antici-
pate the entire error introduced at the receiver antenna. However, an adversarial
receiver, on the other hand, can install a large super-cooled antenna to make its
reception more reliable than the reception available to an honest receiver that
uses an inexpensive antenna.

While this scenario is one example, our study is primarily motivated from a
theoretical standpoint, in the face of severe impossibility results for the full unfair
channel setting, where very little progress has been made despite decades of
research. Interestingly, our elastic channel model avoids the impossibility results
of [22] and, hence, holds the promise to yield secure multi-party computation
protocols based on a wide range of parameters. Nevertheless, previous work
achieve only quite weak results in the elastic noisy channel setting.

Our main result pertains to realization of information-theoretic secure multi-
party computation using (α, β)-BSC, a binary symmetric channel where, infor-
mally,4 an honest receiver obtains the sender’s input bit flipped with probability
α, while the adversarial receiver obtains an the sender’s input bit flipped only
with probability β, where 0 < β 6 α < 1/2. Fig. 2 shows the set of feasible

4 The actual definition of (α, β)-BSC uses a degradation channel model. The channel
output is a degradation of the leakage. But for intuitive purposes the description
presented here suffices. Section 2 provides a more detailed and accurate description.



parameters that can be achieved using the best previous techniques of [22,55].
The figure also illustrates the much larger set of possible (α, β) pairs for which
it is possible to achieve secure multi-party computation on (α, β)-BSC using the
techniques we develop in this paper. As a concrete example, if the best antenna
in the market incurs only 5% error, then prior techniques need to assume that
the honest receiver uses a receiver with at most 14% error. Our protocols, on
the other hand, work even when the honest reception error is as high as 30%.

New Ideas. The crux of this significant gain in feasibility parameters is a new
perspective on how to securely realize OT from unreliable noisy channels. Over
the last several decades, a common underlying theme of previous constructions
is a reduction from unreliable noisy channels to weak OT using two-repetition
of the underlying channel and the rejection sampling technique of [17] and, sub-
sequently, amplifying the weak OT to a full-fledged OT [17,22,55]. The first
reduction in this approach, we find, leads to a significant loss in parameters. We,
instead, reduce from unreliable noisy channels to a correlated private randomness
that provides extremely weak guarantees and ensures only a rudimentary essence
of OT. In this respect, as a departure from prior techniques, our target corre-
lated private randomness is closer to the notion of universal OT as proposed by
Cachin [8]. Then, we morph this elemental correlated private randomness into
a weak variant of OT using the weak converse of Shannon’s Channel Coding
Theorem [52,26] as utilized by [40] and fuzzy extractors [24]. Next, this weak
variant of OT is amplified to (full-fledged) OT using techniques similar to those
proposed in [55]. Section 1.2 provides a summary of our technical contributions
and intuition of the protocol designs.

Looking ahead, we believe that the techniques introduced in this paper are
of independent interest and are likely to find use in other areas of cryptography
where noisy channels are analyzed.

1.1 Our Contributions

Our main contribution is to design protocols that securely realize oblivious trans-
fer and therefore secure multi-party computation, from elastic binary symmetric
channels. Before summarizing our results, we explain the notion of elastic chan-
nels.

Elastic Channels. We will model elastic variants of noisy channels as consist-
ing of a pair of noisy channels where the channel for the honest receiver is a
degradation of the channel for the adversarial receiver. In general, we view an
(α, β)-BSC as a pair of channels, such the honest receiver has reception over a
BSC with flip probability α, and an adversarial receiver has reception over a BSC
with flip probability β 6 α.

General Secure Computation We prove that general secure computation is
possible for a large range of parameters of elastic binary symmetric channels.



1/20

1/2

β −→

α
−→

Our
Feasibility Results

Prior Results
due to [22,55]

Fig. 2: Space of parameters (β, α), where 0 < β 6 α < 1/2, for which we con-
struct secure computation protocol from (α, β)-BSC. The smaller dark region
is the space for which such protocols can be obtained using prior techniques
from [22,55] combined.

In particular, we obtain oblivious transfer (OT) using elastic noisy channels,
and then the OT functionality can be used to obtain general secure computa-
tion [57,27,36,10]. Our main theorem is as follows:

Theorem 1 (Elastic BSC Completeness). There exists a universal constant

c ∈ (0, 1), such that for all 0 < β 6 α < 1/2, if α <
(
1 + (4β(1− β))−1/2

)−1
then there exists a protocol Πα,β such that, Πα,β securely realizes the OT func-
tionality FOT when given access to ((α, β)-BSC)⊗κ channels with at most 2−κ

c

simulation error, where κ is the security parameter, with information-theoretic
unconditional security against malicious adversaries.

Refer to Fig. 2 for a summary of the parameter space in Theorem 1 and a
comparison of our results with results from previous work5. Henceforth, we will

use `(β) :=
(
1 + (4β(1− β))−1/2

)−1
.

In addition to elastic noisy channels, both parties also communicate over
reliable communication channels in our protocols. These reliable channels can be
constructed from the (elastic) noisy channels themselves via standard techniques
in error correcting codes (e.g. using polar codes [1,2,29]).
5 When comparing to previous work, note that no previous work considered the setting
of elastic channels. Instead, to provide some context, we plot parameters that would
be obtained by combining techniques from [22,55] and adapting these to the setting
of elastic channels. We do not attempt to combine also the results from [20], because
of definitional differences.



Furthermore, we can strengthen our completeness theorems using techniques
from [34,32,40] to achieve constant rate: that is, our protocols can produce Θ(κ)
OTs with only O(κ) total communication and only O(κ) calls to the underlying
elastic binary symmetric channels.

Corollary 1 (Constant Rate Elastic BSC Completeness) For all 0 < β 6

α < 1/2, if α <
(
1 + (4β(1− β))−1/2

)−1
then, there exists a protocol Πα,β and

constants cα,β , dα,β such that, Πα,β securely realizes F⊗mOT when given access to
((α, β)-BSC)⊗κ channels with at most 2−κ

cα,β simulation error and m = dα,βκ.

1.2 Technical Overview

While our protocols have many ingredients and require a careful analysis, in this
section we try to explain the core ideas in our scheme.

A New Take on Previous Approaches. We begin by re-interpreting previous
approaches to realize oblivious transfer from noisy channels. Our new under-
standing of these methods helps abstract out their essence and better illustrate
the bottlenecks in our setting. Then, we develop key ideas to achieve oblivious
transfer even from channels with adversarial receiver-controlled characteristic,
for a large range of parameters of such channels.

To obtain OT from a perfect BSC, a natural starting point is to have the
sender pick appropriate codewords (typically simple repetition codes) and send
them over the BSC to the receiver. The receiver must then partition the received
outputs into two sets establishing two “virtual” channels with the following prop-
erty: There exists a threshold R, such that one of the virtual channels has capac-
ity C∗ > R, while the other channel has capacity C̃ < R. Moreover, the sender
will be unable to tell which virtual channel is which.

In the protocol, the sender pushes information across the virtual channels at
rate equal to R. The receiver recovers the information that is transmitted over
the virtual channel with capacity C∗ > R. But, he incurs errors decoding the
information transmitted over the virtual channel with capacity C̃ < R because
the weak converse of Shannon’s Channel Coding Theorem [52,26] kicks in. This
decoding error can be amplified using fuzzy extractors [24], to completely erase
the other message and guarantee statistical hiding.

But, we would like to design protocols that remain secure even given an
(α, β)-BSC. In the following, we will use α-BSC to denote the channel used by
the honest receiver; and β-BSC to denote the channel used by the adversarial
receiver. Intuitively, the correctness of our protocol needs to be ensured even
for an honest receiver who uses a channel prescribed as the “minimum system
requirement” of the protocol description (the α-BSC). We also require that the
same protocol be secure even against an adversarial receiver who can reduce the
noise level significantly (using the β-BSC). Again, we will think of the problem
as forcing the receiver to establish two virtual channels of noticeably different
capacities. We require the capacity C∗ of the better virtual channel established



by the receiver using α-BSC, to be higher than the capacity C̃ of the worse virtual
channel established by any adversarial receiver using the β-BSC. The sender
will code at a suitable rate intermediate to C∗ and C̃. Then, more information
will be received over the C∗ capacity channel in the honest scenario, than the
information received over one of the two virtual channels (of capacity at most
C̃) created by the adversarial receiver. This will give oblivious transfer.

Challenges in Our Setting. Let us re-examine our quantitative goal: Suppose the
error of the best (adversarial) receiver in the market is 2%, but honest receivers
have 20% error. The adversarial receiver can obtain much more information than
the honest receiver, without the sender’s knowledge. Yet, we want to establish
two virtual channels such that the capacity of the better virtual channel estab-
lished using the α-BSC, is higher than the capacity of the worse virtual channel
established by any adversarial receiver using the β-BSC. Such an adversarial re-
ceiver is allowed to behave arbitrarily, in particular, it could distribute its total
capacity equally between the two channels. Ensuring a capacity gap between the
better honest and the worse adversarial capacities in this situation, seems to be
a tall order. Indeed, previously the results of Wullschleger [55] could achieve this
gap only if the honest adversarial receiver had an error at most 9%.

Towards a Solution. Our first step is to try and relax this goal. Instead of directly
shooting for 2-choose-1 oblivious transfer, we try to obtain a weaker form of
oblivious transfer, namely (n, 1, n − 1) OT, where a sender has n messages, an
honest receiver gets to choose 1 message, but a dishonest receiver gets n − 1
messages of his choice. The sender gets no output. Using the ‘virtual channel’
intuition presented above, we want the receiver to set up n virtual channels (for
some constant n), with a threshold R such that at least one of the n virtual
channels set up by the honest receiver has capacity C∗ > R, while at least one of
the n virtual channels set up by the adversarial receiver has capacity less C̃ < R.
At this point, we have divided our objective into the following two sub-problems:

1. Reduce (n, 1, n− 1) OT to (α, β)-BSC
2. Reduce 2-choose-1 OT to (n, 1, n− 1) OT

The second result has been considered in the works of [18,51] and can also
be demonstrated using techniques presented in [22,55,20] for the setting of weak
erasure channels. While this reduction is not the focus of our work, for complete-
ness we provide a protocol securely realizing OT from (n, 1, n−1) OT in the full
version, achieving security against malicious adversaries.

Now our main goal is to demonstrate the first reduction. Our next question
is, what could be some reasonable ways to take an (α, β)-BSC and build several
virtual channels outs of it with varying reliabilities?

A new kind of Channel Decomposition. A logical starting point is to have the
sender send λ repetitions of his bit over fresh instantiations of the (α, β)-BSC,
and list all possible outputs obtained by the receiver. Each possible output could
be used by the receiver to define a “virtual channel”. On sending λ repetitions



of a bit b, if the receiver obtains λ identical bits, then his confidence about the
original bit b is extremely high. This is the most reliable channel, and will be set
to be the choice channel (with capacity C∗) by the honest receiver.

Since errors are independently added at each invocation of the (α, β)-BSC,
all receiver outputs with the same number of zeroes, irrespective of the positions
of these zeroes, convey the same amount of information to the receiver. Thus,
such outputs can be classified into the same equivalence class/virtual channel.
Furthermore, for η ∈ [0, bλ/2c + 1], let Sη denote all output strings with either
η zeroes, or η ones. That is, Sη includes all pairs of output strings of the form
{0η1λ−η, 0λ−η1η} and their permutations. This results in the creation of bλ2 c+1
binary symmetric channels6 of noticeably different capacities, such that the ‘best’
virtual channel of an honest receiver consists of outputs solely from S0. It is easy
to see that the sender, who gets no output from the BSC, cannot distinguish
between various virtual channels created by the receiver.

For security against an adversarial receiver, it suffices to ensure that the
capacity of the virtual channel created using values in S0 corresponding to the
α-BSC, is higher than the average capacity (over all possible channels) over all
the outputs assembled by an adversarial receiver when he uses the β-BSC. We
note that the receiver is never allowed to discard any of the outputs he received;
he must necessarily divide and distribute them all into his virtual channels.

On analyzing this approach, we find that in fact as we increase λ, the situ-
ation improves for many parameters α, β. While both average adversarial and
best honest capacities increase as λ increases, in fact the best honest capac-
ity increases faster. Eventually, then, the best honest capacity becomes bet-
ter than the average adversarial capacity and we obtain the following results
(Ref. Fig. 4 for an example illustration of this phenomenon.). For any constants

0 < β 6 α <
(
1 +

(
4β(1− β)

)−1)−1, there exists an efficiently computable con-
stant λ ∈ N for which the above property holds. Fig. 3 plots the space of these
parameters for various values of λ and the limiting curve `(β).

Although this completes our high-level overview, making these ideas work
requires a careful use of the weak converse of Shannon’s Channel Coding The-
orem, Fuzzy Extractors and other protocol tools, as well as a careful setting of
parameters. Refer Section 3 for more details about our construction.

Commitments. Enroute proving Theorem 1, we show that it is possible to ob-
tain string commitments from any (α, β)-BSC, where 0 < β 6 α < 1 7. Using
techniques from [34,32,40], we can also obtain string commitments at a constant
rate. We stress that we can obtain commitments from any (α, β) elastic BSC
for all parameters 0 < β 6 α < 1, unlike our completeness result. Our result is
formally stated in the following theorem:

6 We observe that each set Sη can then be analyzed as a new BSC.
7 This is in contrast to the setting of unfair noisy channels, which become trivial for
a wide range of parameters.
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Fig. 3: For λ ∈ {21, . . . , 27}, the space of points (β, α) for which the capacity
of the virtual channel created using values in S0 corresponding to the α-BSC is
higher than the average capacity (over all possible channels) over all the outputs
assembled by an adversarial receiver when he uses the β-BSC. Finally the limiting
`(β) curve is plotted.

Theorem 2. There exists a universal constant c ∈ (0, 1), such that for all
0 < β 6 α < 1/2, there exists a protocol Πα,β, constant d ∈ (0, 1) such that,
Πα,β securely realizes the string commitment functionality for strings of length
dκ, Fcom(dκ), when given access to ((α, β)-BSC)⊗κ channels, with at most 2−κ

c

simulation error, where κ is the security parameter, with information-theoretic
unconditional security against malicious adversaries.

On adversarial senders. Finally, we note that noisy channels where only the
sender can make the transmission more reliable (that is, sender-elastic binary
symmetric channels) reduces to the case of elastic noisy channels with an ad-
versarial receiver (receiver-elastic channels), using a tight reduction presented in
Section 5. Our one-to-one transformation is optimal and tight.

1.3 Prior Work

There is a lot of literature on constructing secure computation based on noisy
channels [17,16,38,39,19,32,40]. An elastic noisy channel, whose characteristic
can be altered by adversarial parties, cannot be modeled as a functionality con-
sidered by the completeness theorems of [38,44,40]. However, the following chan-
nels in the literature, are related to the notion of elastic channels.

– Unfair Noisy Channels. Unfair noisy channels were formally defined by Damgärd
et al. [22]: in an unfair noisy channel, both the sender and the receiver can
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change the channel characteristic. Furthermore, the work of [22] showed
strong impossibility results in this model. Several works considered perform-
ing secure computation from such unfair noisy channels [17,16,22,19,20,55,56].
The feasibility parameters achieved by these works are a small fraction of
the parameters not covered by the impossibility result of [22].

– Weak OT with one-sided leakage. The closest notion to elastic channels, is
that of weak OT8 by Wüllschleger [55]. This is an oblivious transfer which
allows either sender or receiver leakage, but not both. It also allows incorrect
output with some probability. It was shown in [55] that OT reduces to weak
OT with one-sided leakage for a subset of leakage and error parameters.
It is possible to reduce such a weak OT to elastic noisy channels via the
techniques in [22,20,56]. To our knowledge, these give the best known com-
pleteness results using techniques implicit in prior work, in the setting of
elastic BSC. These parameters are denoted as ‘Best Prior Work’ in Fig. 2.

Comparison of Techniques. Prior works on unfair noisy channels rely on the
technique of [17] which invokes the channel twice to transmit a 2-repetition of
the input bit. This implements an erroneous version of unfair oblivious transfer.
Subsequently, this erroneous unfair OT is amplified to full-fledged OT. Surpris-
ingly, we find that the first reduction in this approach is significantly lossy in
parameters, especially when applied to the setting of elastic channels.

Thus, in a departure from previous techniques, we set our first target to
obtaining a set of n > 2 channels – where the honest receiver can obtain infor-
mation on at least one channel, while even an adversarial receiver cannot obtain
information on more than n − 1 channels. To realize such channels, we do not
restrict ourselves to 2-repetitions only. A comparison of our parameter space
against previous work is illustrated in Fig. 2.

2 Preliminaries

In this section, we introduce some basic definitions and notation, and recall some
preliminaries for use in the paper.

Throughout the paper, κ will denote the security parameter. We represent
the set {1, . . . , n} by [n]. The set of all size-k subsets of a set S is represented

by
(
S
k

)
. A vector of length n is represented by (x1, . . . , xn) = x[n]. For S =

{i1, . . . , i|S|} ⊆ [n], we represent xS = (xi1 , . . . , xi|S|). We use Ber(p) to represent
a sample from a Bernoulli distribution with parameter p.

2.1 Elastic Functionalities

We model elastic variants of noisy channels as a pair of noisy channels where
the channel for the honest receiver is a degradation of the channel for the ad-
versarial receiver. The input (say, bit b) is first transmitted over a more reliable
8 Not to be confused with our notion of (n, k, `)- OT which is complete for all constants
n, (1 < k, ` < n).



(adversarial) channel to obtain leakage z. Then, z is transmitted over a second
channel (z is further degraded) to obtain honest receiver output b̃, such that b̃
is effectively, the result of transmitting b over a less reliable channel. The honest
receiver obtains output b̃ and the adversarial receiver obtains output leakage z
as well as b̃. Note that in our modeling, the leakage z is strictly more infor-
mative than honest receiver output b̃. This is exactly why we chose to model
elastic channels as degradation channels, as it allows more intuitive analysis. We
formalize this notion, as follows, for specific instances of elastic noisy channels.

Definition 1 (Elastic Binary Symmetric Channel.). Let Ber(p) be a sam-
ple of Bernoulli distribution with parameter p. For any 0 < β 6 α < 1/2, an
(α, β)-BSC channel is defined as follows.

1. Emulate β-BSC on input b: Obtain input b from the sender and sample
e` ∼ Ber(β), the compute z = b⊕ e`.

2. Emulate γ-BSC on input leakage z: Sample e′ ∼ Ber(γ) and compute b̃ =
z ⊕ e′, where β(1 − γ) + (1 − β)γ = α. Intuitively, γ is chosen such that
Ber(α) ≡ Ber(γ)⊕ Ber(β).

3. Receiver output: Output b̃ to the receiver and, if the receiver is adversarial,
then additionally output z to the receiver.

Let B, Z and B̃ be the random variables corresponding to b, z and b̃, respec-
tively. We have B̃ = B ⊕ Ber(α) and Z = B ⊕ Ber(β), such that B → Z → B̃.

Definition 2 ((n, k, `)-OT). For 0 < k 6 ` < n, (n, k, `)-OT is defined as:

1. Sender inputs bits x[n] and receiver inputs set T ∈
(
[n]
k

)
.

2. Output {xi:i∈T } to the receiver.

3. If the receiver is corrupted by the adversary, then obtain S ∈
(
[n]
`

)
such

that T ⊆ S from the adversary, and output {xi:i∈S} to the adversary.

2-choose-1 bit OT is equivalent to (2, 1, 1)-OT.

2.2 Basic Information Theory

Entropy. The entropy of a distributionX is defined as: Ex∼X [− lgPx′∼X [x′ = x]].
Given a joint distribution (X,Y ), the mutual information is: I(X;Y ) = H(X)+
H(Y )−H(X,Y ).

Channel Capacity. The capacity of a channel W is defined to be I(W ) =
maxX I(X;W (X)), where X is any probability distribution over the input space.
If W is output symmetric, then I(W ) = I(U ;W (U)), where U is the uniform
distribution over the input space.

For 0 6 ε 6 1, the capacity of ε-BEC is I(ε-BEC) = 1 − ε; and the capacity
of ε-BSC is I(ε-BSC) = 1 − h(ε), where h(x) := − x lg(x) − (1 − x) lg(1− x) is
the binary entropy.



(A,B)→ (A,C). For a joint distribution (A,B) and (A,C), if there exists
f such that the distributions (A, f(B)) and (A,C) are identical, then we say
(A,B)→ (A,C). We say that (A,B) ≡ (A,C), if (A,B)→ (A,C) and (A,C)→
(A,B).

(J,WJ). A channel (J,WJ) is defined as follows:
On input x, sample j ∼ J(x) and sample z ∼Wj(x). Output (j, z). We say that
a channelW ≡ (J,WJ), if the distributions (X,W (X)) ≡ (X, J(X),WJ(X)(X)),
for all input distributions X.

A binary-input memoryless channel with transition probabilities (W |0) and
(W |1) for input symbols 0 and 1, respectively, is called output-symmetric if the
probabilities of these two distributions are permutations of each other.

If I(X; J(X)) = 0 and all Wj channels are output symmetric, then the ca-
pacity of the channel W is I(W ) = Ej∼J [I(Wj)], where J is a fixed distribution
over indices (say J(0)).9

Polar Codes. There are explicit rate achieving Polar Codes with efficient encod-
ing and decoding parameters for ε-BEC and ε-BSC, for 0 6 ε 6 1 [1,2,29].

Definition 3. (Discrete Memoryless Channel) A discrete channel is defined to
be a system W : X → Y between a sender and a receiver with sender (in-
put) alphabet X , receiver (output) alphabet Y and a probability transition matrix
W (y|x) specifying the probability that of obtaining output y ∈ Y conditioned on
input x ∈ X . The channel is said to be memoryless if the output distribution de-
pends only on the input distribution and is conditionally independent of previous
channel inputs and outputs.

Imported Theorem 1 (Efficient Polar Codes [29]). There is an absolute
constant µ <∞ such that the following holds. Let W be a binary-input memory-
less output-symmetric channel with capacity I(W ). Then there exists aW < ∞
such that for all ε > 0 and all powers of two N > aW /ε

µ, there exists a deter-
ministic poly(N) time construction of a binary linear code of block length N and
rate at least I(W )− ε and a deterministic N ·poly(logN) decoding algorithm for
the code with block error probability at most 2−N
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for communication over W .

Leftover Hash Lemma. The min-entropy of a discrete random variable X is
defined to be H∞(X) = − logmaxx∈Supp(X) P[X = x]. For a joint distribu-
tion (A,B), the average min-entropy of A w.r.t. B is defined as H̃∞(A|B) =
− log

(
Eb∼B

[
2−H∞(A|B=b)

])
.

Imported Lemma 1 (Generalized Leftover Hash Lemma(LHL) [24]).
Let {Hx : {0, 1}n → {0, 1}`}}x∈X be a family of universal hash functions. Then,
for any joint distribution (W, I): SD ((HX(W ), X, I), (U`, X, I)) 6 1

2

√
2−H̃∞(W |I)2`.

9 Because W is also output symmetric.



Weak Converse of Shannon’s Channel Coding Theorem. Let W⊗N denote N
independent instances of channel W , which takes as input alphabets from set
{0, 1}. Let the capacity of the channel W be C, for a constant C > 0. Let
C ∈ {0, 1}N be a rate R ∈ {0, 1} code. Then, if the sender transmits a random
codeword c

$←C over W⊗N , the probability of error of the receiver in predicting
is Pe > 1− 1

NR −
C
R .

2.3 Chernoff-Hoeffding Bound for Hypergeometric Distribution

Imported Theorem 2 (Multiplicative Chernoff Bound for Binomial Ran-
dom Variables [13,30]). Let X1, X2, . . . Xn be independent random variables
taking values in [0, 1]. Let X =

∑
i∈[n]Xi, and let µ = E[X] denote the expected

value of the X. Then, for any δ > 0, the following hold.

– Pr[X > (1 + δ)µ] < exp (−nDKL (µ(1 + δ)‖µ)).
– Pr[X > (1− δ)µ] < exp (−nDKL (µ(1− δ)‖µ)).

Imported Theorem 3 (Multiplicative Chernoff Bound for Hypergeo-
metric Random Variables [30,14]). If X is a random variable with hyper-
geometric distribution, then it satisfies the Chernoff bounds given in Imported
Theorem 2.

2.4 Constant Rate OT Generation

Imported Theorem 4 ([32]). Let π be a protocol which UC-securely realizes
FOT in the f -hybrid with simulation error 1− o(1). Then there exists a protocol
ρ which UC-securely realizes F⊗mOT in the f⊗n-hybrid with simulation error 1 −
negl(κ), such that n = poly(κ) and m = Θ(n).

3 Binary Symmetric Channels

3.1 Channel Decomposition

In an (α, β)-BSC, the capacity of each channel invocation in the adversarial
receiver case is higher than the capacity when the receiver is honest. Despite
this bottleneck, our aim is to (non-interactively) synthesize n new noisy channels
such that the highest capacity of these channels when interacting with an honest
receiver surpasses the capacity of at least one channel obtained by any adversarial
receiver. Intuitively, this is achieved by decomposing the original elastic noisy
channel into sub-channels such that the sub-channels are “receiver identifiable.”
Details are provided in the following paragraphs.

It is not evident how to directly decompose an elastic BSC into receiver
identifiable sub-channels with the above property. So, we construct a different
channel from BSC channels and, in turn, we decompose that channel.

Consider the channel Cε (parameterized by λ ∈ N) defined below. Given input
bit b from the sender, pass bλ through (ε-BSC)⊗λ, i.e. λ independent copies of



ε-BSC, and provide the output string to the receiver. The receiver receives an
output string b̃[λ] ∈ {0, 1}

λ.
Let id(s) represent the number of minority bits in s ∈ {0, 1}λ.10 So, we

have id : {0, 1}λ → {0, . . . , bλ/2c}. Define Si ⊆ {0, 1}n, as the set of all strings
s ∈ {0, 1}λ such that id(s) = i. Given an output string b̃[λ] of the channel C̃, we
interpret it output from the id(b̃[λ])-th sub-channel.

Now, note that the sub-channel which takes as input {0λ, 1λ} and outputs a
string in Si is (isomorphic to) an εi-BSC channel, for i ∈ {0, . . . , bλ/2c}, where:

εi :=
ελ−i · (1− ε)i

ελ−i · (1− ε)i + (1− ε)λ−i · εi
=

ελ−2i

ελ−2i + (1− ε)λ−2i

Note that εi is an increasing function of i. The probability that the i-th sub-
channel is stochastically obtained by Cε is:

pi(ε) :=

(
λ
i

)(
ελ−i(1− ε)i + εi(1− ε)λ−i

)
Now, intuitively, we have decomposed Cε, a channel synthesized from ε-BSC,

into a convex linear combination of receiver identifiable sub-channels. More con-
cretely, we have shown that: Cε ≡

∑bλ/2c
i=0 pi(ε) · (εi-BSC).

Now, for any 0 < β 6 α < 1/2, we consider the (α, β)-BSC channel. Anal-
ogous to the channel Cε, we consider the channel Cα,β . This is identical to the
channel Cε and ε = α when the receiver is honest, and ε = β when the receiver is
adversarial. The maximum capacity of sub-channels in the honest receiver case
is: C∗ = 1−h(α0), where h(x) = −x lg(x)−(1−x) lg(1−x) is the binary entropy
function. The average capacity of sub-channels in the adversarial receiver case
is:

C̃ = 1−
bλ/2c+1∑
i=0

pi(β) · h(βi)

If we have C∗ > C̃, then we know that best capacity from α-BSC exceeds
the average malicious capacity from β-BSC. We set n = 1/p0(α) and create n-
instantiations of the channel Cε. Then one of the sub-channels in the honest
receiver case has capacity C∗, while the average capacity of sub-channels in
the adversarial receiver case is C̃. So, out of the n sub-channels, there is one
sub-channel in the honest receiver case which has capacity higher than some
sub-channel in the adversarial receiver case.

The next question is: for what (α, β) does there exist a λ such that C∗ > C̃?

In the following lemma, we show that, if α < `(β) :=
(
1 + (4β(1− β))−1/2

)−1
,

then such a λ exists.
For α = 1/3 and β = 1/6, Fig. 4 explains the receiver identifiable decompo-

sition of Cα,β for increasing values of λ until C∗ > C̃.

10 If s has equal number of 0s and 1s, then we define id(s) := |s| /2.



Lemma 1. For constants 0 < α < `(β) :=
(
1 + (4β(1− β))−1/2

)−1
, given an

(α, β)-BSC, there exists a constant λ ∈ N such that it is possible for the receiver
to sender-obliviously construct channels where the maximum capacity C∗ of one
sub-channel in the honest receiver case, over α-BSC, is greater than the average
capacity C̃ of all sub-channels in the adversarial receiver case, over β-BSC.

Consider an elastic binary symmetric channel (α, β)-BSC. For a given a value
of λ ∈ N, define π : {0, 1} → {0, 1}λ as π(b) = bλ (i.e. λ repetitions of the
bit b). Corresponding to this, we obtain channels (V, V̂ ) corresponding to the
honest and adversarial receiver respectively. We have C∗ = 1 − h(α

(λ)
0 ) and

C̃ = 1 −
∑
i∈[b[λ/2]+1] p

(λ)
i (β)h(β

(λ)
i ). Define two functions: h∗(x(λ)) := h(x

(λ)
0 )

and h̃(x(λ)) :=
∑
i∈[b[λ/2]+1] p

(λ)
i (x)h(x

(λ)
i ). Note that C∗ = 1 − h∗(α(λ)) and

C̃ = 1− h̃(β(λ)). Consider the following manipulation:

h̃(x(λ)) =
∑
i∈S

p
(λ)
i (x)h(x

(λ)
i ) > 2

∑
i∈S

p
(λ)
i (x) · x(λ)i

= 2
∑
i∈S

(
λ
i

)
xi(1− x)i · xλ−2i =

∑
i∈S

(
λ
i

)
xλ−i(1− x)i

This is a binomial distribution with mean (1−x)λ. By using anti-concentration
bound from [15]):

h̃(x(λ)) >
1

λ2
exp (−λDKL (1/2‖x))

= h

(
h−1

(
1

λ2 exp (λDKL (1/2‖x))

))
Next, we use the inequality h−1(x) > x/ (2 log(6/x)) from [9]. Set t(x) =

x/ (2 log(6/x)). This gives h̃(x(λ)) > h
(
t
(

1
λ2 exp(λDKL(1/2‖x))

))
. For any x ∈

(0, 1/2), consider λ→∞. We analyze the behavior of t
(

1
λ2 exp(λDKL(1/2‖x))

)
.

Define a such that: 1
λ3 exp(λDKL(1/2‖x))polylog(λ) 6 t

(
1

λ2 exp(λDKL(1/2‖x))

)
=: 1

1+( 1
a−1)

λ =

h∗(a(λ)) Observe that under these conditions a → a∗ := 1
1+exp(DKL(1/2‖x)) =

1
1+ 1√

4x(1−x)
. Now for any fixed x and y < a∗ (as defined above), for all suffi-

ciently large λ ∈ N we have h̃(x(λ)) > h∗(y(λ)).

This shows that for 0 < β 6 α <
(
1 + (4β(1− β))−1/2

)−1
, there exists a

constant λα,β such that for λ > λα,β we have h̃(β(λ)) > h∗(α(λ)), i.e. C∗ > C̃.
Furthermore, this bound is tight.

3.2 Semi-honest completeness of (α, β)-BSC for 0 < β 6 α < `(β)

Consider the channel Vε (parameterized by λ ∈ N) which on input a bit b, passes
bλ through (ε-BSC)⊗λ. Then, for the channels (V, V̂ ) constructed by sending a λ-



repetition code via an (α, β)-BSC, let C∗ := maxj∈Supp(J) I(Vj) and C̃ := I(V̂ ).
We use Lemma 1 to compute λα,β corresponding to α, β where 0 < β 6 α < `(β),
such that C∗ > C̃, and use the capacity-inverting encoding πα,β(b) = bλα,β . For
ease of notation, we will use λ to represent λα,β .

Let n be an integer, such that n = 1
αλ+(1−α)λ−ε , where ε ∈ (0, α

λ+(1−α)λ/2).

Let δ = c∗h
c̃m
− 1. Pick a polar code of rational rate r where c̃m(1 + δ/3) <

r < c̃m(1 + 2δ/3), and block-length κ/n. Let enc, dec denote the encoding and
decoding algorithms of this polar code. Then, Fig. 5 gives a protocol to UC-
securely realize n-choose-1 OT using an (α, β)-BSC, in the semi-honest setting.

Inputs: S has inputs (x1, x2, . . . xn) ∈ {0, 1}n, R has input choice c ∈ [n].
Hybrid: (α, β)-BSC for 0 < β 6 α < `(β).
The protocol is parameterized by κ, a multiple of n.

1. Correlation Generation:
For all i ∈ [κ2], S picks bit bi ∈ {0, 1} and sends bi,[λ] = bλi over the(
(α, β)-BSC⊗λ

)
to R. Let R obtain output b̃i,[λ].

2. Receiver Message:
Let I =

{
i : i ∈ [κ2] and b̃i,[λ] ∈ {0λ, 1λ}

}
. Set b̃i = b̃i,1 for all i ∈ I.

If |I| < κ2/n, abort. Else, let Sc
$←
(

I
κ2/n

)
and for all ` ∈ [n] \ {c},

set S`
$← [κ2] \ (Sc ∪ (S1 ∪ S2 ∪ · · ·S`−1)). For all ` ∈ [n], let S` =

{ind (`−1)κ2

n +1
, ind (`−1)κ2

n +2
, . . . ind `κ2

n

}. Send (S1, S2, . . . Sn) to S.
3. Sender Message:

For j ∈ [κ], ` ∈ [n], pick mj,`,[rκ/n]
$← {0, 1}rκ/n, compute m′j,`,[κ/n] =

enc(mj,`,[rκ/n]). For all j ∈ [κ], ` ∈ [n], i ∈ [κ/n], compute and send
yj,`,i = m′j,`,i ⊕ b̃ind (`−1)κ2

n
+

(j−1)κ
n

+i

.

For all ` ∈ [n], pick h`
$← H, a hash function from {0, 1}κ

2/n → {0, 1}.
Compute r` = h`(m1,`,[κ/n],m2,`,[κ/n], . . .mκ,`,[κ/n])⊕ x`.
For ` ∈ [n], send h`, r` to R.

4. Receiver Output:
For all j ∈ [κ] and i ∈ [κ/n], compute m′j,c,i = yj,c,i ⊕
b̃ind (c−1)κ2

n
+

(j−1)κ
n

+i

. Compute mj,c,[rκ/n] = dec(m′j,c,[κ/n]). Output xc =

hc(m1,c,[κ/n],m2,c,[κ/n], . . .mκ,c,[κ/n])⊕ rc.

Fig. 5: n-choose-1 bit OT from (α, β)-BSC for 0 < β 6 α < `(β).



Correctness. It is easy to see that the protocol correctly implements 2-choose-1
oblivious transfer.

Lemma 2. For all 0 < β 6 α < `(β), for all (x1, x2, . . . xn) ∈ {0, 1}n and
c ∈ [n], the output of R equals xc with probability at least (1− 2−κ

0.4

).

Proof. When the sender and the receiver are both honest, the expected fraction
of receiver outputs in {0λ, 1λ} is αλ + (1− α)λ − ε. Then, the probability that
the receiver obtains less than 1/n = αλ + (1− α)λ − ε outputs in {0λ, 1λ} is at

most 2
− ε2κ

αλ+(1−α)λ , by the Chernoff bound. Moreover, by Imported Theorem 1,
the decoding error when a code of block length κ/n is sent over κ channels at a
rate constant lower than capacity, is at most κ · 2−κ
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n .
It is easy to see that, conditioned on the receiver obtaining at least 1/n =

αλ + (1− α)λ − ε outputs in {0λ, 1λ} and no decoding error, the protocol is
always correct. Thus, the output of R equals xc with probability at least (1 −
2−κ

0.4

).

Receiver security The semi-honest simulation strategy SimS is given in Fig. 6.

The simulator SimS does the following.

1. Obtain inputs (x1, x2, . . . xn) from S.
2. Follow honest strategy: pick b[κ2]

$← {0, 1}κ
2

. Pass bλ[κ2] through an honest

emulation of ((α, β)-BSC)⊗λκ
2

to generate z[κ2],[λ], b̃[κ2],[λ].
3. Generate I =

{
i : i ∈ [κ2], b̃i,[λ] ∈ {0λ, 1λ}

}
. Set b̃i = b̃i,1 for all i ∈ I.

If |I| < κ2/n, then abortSim. Else send a random partition, S1, S2, . . . Sn of
[κ2] to S.

4. For j ∈ [κ] and ` ∈ [n], pick mj,`,[rκ/n]
$← {0, 1}rκ/n, compute m′j,`,[κ/n] =

enc(mj,`,[rκ/n]). For all j ∈ κ, ` ∈ [n] and i ∈ [κ/n], compute and send
yj,`,i = m′j,`,i ⊕ b̃ind (`−1)κ2

n
+

(j−1)κ
n

+i

.

For all ` ∈ [n], pick h $←H, a family of universal hash functions.
Compute r` =

(
h`(m1,`,[κ/n],m2,`,[κ/n], . . .mκ,`,[κ/n])

)
⊕ x`.

Fig. 6: Sender simulation strategy for n-choose-1 bit OT.

Lemma 3. The simulation error for the semi-honest sender is at most 1 −
2
− ε2κ

αλ+(1−α)λ .

Proof. The view of the sender is, VS := {(x1, x2, . . . xn), b[κ2], S1, S2, . . . Sn}.



First, the probability of abort in the real view is at most 2−
ε2κ

αλ+(1−α)λ . Note
that the simulator never aborts. But, conditioned on the receiver not aborting,
we argue that the simulated sender view is identical to the real view.

For all i ∈ [κ2], the probability that b̃i,[λ] ∈ {0λ, 1λ}, is an i.i.d. random
variable, over the randomness of the (α, β)-BSC as well as the receiver. For some
fixed size s such that κ2/n 6 s 6 κ2, in the view of the sender, I : |I| = s is a
random subset of [κ] of size s, and Sc is a random partition of I of size κ/2. The
other sets are a random partition of [κ2] \Sc, and thus all the sets are a random
equal partition of [κ2]. Thus, in this case the simulation is perfect.

Thus, the simulation error is exactly equal to the probability of abort, which

is at most 2−
ε2κ

αλ+(1−α)λ .

Sender security The semi-honest simulation strategy SimR is given in Fig. 7.

The simulator SimR does the following.

1. Obtain input choice bit c and output θ from R.
2. Pick b[κ2]

$←{0, 1}κ
2

.
Pass bλ[κ2] through an honest emulation of ((α, β)-BSC)⊗λ·κ

2

and generate
z[κ2],[λ], b̃[κ2],[λ].

3. Generate I =
{
i : i ∈ [κ2], b̃i ∈ {0λ, 1λ}

}
. Set b̃i = b̃i,1 for all i ∈ I.

Repeat until |I| > κ2/n. Set Sc
$←
(

I
κ2/n

)
. For all ` ∈ [n] \ {c},

set S`
$←
(
[κ2] \ (Sc ∪ S1 ∪ S2 ∪ . . . S`−1)

κ2/n

)
. For all ` ∈ [n], let S` =

{ind (`−1)κ2

n +1
, ind (`−1)κ2

n +2
, . . . ind `κ2

n

}.

4. Set xc = θ, and set x`
$←{0, 1} for all ` ∈ [n] \ {c}.

For j ∈ [κ] and ` ∈ [n], pick mj,`,[rκ/n]
$← {0, 1}rκ/n, compute m′j,`,[κ/n] =

enc(mj,`,[rκ/n]). For all j ∈ κ, ` ∈ [n] and i ∈ [κ/n], compute yj,`,i =

m′j,`,i ⊕ b̃ind (`−1)κ2

n
+

(j−1)κ
n

+i

.

For all ` ∈ [n], pick h $←H, a family of universal hash functions.
Compute r` =

(
h`(m1,`,[κ/n],m2,`,[κ/n], . . .mκ,`,[κ/n])

)
⊕ x`.

Fig. 7: Receiver simulation strategy for n-choose-1 bit OT.

Lemma 4. The simulation error for the semi-honest receiver is at most 2−κδ/4.

Proof. The view of the receiver VR := {c, θ, b̃[κ2],[λ], z[κ2],[λ], r0, r1}. The values
b̃[κ2],[λ], z[κ2],[λ] are generated using honest sender strategy. There is no abort
from the sender side in the (α, β)-BEC hybrid or the simulated view.



Consider channel Sc, composed of κ sub-channels of block-length (κ/n), each
of capacity c̃h. Recall that B → Z → B̃, where B,Z, B̃ are random variables
denoting the sender input, leakage and receiver output respectively. Thus, the
capacity of any sub-channel of Sc, can only increase when the receiver obtains
additional leakage. For a semi-honest receiver, the capacity of each sub-channel
of Sc is at least c̃h = c∗m(1 + δ) even when the receiver is adversarial and can
change channel characteristic. The channels S` for ` ∈ [n] \ {c} are constructed
by sampling sets of κ sub-channels at random, without replacement from the
remaining set. Since, the overall average capacity of the adversarial receiver
(semi-honest, but changes channel characteristic) is at most c∗m, the average
capacity of any sub-channel in this remaining set is at most c∗m(n−1−δ)/(n−1).
Then, there are at least a constant fraction (n− 1− δ)/(n− 1) sub-channels in
this remaining set, each with capacity at most c∗m < r.

Now, consider the event that there exists a channel S` for ` ∈ [n] \ {c},
such that for more than (κ−

√
κ) sub-channels in S`, the sub-channel capacity is

greater than c∗m. This event occurs with probability at most 2−κ/3. We argue that
conditioned on this event not happening, the simulated view is (n−1)2−κ/3-close
to the receiver view in the (α, β)-BSC hybrid.

For a channel with capacity c and a code of rate r > c, a weak converse of
Shannon’s channel coding theorem proves the decoding error is at least 1 − c

r ,
therefore the min-entropy is at least h2(1− c

r ). Then, an application of the Left-
over Hash Lemma gives us that for a randomly chosen universal hash function
h, if

√
κ sub-channels have constant min-entropy > δ/2, the hash value is at

least 2−κδ/3 close to uniform. Thus for all channels S` where ` ∈ [n] \ {c}, the
output r` is 2−κδ/3 close to uniform. Moreover, rc is computed using honest
sender strategy, so the random variable rc is identical in the (α, β)-BSC hybrid
and simulated views. Thus, the total simulation error is (n−1)2−κδ/3+2−κ/3 =
n2−κδ/3 < 2−κδ/4.

3.3 Special-Malicious Completeness of (α, β)-BSC for
0 < β 6 α < `(β)

In fact, it is not difficult to prove that the protocol in Fig. 5 yields (n, 1, n−1) OT
in a special-malicious setting. In this setting, the receiver is allowed to behave
maliciously, whereas the sender must (semi-)honestly send a repetition code in
the first step of the protocol, and after this step the sender is allowed to behave
maliciously. Please refer to the full version for a formal proof.

4 Full Malicious Completeness of Binary Symmetric
Channels

4.1 Fcom from (α, β)-BSC for 0 < β 6 α < 1/2

The protocol is presented in Fig. 8, in terms of a polar code C over the binary
alphabet, with block-length κ, rate 1− o(1) and minimum distance ω(κ4/5).



Inputs: S has input bit b ∈ {0, 1} and R has no input.
Hybrid: (α, β)-BSC for 0 < β 6 α < 1.
The protocol is parameterized by κ.

1. Commit Phase:
(a) For all i ∈ [κ], S picks codeword ci = (ci,1, ci,2, . . . ci,κ)

$←C, and sends
ci,[2] = (ci,1, ci,2, . . . ci,κ, ci,1, ci,2, . . . ci,κ) over the (α, β)-BSC to R. Let
R obtain c̃i,[2].

(b) S picks h $←H, a universal hash function family mapping {0, 1}κ
2

→
{0, 1}, and sends h, y = b⊕ h(c1, c2, . . . cκ) to R.

2. Reveal Phase:
(a) For all i ∈ [κ], S sends b, ci = (ci,1, ci,2, . . . ci,κ) to R.
(b) R accepts if all the following conditions hold:

– For all i ∈ [κ], ci is a valid codeword.
– For all i ∈ [κ], set Ii,1 = {j : (c̃i,j , c̃i,κ+j) = (1 − ci,j), (1 − ci,j)}.

Then |Ii,1| 6 (1− α)2(κ+ κ2/3).
– For all i ∈ [κ], set Ii,2 = {j : c̃i,j 6= c̃i,κ+j}. Then |Ii,2| 6 2α(1 −
α)(κ+ κ2/3).

– b = y ⊕ h(c1, c2, . . . cκ).

Fig. 8: UC-secure Fcom from (α, β)-BSC for 0 < β 6 α < 1.

Intuitively, the sender sends picks a codeword from the appropriate code
and sends a 2-repetition of the codeword over the BSC, to the receiver. The
commitment is statistically hiding because the capacity of the receiver is less
than the rate of the code, and therefore there is constant prediction error for
each codeword ci for i ∈ [κ]. The commitment is statistically binding because the
sender cannot flip too many bits, or send too many ‘bad’ indices to the receiver.
If he does, he will be caught with overwhelming probability. If he sends a few
bad/flipped bits, the minimum distance of the code will still hash them down to
the same value.

Correctness For honest sender strategy, using a Chernoff bound, it is possible
to show that the size of I1 and I2 is bounded by (1− α)2(κ+ κ2/3) and 2α(1−
α)(κ+κ2/3) with probability at least 1−2.2−κ/3. Thus, when S and R are both
honest, then R accepts Reveal(Commit(b)) for any b ∈ {0, 1} with probability at
least 1− 2−κ/4.

Receiver Security (Statistical Binding/Extractability) It suffices to con-
sider a dummy sender S and malicious environment ZS , such that the dummy
sender forwards all messages from ZS to the honest receiver/simulator, and vice-
versa.



Without loss of generality, the semi-honest simulation strategy SimS can be
viewed to interact directly with ZS . SimS is described in Fig. 9.

The simulator SimS does the following.

1. Commit Phase:
(a) For all i ∈ [κ], obtain h, y, ci,[2] from ZS .
(b) For all i ∈ [κ], compute the nearest codeword c̃i to ci =
{ci,1, ci,2 . . . ci,κ}.

(c) Extract bit b′ = y ⊕ h(c̃i, c̃2, . . . c̃κ) and send it to the ideal Fcom

functionality.
2. Reveal Phase:

(a) For all i ∈ [κ], obtain c′i from ZS .
(b) Allow the ideal functionality to output the extracted bit b′ if all the

following conditions hold (and otherwise reject):
– For all i ∈ [κ], c′i is a valid codeword.
– For all i ∈ [κ], set Ii,1 = {j : c′i,j 6= ci,j}. Then |Ii,1| 6 2κ2/3.
– For all i ∈ [κ], set Ii,2 = {j : ci,j 6= ci,κ+j}. Then |Ii,2| 6 2κ2/3.

Fig. 9: Sender simulation strategy for Fcom.

Lemma 5. The simulation error for the malicious sender is at most 2−κ
0.5

.

Proof. First, note that both the real and ideal views reject with probability
1 when c′i is not a valid codeword, for any i ∈ [κ]. Next, if |Ii,1| > 2κ2/3 or
|Ii,2| > 2κ2/3, then the real view rejects with probability at least (1 − 2−κ

2/3

),
whereas the ideal view always rejects.

Conditioned on the receiver not rejecting, it remains to argue that the bit
b′ extracted by the simulator (and later output to the receiver) is distributed
identically in the hybrid and ideal worlds. Conditioned on not rejecting, for each
i ∈ [κ], the distance between c′i and ci is at most |Ii,1| + |Ii,2| = 4κ2/3. Then,
because the code has minimum distance ω(κ4/5), the nearest codeword c̃i to ci is
actually c′i itself. Therefore, the bit b′ = y⊕h(c̃i, c̃2, . . . c̃κ) = y⊕h(c′1, c′2, . . . c′κ)
is distributed identically in the hybrid and ideal worlds in this case.

Thus the simulation error is at most 2.2−κ
2/3

< 2−κ
0.5

.

Sender Security (Statistical Hiding/Equivocability) It suffices to con-
sider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest receiver/simulator, and
vice-versa.

Without loss of generality, the semi-honest simulation strategy SimR can be
viewed to interact directly with ZR. SimR is described in Fig. 10.



The simulator SimR does the following.

1. Commit Phase:
(a) Wait for the honest sender to send bit b′ to the ideal Fcom functionality.
(b) For all i ∈ [κ], pick codeword ci = (ci,1, ci,2, . . . ci,κ)

$← C, and send
ci,[2] = (ci,1, ci,2, . . . ci,κ, ci,1, ci,2, . . . ci,κ) over the (α, β)-BSC to R. Ob-
tain output c̃i,[2] and leakage z̃i,[2] for R.

(c) Pick h $←H, a universal hash function family mapping {0, 1}κ
2

→ {0, 1},
and send y = h(c1, c2, . . . cκ) to R.

2. Reveal Phase:
(a) Allow the ideal functionality to output the extracted bit b′.
(b) If b′ = 0, then output ci, c2, . . . cn to R.
(c) Else for all i ∈ [κ],

– Set codeword c′i = ci.
– Set Ii = {j : z̃i,j 6= z̃i,κ+j} (these are the erased indices).
– Flip c′i,j at random indices ind ∈ Ii, ensuring that c′i remains a

valid codeword.
(d) Check if h(c′1, c′2, . . . c′κ) 6= h(c1, c2, . . . cκ). If not, repeat step (c).

Fig. 10: Receiver simulation strategy for Fcom.

Lemma 6. The simulation error for the malicious receiver is at most 2.2−κ.

Proof. For all i ∈ [κ] and honestly generated ci, the channel c̃i,[2] has a constant
fraction 2β(1 − β) bits of the form 01 or 10, which count as erasures. Thus,
the capacity of each such channel is at most 1 − 2β(1 − β). Since the rate of
the code sent over channel c̃i,[2] is 1 − o(1), the entropy in the received string
is at least 1 − 1−2β(1−β)

1−o(1) ≈ 2β(1 − β). Therefore, via the leftover hash lemma,
h(c1, c2, . . . cκ) is at least 1 − 2−κ close to uniform, and therefore, y is at least
1− 2−κ close to uniform.

Moreover, with probability at least 1− 2−κ, it is possible to efficiently find a
different set of codewords c′i which hash to a different bit, for the same output
c̃i and z̃i of the receiver.

4.2 Malicious completeness of (α, β)-BSC for 0 < β 6 α < `(β)

To make the protocol in Section 3.3 secure against a general malicious sender
instead of only a special-malicious one, we must ensure correctness of the rep-
etition code sent in Step 1 by the sender. To ensure this, we make use of the
commitment protocol Fcom.

The functionality Fcom can be constructed from any (α, β)-BSC as demon-
strated in Section 4.1. The sender and receiver use Fcom to toss random coins,
and then implement a cut-and-choose based protocol to implement Step 1 of
the special-malicious protocol. The protocol is presented in Fig. 11 in the Fcom



Inputs: S has inputs (x0, x1) ∈ {0, 1}2 and R has input choice bit c ∈ {0, 1}.
Hybrid: (α, β)-BSC for 0 < β 6 α < `(β).

1. Correlation Generation:
(a) Sender Message: For all i ∈ [κ6], S picks bit bi ∈ {0, 1} and sends

bi,[λ] = bλi over the (α, β)-BSC to R. Let R obtain output b̃i,[λ]. S
sends di = com(bi) to R.

(b) Coin tossing in the well: Parties S and R use Fcom to generate random
coins in the following manner. S picks random rS

$←{0, 1}κ
6

and sends
com(rS) to R. Then, R picks random rR

$←{0, 1}κ
6

and sends rR to S.
Then, S decommits to rS , and if accepted, both parties obtain shared
randomness r = rS ⊕ rR.

(c) Cut and Choose: Parties use randomness r to pick S $←
(
[κ6]
κ6/2

)
and

T
$←
(
[κ6] \ S
κ2

)
. S reveals bi for all i ∈ S. Let I = {i : b̃i 6= αλ}. R

aborts if |I| > (1− αλ)(κ6/2 + κ3.1).
Else, S and R use this set T , to continue the rest of the protocol
according to Fig. 5.

Fig. 11: 2-choose-1 bit OT from (α, β)-BSC for 0 < β 6 α < `(β).

and (α, β)-BSC hybrids. The protocol (including commitments) always uses the
(α, β)-BSC from the sender to the receiver. Since OT can be reversed, this demon-
strates fixed-role completeness of (α, β)-BSC for 0 < β 6 α < `(β). Step 1 of the
protocol in Section 3.3 is modified as follows.

Analysis. The sender and receiver use Fcom to toss common random coins.
In step 1, the sender sends λ-repetitions of κ6 bits over the (α, β)-BSC. Ad-

ditionally, he sends a commitment to each of these bits. Then, the parties pick
a random subset, consisting of half of the values sent in step 1, and the sender
is required to reveal these values.

Next, out of the remaining κ6/2 commitments, both parties pick a random
subset of size κ5. Then, with probability at least (1−1/κ), this subset is such that
at most κ3.1 of the values committed to do not match the repetition code (that
is, the statistical check would have passed passed). If the sender and receiver
pick a random set of κ2 random values out of this set of κ5 values, then with
probability at least (1− 1/κ1.2), all of them are correct repetition codes.

Therefore, we obtain a statistical OT which fails with probability at most
2/κ1.2, we call such a functionality that fails with vanishing probability, F

ÕT
(δ),

which is formally described in Fig. 12. This functionality F
ÕT

(δ), can then be
compiled using [34,32] to obtain constant-rate OT, following [40]. We provide
the details of this compiler in the full version.



This completes the proof of Theorem 1.

Functionality F
ÕT

(δ). Parameterized by a function δ(κ).

– Set b = 1 with probability b = δ(κ), otherwise set b = 0.
– Provide the parties access to a 2-choose-1 bit OT functionality. If b = 1,

let the adversary control the functionality.

Fig. 12: F
ÕT

(δ) Functionality

5 Conclusion

It is an interesting open problem to explore whether our completeness results
extend to parameters α > `(β), or if there are impossibility results for this
setting.

Unfair channels [22] give a theoretical model, general enough to capture many
realistic noisy channels. However, in light of strong impossibility results for the
completeness of unfair channels, we weaken the adversarial model resulting in
what we call elastic noisy channels.

We show that this model circumvents the impossibility results in the unfair
channel setting, and show a wide range of parameters for which elastic channels
can be used to securely realize OT. We believe our techniques are of independent
interest and can be leveraged, along with other ideas, to close the gap between
the known feasible and infeasible parameters in the unfair channel setting.

5.1 Sender-Elastic Channels Reduction to (Receiver-) Elastic
Channels

We can reduce sender-elastic BSC to a (receiver-) elastic BSC in the following
manner. Suppose Alice is the sender and sends a bit b through the sender-elastic
BSC. She receives a leakage b⊕E1, where E1 = Ber(β). Bob, the receiver, obtains
C = b⊕ E1 ⊕ E2, where E2 = Ber(γ) such that Ber(α) ≡ Ber(β) + Ber(γ).

We reverse this channel using the following technique. Bob defines T := C ⊕
R, where R is a uniform random bit, and sends T to Alice. Alice now defines
S := b⊕T . Now, interpret R as the bit sent and S as the received bit. It is clear
that this is a (α, γ)-BSC channel. And, it can also be formally argued that this
one-to-one transformation is tight.
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