
Randomness Complexity of Private Circuits for
Multiplication

Sonia Belaïd1,2, Fabrice Benhamouda1, Alain Passelègue1,
Emmanuel Prouff3,4, Adrian Thillard1,3, and Damien Vergnaud1

1 ENS, CNRS, INRIA, and PSL, Paris, France
{sonia.belaid,fabrice.benhamouda,alain.passelegue,

adrian.thillard,damien.vergnaud}@ens.fr
2 Thales Communications & Security

3 ANSSI, Paris, France
4 UPMC, POLSYS, LIP6, Paris, France

emmanuel.prouff@ssi.gouv.fr

Abstract. Many cryptographic algorithms are vulnerable to side chan-
nel analysis and several leakage models have been introduced to bet-
ter understand these flaws. In 2003, Ishai, Sahai and Wagner intro-
duced the d-probing security model, in which an attacker can observe
at most d intermediate values during a processing. They also proposed
an algorithm that securely performs the multiplication of 2 bits in this
model, using only d(d+1)/2 random bits to protect the computation. We
study the randomness complexity of multiplication algorithms secure in
the d-probing model. We propose several contributions: we provide new
theoretical characterizations and constructions, new practical construc-
tions and a new efficient algorithmic tool to analyze the security of such
schemes.
We start with a theoretical treatment of the subject: we propose an
algebraic model for multiplication algorithms and exhibit an algebraic
characterization of the security in the d-probing model. Using this char-
acterization, we prove a linear (in d) lower bound and a quasi-linear
(non-constructive) upper bound for this randomness cost. Then, we con-
struct a new generic algorithm to perform secure multiplication in the
d-probing model that only uses d+ d2/4 random bits.
From a practical point of view, we consider the important cases d ≤ 4
that are actually used in current real-life implementations and we build
algorithms with a randomness complexity matching our theoretical lower
bound for these small-order cases. Finally, still using our algebraic char-
acterization, we provide a new dedicated verification tool, based on in-
formation set decoding, which aims at finding attacks on algorithms for
fixed order d at a very low computational cost.
Keywords. Side-Channel Analysis, Probing Model, Randomness Com-
plexity, Constructions, Lower bounds, Probabilistic Method, Information
Set Decoding, Algorithmic Tool.

2 Sonia Belaïd et al.

1 Introduction

Most commonly used cryptographic algorithms are now considered secure against
classical black-box attacks, when the adversary has only knowledge of their in-
puts or outputs. Today, it is however well known that their implementations are
vulnerable to side-channel attacks, as revealed in the academic community by
Kocher in 1996 [16]. These attacks exploit the physical emanations of the under-
lying device such as the execution time, the device temperature, or the power
consumption during the algorithm execution.

To thwart side-channel attacks, many countermeasures have been proposed
by the community. Among them, the most widely deployed one is probably
masking (a.k.a. secret/processing sharing) [8, 13], which has strong links with
techniques usually applied in secure multi-party computation (see e.g., [5, 28])
or private circuits theory [15]. For many kinds of real-life implementations, this
countermeasure indeed demonstrated its effectiveness when combined with noise
and processing jittering. The idea of the masking approach is to split every single
sensitive variable/processing, which depends on the secret and on known vari-
ables, into several shares. Each share is generated uniformly at random except
the last one which ensures that the combination of all the shares is equal to the
initial sensitive value. This technique aims at making the physical leakage of one
variable independent of the secret and thus useless for the attacker. The tuple
of shares still brings information about the shared data but, in practice, the
leakages are noisy and the complexity of extracting useful information increases
exponentially with the number of shares, the basis of the exponent being related
to the amount of noise [8].

In order to formally prove the security of masking schemes, the community
has made important efforts to define leakage models that accurately capture
the leakage complexity and simultaneously enable to build security arguments.
In 2003, Ishai, Sahai, and Wagner introduced the d-probing model in which the
attacker can observe at most d exact intermediate values [15]. This model is
very convenient to make security proofs but does not fit the reality of embedded
devices which leak noisy functions of all their intermediate variables. In 2013,
Prouff and Rivain extended the noisy leakage model [23], initially introduced
by Chari et al. [8], to propose a new one more accurate than [15] but not very
convenient for security proofs. The two models [15] and [23] were later unified
by Duc, Dziembowski, and Faust [10] and Duc, Faust, and Standaert [11] who
showed that a security proof in the noisy leakage model can be deduced from
security proofs in the d-probing model. This sequence of works shows that prov-
ing the security of implementations in the d-probing model makes sense both
from a theoretical and practical point of view. An implementation secure in the
d-probing model is said to satisfy the d-privacy property or equivalently to be
d-private [15] (or secure at order d).

It is worth noting that there is a tight link between sharing techniques,
Multi Party Computation (MPC) and also threshold implementations [6, 7, 21].
In particular, the study in the classical d-probing security model can be seen
as a particular case of MPC with honest players. Furthermore, the threshold

Randomness Complexity of Private Circuits for Multiplication 3

implementations manipulate sharing techniques with additional restrictions to
thwart further hardware attacks resulting from the leakage of electronic glitches.
This problem can itself be similarly seen as a particular case of MPC, with
Byzantine players [17].

1.1 Our Problem

Since most symmetric cryptographic algorithms manipulate Boolean values, the
most practical way to protect them is generally to implement Boolean sharing
(a.k.a. high-order masking): namely, each sensitive intermediate result x is shared
into several pieces, say d+1, which are manipulated by the algorithm and whose
parity is equal to x. To secure the processing of a function f on a shared data,
one must design a so-called masking scheme (or formally a private circuit) that
describes how to build a sharing of f(x) from that of x while maintaining the
d-probing security.

In the context of Boolean sharing, we usually separate the protection of
linear functions from that of non-linear ones. In particular, at the hardware
level, any circuit can be implemented using only two gates: the linear XOR gate
and the non-linear AND gate. While the protection of linear operations (e.g.,
XOR) is straightforward since the initial function f can be applied to each share
separately, it becomes more difficult for non-linear operations (e.g., AND). In
these cases, the shares cannot be manipulated separately and must generally be
processed all together to compute the correct result. These values must then be
further protected using additional random bits which results in an important
timing overhead.

State-of-the-art solutions to implement Boolean sharing on non-linear func-
tions [9,25] have focused on optimizing the computation complexity. Surprisingly,
the amount of necessary random bits has only been in the scope of the seminal
paper of Ishai, Sahai and Wagner [15]. In this work, the authors proposed and
proved a clever construction (further referred to as ISW multiplication) allowing
to compute the multiplication of two shared bits by using d(d+1)/2 random bits,
that is, half as many random bits as the straightforward solution uses. Their con-
struction has since become a cornerstone of secure implementations [10,12,24,25].
Even if this result is very important, the quantity of randomness remains very
expensive to generate in embedded cryptographic implementations. Indeed, such
a generation is usually performed using a physical generator followed by a de-
terministic random bit generator (DRBG). In addition of being a theoretical
“chicken-and-egg” problem for this DRBG protection, in practice the physical
generator has often a low throughput and the DRBG is also time-consuming. In
general, for a DRBG based on a 128-bit block cipher, one call to this block cipher
enables to generate 128 pseudorandom bits5 (see [2]). However, one invocation
of the standard AES-128 block cipher with the ISW multiplication requires as

5 Actually, the generation of pseudorandom bits roughly corresponds to the execution
of a block cipher but we should also consider the regular internal state update.

4 Sonia Belaïd et al.

much as 30,720 random bits (6 random bytes per multiplication, 4 multiplica-
tions per S-box [25]) to protect the multiplications when masked at the low order
d = 3, which corresponds to 240 preliminary calls to the DRBG.

1.2 Our Contributions

We analyze the quantity of randomness required to define a d-private multipli-
cation algorithm at any order d. Given the sharings a = (ai)0≤i≤d, b = (bi)0≤i≤d
of two bits a and b, the problem we tackle out is to find the minimal number of
random bits necessary to securely compute a sharing (ci)0≤i≤d of the bit c = ab
with a d-private algorithm. We limit our scope to the construction of a multipli-
cation based on the sum of shares’ products. That is, as in [15], we start with
the pairwise products of a’s and b’s shares and we work on optimizing their sum
into d+ 1 shares with as few random bits as possible. We show that this reduces
to studying the randomness complexity of some particular d-private compression
algorithm that securely transforms the (d+1)2 shares’ products into d+1 shares
of c. In our study we make extensive use of the following theorem that gives an
alternative characterization of the d-privacy:
Theorem 7 (informal). A compression algorithm is d-private if and only if
there does not exist a set of ` intermediate results {p1, . . . , p`} such that ` ≤ d

and
∑`
i=1 pi can be written as aᵀ ·M · b with M being some matrix such that

the all-ones vector is in the row space or in the column space of M .

From this theorem, we deduce the following lower bound on the randomness
complexity:
Theorems 13–14 (informal). If d ≥ 3 (resp. d = 2), then a d-private com-
pression algorithm for multiplication must involve at least d + 1 random bits
(resp. 2).

This theorem shows that the randomness complexity is in Ω(d). Following
the probabilistic method, we additionally prove the following theorem which
claims that there exists a d-private multiplication algorithm with randomness
complexity O(d · log d). This provides a quasi-linear upper bound O(d · log d) for
the randomness complexity, when d→∞.
Theorem 16 (informal). There exists a d-private multiplication algorithm
with randomness complexity O(d · log d), when d→∞.

This upper bound is non-constructive: we show that a randomly chosen mul-
tiplication algorithm (in some carefully designed family of multiplication algo-
rithms using O(d·log d) random bits) is d-private with non-zero probability. This
means that there exists one algorithm in this family which is d-private.

In order to explicitly construct private algorithms with low randomness, we
analyze the ISW multiplication to bring out necessary and sufficient conditions
on the use of the random bits. In particular, we identify necessary chainings and
we notice that some random bits may be used several times at several locations to
protect more shares’ products, while in the ISW multiplication, each random bit

Randomness Complexity of Private Circuits for Multiplication 5

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

masking order d

ra
nd

om
ne

ss
co

m
pl

ex
ity

ISW ([15])
lower bound (Section 4)

new construction (Section 5)
small programs (Section 6)

Fig. 1: Randomness complexity of d-private multiplication algorithms

is only used twice. From this analysis, we deduce a new d-private multiplication
algorithm requiring bd2/4c+ d random bits instead of d(d+ 1)/2. As a positive
side-effect, our new construction also reduces the algorithmic complexity of ISW
multiplication (i.e., its number of operations).

Based on this generic construction, we then try to optimize some widely used
small order instances. In particular, we bring out new multiplication algorithms,
for the orders d = 2, 3 and 4, which exactly achieve our proven linear lower bound
while maintaining the d-privacy. Namely, we present the optimal multiplication
algorithms for orders 2, 3 and 4 when summing the shares’ products into d+ 1
shares. We formally verify their security using the tool provided in [4]. Figure 1
illustrates the randomness complexity of our constructions (for general orders
d and small orders) and our lower bound. Note that while the ISW algorithm
was initially given for multiplications of bits, it was later extended by Rivain
and Prouff in [25] for any multiplication in F2n . In the following, for the sake of
simplicity, we refer to binary multiplications (n = 1) for our constructions, but
note that all of them can also be adapted to multiplication in F2n .

Contrary to the ISW algorithm, our new constructions are not directly com-
posable — in the sense of Strong Non-Interferent (SNI) in [3] — at any order.
Fortunately, they can still be used in compositions instead of the ISW algorithms
at carefully chosen locations. In this paper, we thus recall the different security
properties related to compositions and we show that in the AES example, our
new constructions can replace half the ISW ones while preserving the d-privacy
of the whole algorithm.

6 Sonia Belaïd et al.

Finally, while the tool provided in [4] — which is based on Easycrypt —
is able to reveal potential attack paths and formally prove security in the d-
probing model with full confidence, it is limited to the verification of small
orders (d = 6 in our case). Therefore, we propose a new dedicated probabilistic
verification tool, which aims at finding attacks in fixed order private circuits (or
equivalently masking schemes) at a very low cost. The tool [1] is developed in
Sage (Python) [27] and though less generic than [4] it is order of magnitudes
faster. It relies on some heuristic assumption (i.e. it cannot be used to actually
prove the security) but it usually finds attacks very swiftly for any practical
order d. It makes use of information set decoding (a technique from coding
theory introduced to the cryptographic community for the security analysis of
the McEliece cryptosystem in [20,22]).

2 Preliminaries

This section defines the notations and basic notions that we use in this paper,
but also some elementary constructions we refer to. In particular, we introduce
the notion of d-private compression algorithm for multiplication and we present
its only concrete instance which was proposed by Ishai, Sahai, and Wagner [15].

2.1 Notation

For a set S, we denote by |S| its cardinality, and by s
$← S the operation of

picking up an element s of S uniformly at random. We denote by Fq the finite
field with q elements. Vectors are denoted by lower case bold font letters, and
matrices are denoted by upper case bold font letters. All vectors are column
vectors unless otherwise specified. The kernel (resp. the image) of the linear
map associated to a matrix M is denoted by ker(M) (resp. im(M)). For a
vector x, we denote by xi its i-th coordinate and by hw(x) its Hamming weight
(i.e., the number of its coordinates that are different from 0).

For any fixed n ≥ 1, let Un ∈ Fn×n2 denote the matrix whose coefficients ui,j
equal 1 for all 1 ≤ i, j ≤ n. Let 0n,` ∈ Fn×`2 denote the matrix whose coefficients
are all 0. Let un ∈ Fn2 denote the vector (1, . . . , 1)ᵀ and 0n ∈ Fn2 denote the
vector (0, . . . , 0)ᵀ. For vectors x1, . . . ,xt in Fn2 we denote 〈x1, . . . ,xt〉 the vector
space generated by the set {x1, . . . ,xt}.

We say that an expression f(x1, . . . , xn, r) functionally depends on the vari-
able r if there exists a1, . . . , an such that the function r 7→ f(a1, . . . , an, r) is not
constant.

For an algorithm A, we denote by y ← A(x1, x2, . . .) the operation of running
A on inputs (x1, x2, . . .) and letting y denote the output. Moreover, if A is
randomized, we denote by y $← A(x1, x2, . . . ; r) the operation of running A on
inputs (x1, x2, . . .) and with uniform randomness r (or with fresh randomness
if r is not specified) and letting y denote the output. The probability density
function associated to a discrete random variable X defined over S (e.g., F2) is
the function which maps x ∈ S to Pr [X = x]. It is denoted by {X} or by {X}r

Randomness Complexity of Private Circuits for Multiplication 7

if there is a need to precise the randomness source r over which the distribution
is considered.

2.2 Private Circuits

We examine the privacy property in the setting of Boolean circuits and start
with the definition of circuit and randomized circuit given in [15]. A deterministic
circuit C is a directed acyclic graph whose vertices are Boolean gates and whose
edges are wires. A randomized circuit is a circuit augmented with random-bit
gates. A random-bit gate is a gate with fan-in 0 that produces a random bit and
sends it along its output wire; the bit is selected uniformly and independently of
everything else afresh for each invocation of the circuit. From the two previous
notions, we may deduce the following definition of a private circuit inspired
from [14].

Definition 1. [14] A private circuit for f : Fn2 → Fm2 is defined by a triple
(I, C,O), where

– I: Fn2 → Fn′2 is a randomized circuit with uniform randomness ρ and called
input encoder;

– C is a randomized boolean circuit with input in Fn′2 , output in Fm′2 , and
uniform randomness r ∈ Ft2;

– O: Fm′2 → Fm2 is a circuit, called output decoder.

We say that C is a d-private implementation of f with encoder I and decoder O
if the following requirements hold:

– Correctness: for any input w ∈ Fn2 , Pr [O(C(I(w; ρ); r)) = f(w)] = 1, where
the probability is over the randomness ρ and r;

– Privacy: for any w,w′ ∈ Fn2 and any set P of d wires in C, the distributions
{CP (I(w; ρ); r)}ρ,r and {CP (I(w′; ρ); r)}ρ,r are identical, where CP (I(w; ρ); r)
denotes the list of the d values on the wires from P .

Remark 2. It may be noticed that the notions of d-privacy and of security in the
d-probing model used, e.g., in [4] are perfectly equivalent.

Unless noted otherwise, we assume I and O to be the following canonical
encoder and decoder: I encodes each bit-coordinate b of its input w by a block
(bj)0≤j≤d of d + 1 random bits with parity b, and O takes the parity of each
block of d + 1 bits. Each block (bj)0≤j≤d is called a sharing of b and each bj is
called a share of b.

From now on, the wires in a set P used to attack an implementation are
referred as the probes and the corresponding values in CP (I(w; ρ); r) as the
intermediate results. To simplify the descriptions, a probe p is sometimes used
to directly denote the corresponding result. A set of probes P such that the
distributions {CP (I(w; ρ); r)}ρ,r and {CP (I(w′; ρ); r)}ρ,r are not identical for
some inputs w,w′ ∈ Fn2 shall be called an attack. When the inputs w are clear
from the context, the distribution {CP (I(w; ρ); r)}ρ,r is simplified to {(p)p∈P }.

8 Sonia Belaïd et al.

We now introduce the notions of multiplication algorithm and of d-compression
algorithm for multiplication. In this paper, we deeply study d-private multipli-
cation algorithms and d-private compression algorithms for multiplication.

Definition 3. A multiplication algorithm is a circuit for the multiplication of
2 bits (i.e., with f being the function f : (a, b) ∈ F2

2 7→ a · b ∈ F2), using the
canonical encoder and decoder.

Before moving on to the next notion, let us first introduce a new particular
encoder, called multiplicative, which has been used in all the previous attempts
to build a d-private multiplication algorithm. This encoder takes as input two
bits (a, b) ∈ F2

2, runs the canonical encoder on these two bits to get d+1 random
bits (a0, . . . , ad) and (b0, . . . , bd) with parity a and b respectively, and outputs
the (d+ 1)2 bits (αi,j)0≤i,j≤d with αi,j = ai · bj . Please note that, in particular,
we have a · b = (

∑d
i=0 ai) · (

∑d
i=0 bi) =

∑
0≤i,j≤d αi,j .

Definition 4. A d-compression algorithm for multiplication is a circuit for the
multiplication of 2 bits (i.e., with f being the function f : (a, b) ∈ F2

2 7→ a·b ∈ F2),
using the canonical decoder and the multiplicative encoder. Moreover, we restrict
the circuit C to only perform additions in F2.

When clear from the context, we often omit the parameter d and simply say
“a compression algorithm for multiplication”.

Remark 5. Any d-compression algorithm for multiplication yields a multiplica-
tion algorithm, as the algorithm can start by computing αi,j given its inputs
(a0, . . . , ad, b0, . . . , bd).

Proposition 6. A multiplication algorithm B constructed from a d-compression
algorithm for multiplication A (as in Remark 5) is d-private if and only if the
compression algorithm A is d-private.

Clearly if B is d-private, so is A. However, the converse is not straightforward,
as an adversary can also probe the input shares ai and bi in B, while it cannot in
A. The full proof is given in the full version of this paper and is surprisingly hard:
we actually use a stronger version of our algebraic characterization (Theorem 7).
In the remaining of the paper, we focus on compression algorithms and we do
not need to consider probes of the input shares ai and bi, which makes notation
much simpler.

In the sequel, a d-compression algorithm for multiplication is denoted by
A(a, b; r) with r denoting the tuple of uniform random bits used by the algo-
rithm and with a (resp. b) denoting the vector of d+1 shares of the multiplication
operand a (resp. b).

The purpose of the rest of this paper is to investigate how much randomness
is needed for such an algorithm to satisfy the d-privacy and to propose efficient
or optimal constructions with respect to the consumption of this resource. The
number of bits involved in an algorithm A(a, b; r) (i.e., the size of r) is called
its randomness complexity or randomness cost.

Randomness Complexity of Private Circuits for Multiplication 9

Algorithm 1 ISW algorithm
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d

for i = 0 to d do
for j = i+ 1 to d do

ri,j
$← F2; ti,j ← ri,j ; tj,i ← ri,j + αi,j + αj,i

ci ← αi,i
for i = 0 to d do

for j = 0 to d do
if i 6= j then

ci ← ci + ti,j

2.3 ISW Algorithm
The first occurrence of a d-private compression circuit for multiplication in the
literature is the ISW algorithm, introduced by Ishai, Sahai, and Wagner in [15].
It is described in Algorithm 1. Its randomness cost is d(d+ 1)/2.

To better understand this algorithm, let us first write it explicitly for d = 3:

c0 ← α0,0 + r0,1 + r0,2 + r0,3

c1 ← α1,1 + (r0,1 + α0,1 + α1,0) + r1,2 + r1,3

c2 ← α2,2 + (r0,2 + α0,2 + α2,0) + (r1,2 + α1,2 + α2,1) + r2,3

c3 ← α3,3 + (r0,3 + α0,3 + α3,0) + (r1,3 + α1,3 + α3,1) + (r2,3 + α2,3 + α3,2)

where, for the security to hold, the terms are added from left to right and where
the brackets indicate the order in which the operations must be performed (from
d-privacy point of view, the addition is not commutative). In particular, when
the brackets gather three terms (e.g., (r0,1 +α0,1 +α1,0)), the attacker is allowed
to probe two values from left to right (e.g., r0,1 + α0,1 and (r0,1 + α0,1 + α1,0)).

Let us now simplify the description by removing all the + symbols, the
assignments ci ←, and defining α̂i,j as αi,j + αj,i if i 6= j and αi,i if i = j. The
ISW algorithm for d = 3 can then be rewritten as:

α̂0,0 r0,1 r0,2 r0,3
α̂1,1 (r0,1 α̂0,1) r1,2 r1,3
α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3
α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3).

Please note that the expression of α̂i,j with i 6= j (i.e. αi,j + αj,i) is expanded
before the actual evaluation, i.e., as in the previous representation, the sum
αi,j + αj,i is not evaluated beforehand but evaluated during the processing of
ri,j + α̂i,j = ri,j + αi,j + αj,i.

3 Algebraic Characterization

In order to reason about the required quantity of randomness in d-private com-
pression algorithms for multiplication, we define an algebraic condition on the

10 Sonia Belaïd et al.

security and we prove that an algorithm is d-private if and only if there is no set
of probes which satisfies it.

3.1 Matrix Notation

As our condition is algebraic, it is practical to introduce some matrix notation
for our probes. We write a = (a0, . . . , ad)ᵀ and b = (b0, . . . , bd)ᵀ the vectors
corresponding to the shares of the inputs a and b respectively. We also denote
by r = (r1, . . . , rR)ᵀ the vector of the random bits.

We remark that, for any probe p on a compression algorithm for multipli-
cation, p is always an expression that can be written as a sum of αi,j ’s (with
αi,j = ai · bj) and rk’s, and possibly a constant cp ∈ F2. In other word, we can
write p as

p = aᵀ ·Mp · b+ sp
t · r + cp,

withMp being a matrix in F(d+1)×(d+1)
2 and sp being a vector in FR2 . This matrix

Mp and this vector sp are uniquely defined. In addition, any sum of probes can
also be written that way.

Furthermore, if cp = 1, we can always sum the probe with 1 and consider
p+1 instead of p. This does not change anything on the probability distribution
we consider. Therefore, for the sake of simplicity, we always assume cp = 0 in all
the paper.

3.2 Algebraic Condition

We now introduce our algebraic condition:

Condition 1. A set of probes P = {p1, . . . , p`} on a d-compression algorithm
for multiplication satisfies Condition 1 if and only if the expression f =

∑`
i=1 pi

can be written as f = aᵀ ·M · b with M being some matrix such that ud+1 is
in the row space or the column space of M .

As seen previously, the expression f can always be written as

f = aᵀ ·M · b+ sᵀ · r,

for some matrixM and some vector s. Therefore, what the condition enforces is
that s = 0R (or in other words, f does not functionally depend on any random
bit) and the column space or the row space of M contains the vector ud+1.
A Weaker Condition. To better understand Condition 1, let us introduce a
weaker condition which is often easier to deal with:

Condition 2 (weak condition). A set of probes P = {p1, . . . , p`} on a d-
compression algorithm for multiplication satisfies Condition 2 if and only if the
expression f =

∑`
i=1 pi does not functionally depend on any rk and there exists

a map γ: {0, . . . , d} → {0, . . . , d} such that f does functionally depend on every
(αi,γ(i))0≤i≤d or on every (αγ(i),i)0≤i≤d.

Randomness Complexity of Private Circuits for Multiplication 11

This condition could be reformulated as f =
∑`
i=1 pi functionally depends on

either all the ai’s or all the bi’s and does not functionally depend on any rk. It
is easy to see that any set P verifying Condition 1 also verifies Condition 2.

3.3 Algebraic Characterization

Theorem 7. Let A be a d-compression algorithm for multiplication. Then, A
is d-private if and only if there does not exist a set P = {p1, . . . , p`} of ` ≤ d
probes that satisfies Condition 1. Furthermore any set P = {p1, . . . , p`} satisfying
Condition 1 is an attack.

Please note that Theorem 7 would not be valid with Condition 2 (instead of
Condition 1). A counterexample is given in the full version of this paper.

Proof (Theorem 7).
Direction 1: Left to right.We prove hereafter that if A is d-private, then there
does not exist a set P = {p1, . . . , p`} of ` ≤ d probes that satisfies Condition 1.

By contrapositive, let us assume that there exists a set P = {p1, . . . , p`} of
at most d probes that satisfies Condition 1. Let M be the matrix such that
f =

∑`
i=1 pi = aᵀ ·M ·b and let us assume, without loss of generality, that ud+1

is in the vector subspace generated by the columns of M . We remark that, for
any v ∈ Fd+1

2 :

Pr [aᵀ · v = a] =
{

1 when v = ud+1
1
2 when v 6= ud+1

by definition of the sharing a of a (probability is taken over a). Thus we have,
when a = 0 (assuming that b is uniformly random)

Pr [f = 0 | a = 0]
= Pr [aᵀ ·M · b = 0 | aᵀ · ud+1 = 0]
= Pr [aᵀ · ud+1 = 0 | a = 0 and M · b = ud+1] · Pr [M · b = ud+1]

+
∑

v∈Fd+1
2 \{ud+1} Pr [aᵀ · v = 0 | a = 0 and M · b = v] · Pr [M · b = v]

= 1 · Pr [M · b = ud+1] +
∑

v∈Fd+1
2 \{ud+1}

1
2 · Pr [M · b = v]

= 1 · Pr [M · b = ud+1] + 1
2 (1− Pr [M · b = ud+1])

= 1
2 + 1

2 Pr [M · b = ud+1].

Similarly, when a = 1, we have

Pr [f = 0 | a = 1] = 1
2 −

1
2 Pr [M · b = ud+1].

As ud+1 is in the column space ofM , the distribution of {f} is not the same
when a = 0 and when a = 1. This implies that the distribution {(p1, . . . , p`)} is
also different when a = 0 and a = 1. Hence A is not d-private.

This concludes the proof of the first implication and the fact that any set
P = {p1, . . . , p`} satisfying Condition 1 is an attack.

12 Sonia Belaïd et al.

Direction 2: Right to left. Let us now prove by contradiction that if there
does not exist a set P = {p1, . . . , p`} of ` ≤ d probes that satisfies Condition 1,
then A is d-private.

Let us assume that A is not d-private. Then there exists an attack using a set
of probes P = {p1, . . . , p`} with ` ≤ d. This is equivalent to say that there exists
two inputs (a(0), b(0)) 6= (a(1), b(1)) such that the distribution {(p1, . . . , p`)} is
not the same whether (a, b) = (a(0), b(0)) or (a, b) = (a(1), b(1)).

We first remark that we can consider 0 = a(0) 6= a(1) = 1, without loss of
generality as the a(i)’s and the b(i)’s play a symmetric role (and (a(0), b(0)) 6=
(a(1), b(1))). Furthermore, we can always choose b(0) = b(1), as if the distribution
{(p1, . . . , p`)} is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(1)), with
b(0) 6= b(1), then:
– it is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (in which case,

we could have taken b(1) = b(0)), or
– it is not the same whether (a, b) = (1, b(0)) or (a, b) = (1, b(1)) (in which case,

we can just exchange the a’s and the b’s roles).

To summarize, there exists b(0) such that the distribution {(p1, . . . , p`)} is not
the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)).

In the sequel b(0) is fixed and we call a tuple (p1, . . . , p`) satisfying the pre-
vious property an attack tuple.

We now remark that if ` = 1 or if even the distribution {(
∑`
i=1 pi)} is not

the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (i.e., (
∑`
i=1 pi) is an attack

tuple), then it follows easily from the probability analysis of the previous proof
for the other direction of the theorem, that the set P satisfies Condition 1. The
main difficulty is that it is not necessarily the case that ` = 1 or (

∑`
i=1 pi) is an

attack tuple. To overcome it, we use linear algebra.
But first, let us introduce some useful notations and lemmas. We write p the

vector (p1, . . . , p`)ᵀ and we say that p is an attack vector if and only if (p1, . . . , p`)
is an attack tuple. Elements of p are polynomials in the ai’s, the bj ’s and the
rk’s.

Lemma 8. If p is an attack vector and N is an invertible matrix in F`×`2 , then
N · p is an attack vector.

Proof. This is immediate from the fact that N is invertible. Indeed, as a matrix
over F2, N−1 is also a matrix over F2. Hence, multiplying the set of probes
{N · p} by N−1 (which leads to the first set of probes {p}) can be done by
simply computing sums of elements in {N · p}. Hence, as the distribution of
{p} differs when (a, b) = (0, b(0)) and (a, b) = (1, b(0)), the same is true for the
distribution {N · p}. ut

We also use the following straightforward lemma.
Lemma 9. If (p1, . . . , p`) is an attack tuple such that the ` − t + 1 random
variables (p1, . . . , pt), pt+1, . . . , and p` are mutually independent, and the dis-
tributions of (pt+1, . . . , p`) is the same for all the values of the inputs (a, b), then
(p1, . . . , pt) is an attack tuple.

Randomness Complexity of Private Circuits for Multiplication 13

Let us consider the matrix S ∈ F`×R2 whose coefficients si,j are defined as
si,j = 1 if and only if the expression pi functionally depends on rj . In other
words, if we write pi = aᵀ ·Mpi · b+ spi

ᵀ · r, the i-th row of S is spi
ᵀ. We can

permute the random bits (i.e., the columns of S and the rows of r) such that a
row reduction on the matrix S yields a matrix of the form:

S′ =
(

0t,t 0t,`−t
It S′′

)
.

Let N be the invertible matrix in F`×`2 such that N · S = S′. And we write
p′ = (p′1, . . . , p′`)ᵀ = N · p. Then, p′ is also an attack vector according to
Lemma 8. In addition, for t < i ≤ `, p′i does functionally depend on ri and no
other p′j does functionally depend on rj (due to the shape of S′). Therefore,
according to Lemma 9, (p′1, . . . , p′t) is an attack tuple.

We remark that (p′1, . . . , p′t) does not functionally depend on any random bit,
due to the shape of S′. Therefore, for each 1 ≤ i ≤ t, we can write:

p′i = aᵀ ·M ′i · b,

for some matrix M ′i .
We now need a final lemma to be able to conclude.

Lemma 10. If (p′1, . . . , p′t) is an attack tuple, then there exists a vector b∗ ∈
Fd+1

2 such that ud+1 is in the vector space 〈M ′1 · b∗, . . . ,M ′t · b∗〉.

Proof. This lemma can be seen as a generalization of the probability analysis in
the proof of the first direction of the theorem.

We suppose by contradiction that (p′1, . . . , p′t) is an attack vector but there
does not exist a vector b∗ ∈ Fd+1

2 such that ud+1 is in the vector space 〈M ′1 ·
b∗, . . . ,M ′t ·b∗〉. Then, for any value a(0), any vector b(0) ∈ Fd+1

2 , and any vector
x = (x1, . . . , xt)ᵀ ∈ Ft2:

Pr
[

(p′1, . . . , p′t) = (x1, . . . , xt)
∣∣∣ a = a(0) and b = b(0)

]
= Pr

[
(aᵀ ·M ′1 · b

(0), . . . ,aᵀ ·M ′t · b
(0)) = (x1, . . . , xt)

∣∣∣ aᵀ · ud+1 = a(0)
]

= Pr
[
aᵀ ·B = xᵀ

∣∣∣ aᵀ · ud+1 = a(0)
]
,

where B is the matrix whose i-th column is the vector M ′i · b(0). To conclude,
we just need to remark that

Pr [aᵀ ·B = xᵀ | aᵀ · ud+1 = 0] = Pr [aᵀ ·B = xᵀ | aᵀ · ud+1 = 1],

which implies that the probability distribution of (p′1, . . . , p′t) is independent of
the value of a, which contradicts the fact the (p′1, . . . , p′t) is an attack tuple.

To prove the previous equality, we use the fact that ud+1 is not in the column
space of B and therefore the value of aᵀ · ud+1 is uniform and independent of
the value of aᵀ ·B (when a is a uniform vector in Fd+1

2). ut

14 Sonia Belaïd et al.

Thanks to Lemma 10, there exists a vector σ = (σ1, . . . , σt)ᵀ ∈ Ft2 and a
vector b∗ ∈ Fd+1

2 such that(
t∑
i=1

σi ·M ′i

)
· b∗ = ud+1 . (1)

Let σ′ be the vector in F`2 defined by σ′ᵀ =
(
σᵀ 0ᵀ

`−t
)
·N . We have:

σ′ᵀ · p =
t∑
i=1

σi · p′i =
t∑
i=1

σi · aᵀ ·M ′i · b = aᵀ ·

(
t∑
i=1

σi ·M ′i

)
· b . (2)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 1,
according to Equations (1) and (2).

This concludes the proof. ut

4 Theoretical Lower and Upper Bounds

In this section, we exhibit lower and upper bounds for the randomness com-
plexity of a d-private compression algorithm for multiplication. We first prove
an algebraic result and an intermediate lemma that we then use to show that
at least d + 1 random bits are required to construct a d-private compression
algorithm for multiplication, for any d ≥ 3 (and 2 random bits are required for
d = 2). Finally, we provide a (non-constructive) proof that for large enough d,
there exists a d-private multiplication algorithm with a randomness complexity
O(d · log d).

4.1 A Splitting Lemma

We first prove an algebraic result, stated in the lemma below, that we further
use to prove Lemma 12. The latter allows us to easily exhibit attacks in order
to prove our lower bounds.

Lemma 11. Let n ≥ 1. LetM0,M1 ∈ Fn×n2 such thatM0 +M1 = Un. Then,
there exists a vector v ∈ Fn2 such that:

M0 · v = un or M1 · v = un or Mᵀ
0 · v = un or Mᵀ

1 · v = un .

Proof (Lemma 11). We show the above lemma by induction on n.
Base case: for n = 1, M0,M1,U ∈ F2, so M0 + M1 = 1, which implies
M0 = 1 or M1 = 1 and the claim immediately follows.
Inductive case: let us assume that the claim holds for a fixed n ≥ 1. Let us
consider two matrices M0,M1 ∈ F(n+1)×(n+1)

2 such that M0 +M1 = Un+1.

Clearly, ifM0 (orM1) is invertible, then the claim is true (as un+1 is in its
range). Then, let us assume thatM0 is not invertible. Then, there exists a non-
zero vector x ∈ ker(M0). Now, as im(Un+1) = {0n+1,un+1}, ifUn+1·x = un+1,

Randomness Complexity of Private Circuits for Multiplication 15

then M1 · x = un+1 and the claim is true. Hence, clearly, the claim is true if
ker(M0) 6= ker(M1) (with the symmetric remark). The same remarks hold when
considering matrices Mᵀ

0 and Mᵀ
1 .

Hence, the only remaining case to consider is when ker(M0) 6= {0n+1},
ker(Mᵀ

0) 6= {0n+1} and when ker(M0) = ker(M1) and ker(Mᵀ
0) = ker(Mᵀ

1).
In particular, we have ker(M0) ⊆ ker(Un+1) and ker(Mᵀ

0) ⊆ ker(Un+1).
Let x ∈ ker(M0) (and then x ∈ ker(M1) as well) be a non-zero vector.

Up to some rearrangement of the columns of M0 and M1 (by permuting some
columns), we can assume without loss of generality that x = (1, . . . , 1, 0, . . . , 0)ᵀ.
Let X denote the matrix (x, e2, . . . , en+1) where ei = (0, . . . , 0, 1, 0, . . . , 0)ᵀ is
the i-th canonical vector of length n + 1, so that it has a 1 in the i-th position
and 0’s everywhere else.

Now, let y ∈ ker(Mᵀ
0) (and then y ∈ ker(Mᵀ

1) as well) be a non-zero vector,
so yᵀ ·Mᵀ

0 = 0ᵀ
n+1. Moreover, up to some rearrangement of the rows of M0

and M1, we can assume that y = (1, . . . , 1, 0, . . . , 0)ᵀ. Let Y denote the matrix
(y, e2, . . . , en+1).

Please note that rearrangements apply to the columns in the first case and
to the rows in the second case, so we can assume without loss of generality that
there exists both x ∈ ker(M0) and y ∈ ker(Mᵀ

0) with the above form and
matrices X and Y are well defined.

We now define the matricesM ′
0 = Y ᵀ ·M0 ·X andM ′

1 = Y ᵀ ·M1 ·X. We
have:

M ′
0 =

(
yᵀ

0n In

)
·M0 ·

(
x

0ᵀ
n

In

)
=
(
yᵀ

0n In

)
·
(

0n+1 M
(1)
0

)
where M (1)

0 is the matrix extracted from M0 by removing its first column.
Hence:

M ′
0 =

(
0 0ᵀ

n

0n M (1,1)
0

)
whereM (1,1)

0 is the matrix extracted fromM0 by removing its first column and
its first row. Similar equation holds for M ′

1 as well. Thus, it is clear that:

M ′
0 +M ′

1 =
(

0 0ᵀ
n

0n Un

)
.

Let us consider the matrices M ′′
0 and M ′′

1 in Fn×n2 that are extracted from
matrices M ′

0 and M ′
1 by removing their first row and their first column (i.e.,

M ′′
i = M

′(1,1)
i with the previous notation). Then, it is clear that M ′′

0 +M ′′
1 =

Un. As matrices in Fn×n2 , by induction hypothesis, there exists v′′ ∈ Fn2 such
that at least one of the 4 propositions from Lemma 11 holds. We can assume
without loss of generality that M ′′

0 · v′′ = un.

Let v′ =
(

0
v′′

)
∈ Fn+1

2 . Then, we have:

M ′
0 · v′ =

(
0 0ᵀ

n

0n M ′′
0

)
·
(

0
v′′

)
=
(

0n · v′′
M ′′

0 · v′′
)

=
(

0
un

)
.

16 Sonia Belaïd et al.

Now, let v = X · v′ and w = M0 · w, so Y ᵀ · w = Y ᵀ ·M0X · v′ =

M ′
0 · v′ =

(
0
un

)
. Moreover, as Y is invertible, w is the unique vector such that

Y ᵀ ·w =
(

0
un

)
. Finally, as the vector un+1 satisfies Y ᵀ · un+1 =

(
0
un

)
, then

w = un+1, and the claim follows for n+ 1, since v satisfiesM0 ·v = w = un+1.
Conclusion: The claim follows for any n ≥ 1, and so does Lemma 11. ut

We can now easily prove the following statement that is our main tool for
proving our lower bounds, as explained after its proof.

Lemma 12. Let A be a d-compression algorithm for multiplication. If there
exists two sets S1 and S2 of at most d probes such that si =

∑
p∈Si p does not

functionally depend on any of the random bits, for i ∈ {0, 1}, and such that
s0 + s1 = a · b, then A is not d-private.

Proof (Lemma 12). Let A, S0, S1, s0 and s1 defined in the above statement.
Then, there exists M i ∈ F(d+1)×(d+1)

2 such that si = aᵀ ·M i · b, for i ∈ {0, 1}.
Furthermore, as s0 +s1 = a ·b = aᵀ ·Ud+1 ·b, we haveM0 +M1 = Ud+1. Hence,
via Lemma 11, there exists v ∈ Fd+1

2 and i ∈ {0, 1} such that M i · v = ud+1 or
Mᵀ

i · v = ud+1. This means that ud+1 is in the row subspace or in the column
subspace ofM i, and therefore,Mi satisfies Condition 1. Therefore, as |Si| ≤ d,
applying Theorem 7, A is not d-private. Lemma 12 follows. ut

We use the above lemma to prove our lower bounds as follows: for proving
that at least R(d) random bits are required in order to achieve d-privacy for a
compression algorithm for multiplication, we prove that any algorithm with a
lower randomness complexity is not d-private by exhibiting two sets of probes
S0 and S1 that satisfy the requirements of Lemma 12.

4.2 Simple Linear Lower Bound

As a warm-up, we show that at least d random bits are required, for d ≥ 2.

Theorem 13. Let d ≥ 2. Let us consider a d-compression algorithm for multi-
plication A. If A uses only d− 1 random bits, then A is not d-private.

Proof (Theorem 13). Let r1, . . . , rd−1 denote the random bits used by A. Let
c0, . . . , cd denote the outputs of A. Let us define N ∈ F(d−1)×d

2 as the matrix
whose coefficients ni,j are equal to 1 if and only if cj functionally depends on
ri, for 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ d. Please note in particular that N does not
depend on c0.

As a matrix over F2 with d columns and d − 1 rows, there is necessarily a
vector w ∈ Fd2 with w 6= 0d such that N ·w = 0d−1.

The latter implies that the expression s0 =
∑d
i=1 wi · ci does not functionally

depend on any of the rk’s. Furthermore, by correctness, we also have that s1 =

Randomness Complexity of Private Circuits for Multiplication 17

c0 +
∑d
i=1(1 − wi) · ci does not functionally depend on any of the rk’s, and

s0 + s1 =
∑d
i=0 ci = a · b. Then, the sets of probes S0 = {ci | wi = 1} and S1 =

{c0} ∪ {ci | wi = 0} (whose cardinalities are at most d) satisfy the requirements
of Lemma 12, and then, A is not d-private. Theorem 13 follows. ut

4.3 Better Linear Lower Bound

We now show that at least d+ 1 random bits are actually required if d ≥ 3.

Theorem 14. Let d ≥ 3. Let us consider a d-compression algorithm for multi-
plication A. If A uses only d random bits, then A is not d-private.

The proof is given in the full version of this paper.

4.4 (Non-Constructive) Quasi-Linear Upper Bound

We now construct a d-private compression algorithm for multiplication which
requires a quasi-linear number of random bits. More precisely, we show that
with non-zero probability, a random algorithm in some family of algorithms
(using a quasi-linear number of random bits) is secure, which directly implies
the existence of such an algorithm. Note that it is an interesting open problem
(though probably difficult) to derandomize this construction.

Concretely, let d be some masking order and R be some number of random
bits (used in the algorithm), to be fixed later. For i = 0, . . . , d − 1 and j =
i+ 1, . . . , d, let us define ρ(i, j) as:

ρ(i, j) =
∑R
k=1 Xi,j,k · rk

with Xi,j,k
$← {0, 1} for i = 0, . . . , d−1, j = i+1, . . . , d and k = 1, . . . , R, so that

ρ(i, j) is a random sum of all the random bits r1, . . . , rR where each bit appears
in ρ(i, j) with probability 1/2. We also define Xd,d,k =

∑d−1
i=0

∑d
j=i+1 Xi,j,k and

ρ(d, d) as:
ρ(d, d) =

∑R
k=1 Xd,d,k · rk.

We generate a (random) algorithm as in Algorithm 2. This algorithm is
correct because the sum of all ρ(i, j) is equal to 0.

We point out that we use two kinds of random which should not be confused:
the R fresh random bits r1, . . . , rR used in the algorithm to ensure its d-privacy
(R is what we really want to be as low as possible), and the random variables
Xi,j,k used to define a random family of such algorithms (which are “meta”-
random bits). In a concrete implementation or algorithm, these latter values are
fixed.

Lemma 15. Algorithm 2 is d-private with probability at least

1−
(

(R+ 3) · d · (d+ 1)/2
d

)
· 2−R

over the values of the Xi,j,k’s.

18 Sonia Belaïd et al.

Algorithm 2 Random algorithm
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d

for i = 1 to R do
ri

$← F2

for i = 0 to d do
ci ← αi,i
for j = i+ 1 to d do

ci ← ci + ρ(i, j) + αi,j + αj,i . ρ(i, j) is not computed first
cd ← cd + ρ(d, d)

Proof (Lemma 15). In order to simplify the proof, we are going to show that,
with non-zero probability, there is no set of probes P = {p1, . . . , p`} with ` ≤ d
that satisfies Condition 2. In particular, this implies that, with non-zero proba-
bility, there is no set of probes P = {p1, . . . , p`} with ` ≤ d that satisfies Condi-
tion 1, which, via Theorem 7, is equivalent to the algorithm being d-private.

One can only consider sets of exactly d probes as if there is a set of ` < d
probes P ′ that satisfies Condition 2, one can always complete P ′ into a set P
with exactly d probes by adding d− ` times the same probe on some input αi,j
such that P ′ initially does not depend on αi,j . That is, ifM ′ denotes the matrix
such that

∑
p′∈P ′ p

′ = a ·M ′ · b, one could complete P ′ with any αi,j such that
m′i,j = 0, so that P , with

∑
p∈P p = a ·M · b still satisfies Condition 2 if P ′

initially satisfied the condition.
Thus, let us consider an arbitrary set of d probes P = {p1, . . . , pd} and let

us bound the probability that P satisfies Condition 2. Let f =
∑d
i=1 pi. Let us

first show that f has to contain at least one ρ(i, j) (meaning that it appears an
odd number of times in the sum). Let us assume the contrary, so f does not
contain any ρ(i, j). Every ρ(i, j) appears only once in the shares (in the share ci
precisely). Then, one can assume that every probe is made on the same share. Let
us assume (without loss of generality) that every probe is made on c0. If no probe
contains any ρ(0, j), then clearly P cannot satisfy Condition 2 as this means that
each probe contain at most one α0,j , to P cannot contain more than d different
α0,j . Hence, at least one (so at least two) probe contains at least one ρ(0, j). We
note that every probe has one of the following form: either it is exactly a random
rk, a share α0,j , a certain ρ(0, j), a certain ρ(0, j) + α0,j or ρ(0, j) + α0,j + αj,0,
or a subsum (starting from α0,0) of c0. Every form gives at most one α0,j with a
new index j except probes on subsums. However, in any subsum, there is always
a random ρ(i, j) between α0,j and α0,j+1 and one needs to get all the d+1 indices
to get a set satisfying Condition 2. Then, it is clear that one cannot achieve this
unless there is a ρ(i, j) that does not cancel out in the sum, which is exactly what
we wanted to show. Now, let 1 ≤ k ≤ R be an integer and let us compute the
probability (over the Xi,j,k’s) that f contains rk. There exists some set S of pairs
(i, j), such that f is the sum of

∑
(i,j)∈S Xi,j,k ·rk and some other expression not

containing any Xi,j,k ·rk. From the previous point, S is not empty. Furthermore,

Randomness Complexity of Private Circuits for Multiplication 19

as there are d + 1 outputs c0, . . . , cd and as there are only d probes, S cannot
contain all the possible pairs (i, j), and therefore, all the random variables Xi,j,k

for (i, j) ∈ S are mutually independent. Therefore,
∑

(i,j)∈S Xi,j,k is 1 with
probability 1/2 and f functionally depends on the random rk with probability
1/2. As there are R possible randoms, f does not functionally depend on any rk
(and then P satisfies Condition 2) with probability (1/2)R.

There are N possibles probes with

N ≤ d · (d+ 1)
2 +R+ (R+ 2) · d · (d− 1)

2 ≤ (R+ 3) · d · (d+ 1)
2

, as every ρ contains at most R random bits rk. Also, there are
(
N
d

)
possible sets

P = {p1, . . . , pd}. Therefore, by union bound, the above algorithm is not secure
(so there is an attack) with probability at most(

N

d

)
/2R ≤

(
(R+ 3) · d · (d+ 1)/2

d

)
· 2−R

which concludes the proof of Lemma 15. ut

Theorem 16. For some R = O(d · log d), there exists a choice of ρ(i, j) such
that Algorithm 2 is a d-private d-compression algorithm for multiplication, when
d→∞.

We just need to remark that for some R = O(d · log d), the probability that
Algorithm 2 is d-private, according to Lemma 15 is non-zero.

The full proof is given in the full version of this paper.

5 New Construction

The goal of this section is to propose a new d-private multiplication algorithm.
Compared to the construction in [15], our construction halves the number of
required random bits. It is therefore the most efficient existing construction of a
d-private multiplication.

Some rationales behind our new construction may be found in the two fol-
lowing necessary conditions deduced from a careful study of the original work of
Ishai, Sahai and Wagner [15].

Lemma 17. Let A(a, b; r) be a d-compression algorithm for multiplication. Let
f be an intermediate result taking the form f = aᵀ ·M · b+ sᵀ · r. Let t denote
the greatest Hamming weight of an element in the vector subspace generated by
the rows of M or by the columns of M . If hw(s) < t− 1, then A(a, b; r) is not
d-private.

Proof. By definition of s, the value aᵀ ·M ·b can be recovered by probing f and
then each of the hw(s) < t− 1 random bits on which sᵀ · r functionally depends
and by summing all these probes. Let P1 = {f, p1, . . . , pj} with j < t− 1 denote

20 Sonia Belaïd et al.

the set of these at most t− 1 probes. Then, we just showed that f +
∑j
i=1 pi =

aᵀ ·M · b.
To conclude the proof, we want to argue that there is a set of at most d−(t−1)

probes P2 = {p′1, . . . , p′k} such that f +
∑j
i=1 pi +

∑k
`=1 p

′
` = aᵀ ·M ′ · b, where

M ′ is a matrix such that ud+1 is in its row space or in its column space. If such
a set P2 exists, then the set of probes P1 ∪ P2 (whose cardinality is at most d)
satisfies Condition 1, and then A is not d-private, via Theorem 7.

We now use the fact that there is a vector of Hamming weight t in the row
space or in the column space of M . We can assume (without loss of generality)
that there exists a vector w ∈ Fd+1

2 of Hamming weight t in the column subspace
ofM , so thatw =

∑
j∈Jmj , with J ⊆ {0, . . . , d} andmj the j-th column vector

of M . Let i1, . . . , id+1−t denote the indices i of w such that wi = 0. Then, let
j ∈ J , we claim that P2 = {αi1,j , . . . , αid+1−t,j} allows us to conclude the proof.
Please note that all these values are probes of intermediate values of A.

Indeed, we have f+
∑j
i=1 pi+

∑d+1−t
k=1 αik,j = aᵀ ·M ′ ·b where all coefficients

of M ′ are the same as coefficients of M except for coefficients in positions
(i1, j), . . . , (id+1−t, j) which are the opposite, and now

∑
j∈Jm

′
j = ud+1, where

m′j is the j-th column vector of M ′. Lemma 17 easily follows. ut

In our construction, we satisfy the necessary condition in Lemma 17 by en-
suring that any intermediate result that functionally depends on t shares of a
(resp. of b) also functionally depends on at least t− 1 random bits.

The multiplication algorithm of Ishai, Sahai and Wagner is the starting point
of our construction. Before exhibiting it, we hence start by giving the basic ideas
thanks to an illustration in the particular case d = 6. In Fig. 2 we recall the
description of ISW already introduced in Section 2.3.

α̂0,0 r0,1 r0,2 r0,3 r0,4 r0,5 r0,6
α̂1,1 (r0,1 α̂0,1) r1,2 r1,3 r1,4 r1,5 r1,6
α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3 r2,4 r2,5 r2,6
α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3) r3,4 r3,5 r3,6
α̂4,4 (r0,4 α̂0,4) (r1,4 α̂1,4) (r2,4 α̂2,4) (r3,4 α̂3,4) r4,5 r4,6
α̂5,5 (r0,5 α̂0,5) (r1,5 α̂1,5) (r2,5 α̂2,5) (r3,5 α̂3,5) (r4,5 α̂4,5) r5,6
α̂6,6 (r0,6 α̂0,6) (r1,6 α̂1,6) (r2,6 α̂2,6) (r3,6 α̂3,6) (r4,6 α̂4,6) (r5,6 α̂5,6)

Fig. 2: ISW construction for d = 6, with α̂i,j = αi,j + αj,i

The first step of our construction is to order the expressions α̂i,j differ-
ently. Precisely, to compute the output share ci (which corresponds, in ISW,
to the sum ri,i,+

∑
j<i(rj,i + α̂j,i) +

∑
j>i ri,j from left to right), we process

ri,i,+
∑
j<d−i(ri,d−j + α̂i,j) +

∑
1≤j≤i rd−j,i from left to right. Of course, we also

put particular care to satisfy the necessary condition highlighted by Lemma 17.
This leads to the construction illustrated in Figure 3.

Then, the core idea is to decrease the randomness cost by reusing some well
chosen random bit to protect different steps of the processing. Specifically, for

Randomness Complexity of Private Circuits for Multiplication 21

α̂0,0 (r0,6 α̂0,6) (r0,5 α̂0,5) (r0,4 α̂0,4) (r0,3 α̂0,3) (r0,2 α̂0,2) (r0,1 α̂0,1)
α̂1,1 (r1,6 α̂1,6) (r1,5 α̂1,5) (r1,4 α̂1,4) (r1,3 α̂1,3) (r1,2 α̂1,2) r0,1
α̂2,2 (r2,6 α̂2,6) (r2,5 α̂2,5) (r2,4 α̂2,4) (r2,3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6) (r3,5 α̂3,5) (r3,4 α̂3,4) r2,3 r1,3 r0,3
α̂4,4 (r4,6 α̂4,6) (r4,5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r4,5 r3,5 r2,5 r1,5 r0,5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Fig. 3: First step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

any even positive number k, we show that replacing all the random bits ri,j
such that k = j − i with a fixed random bit rk preserves the d-privacy of ISW
algorithm. Note, however, that the computations then have to be performed
with a slightly different bracketing in order to protect the intermediate variables
which involve the same random bits. The obtained construction is illustrated in
Figure 4.

α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3 r3 r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r5 r5 r5 r5 r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Fig. 4: Second step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Finally, we suppress from our construction the useless repetitions of random
bits that appear at the end of certain computations. Hence, we obtain our new
construction, illustrated in Figure 5.

α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Fig. 5: Application of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Before proving that this scheme is indeed d-private, we propose a formal
description in Algorithm 3. As can be seen, this new scheme involves 3d2/2 +
d(d + 2)/4 + 2d sums if d is even and 3(d2 − 1)/2 + (d + 1)2/4 + 3(d + 1)/2

22 Sonia Belaïd et al.

Algorithm 3 New construction for d-secure multiplication
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d
1: for i = 0 to d do . Random Bits Generation
2: for j = 0 to d− i− 1 by 2 do
3: ri,d−j

$← F2

4: for j = d− 1 downto 1 by 2 do
5: rj

$← F2

6: for i = 0 to d do . Multiplication
7: ci ← αi,i
8: for j = d downto i+ 2 by 2 do
9: ti,j ← ri,j + αi,j + αj,i + rj−1 + αi,j−1 + αj−1,i; ci ← ci + ti,j

10: if i 6≡ d (mod 2) then
11: ti,i+1 ← ri,i+1 + αi,i+1 + αi+1,i; ci ← ci + ti,i+1
12: if i ≡ 1 (mod 2) then . Correction ri
13: ci ← ci + ri
14: else
15: for j = i− 1 downto 0 do . Correction ri,j
16: ci ← ci + rj,i

if d is odd. In every case, it also involves (d + 1)2 multiplications and requires
the generation of d2/4 + d random values in F2 if d is even and (d2 − 1)/4 + d
otherwise (see Table 1 for values at several orders and comparison with ISW).

Proposition 18. Algorithm 3 is d-private.

Algorithm 3 was proven to be d-private with the verifier built by Barthe et al. [4]
up to order d = 6. Furthermore, a pen-and-paper proof for any order d is given
in the full version of this paper.

6 Optimal Small Cases

We propose three secure compression algorithms using less random bits than
the generic solution given by ISW and than our new solution for the specific
small orders d = 2, 3 and 4. These algorithms actually use only the optimal
numbers of random bits for these small quantity of probes, as proven in Section 4.
Furthermore, since they all are dedicated to a specific order d (among 2, 3, and
4), we got use of the verifier proposed by Barthe et al. in [4] to formally prove
their correctness and their d-privacy.

Proposition 19. Algorithms 4, 5, and 6 are correct and respectively 2, 3 and
4-private.

Table 1 (Section 5) compares the amount of randomness used by the new
construction proposed in Section 5 and by our optimal small algorithms. We
recall that each of them attains the lower bound proved in Section 4.

Randomness Complexity of Private Circuits for Multiplication 23

Table 1: Complexities of ISW, our new d-private compression algorithm for multipli-
cation and our specific algorithms at several orders

Complexities Algorithm ISW Algorithm 3 Algorithms 4, 5 and 6
Second-Order Masking

sums 12 12 10
products 9 9 9

random bits 3 3 2
Third-Order Masking

sums 24 22 20
products 16 16 16

random bits 6 5 4
Fourth-Order Masking

sums 40 38 30
products 25 25 25

random bits 10 8 5
dth-Order Masking

sums 2d(d+ 1)
{

d(7d+ 10)/4 (d even)
(7d+ 1)(d+ 1)/4 (d odd)

-

products (d+ 1)2 (d+ 1)2 -

random bits d(d+ 1)/2
{

d2/4 + d (d even)
(d2 − 1)/4 + d (d odd)

-

Algorithm 4 Second-Order
Compression Algorithm
Require: sharing (αi,j)0≤i,j≤2
Ensure: sharing (ci)0≤i≤2

r0
$← F2; r1 ← F2

c0 ← α0,0 + r0 + α0,2 + α2,0
c1 ← α1,1 + r1 + α0,1 + α1,0
c2 ← α2,2 + r0 + r1 + α1,2 + α2,1

Algorithm 5 Third-Order
Compression Algorithm
Require: sharing (αi,j)0≤i,j≤3
Ensure: sharing (ci)0≤i≤3

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2
c0 ← α0,0 + r0 +α0,3 +α3,0 + r1 +α0,2 +α2,0
c1 ← α1,1 + r2 +α1,3 +α3,1 + r1 +α1,2 +α2,1
c2 ← α2,2 + r3 + α2,3 + α3,2
c3 ← α3,3 + r3 + r2 + r0 + α0,1 + α1,0

Algorithm 6 Fourth-Order Compression Algorithm
Require: sharing (αi,j)0≤i,j≤4
Ensure: sharing (ci)0≤i≤4

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2; r4
$← F2

c0 ← α0,0 + r0 + α0,1 + α1,0 + r1 + α0,2 + α2,0
c1 ← α1,1 + r1 + α1,2 + α2,1 + r2 + α1,3 + α3,1
c2 ← α2,2 + r2 + α2,3 + α3,2 + r3 + α2,4 + α4,2
c3 ← α3,3 + r3 + α3,4 + α4,3 + r4 + α3,0 + α0,3
c4 ← α4,4 + r4 + α4,0 + α0,4 + r0 + α4,1 + α1,4

24 Sonia Belaïd et al.

7 Composition

Our new algorithms are all d-private, when applied on the outputs of a multi-
plicative encoder parameterized at order d. We now aim to show how they can
be involved in the design of larger functions (e.g., block ciphers) to achieve a
global d-privacy. In [3], Barthe et al. introduce and formally prove a method to
compose small d-private algorithms (a.k.a., gadgets) into d-private larger func-
tions. The idea is to carefully refresh the sharings when necessary, according to
the security properties of the gadgets. Before going further into the details of
this composition, we recall some security properties used in [3].

7.1 Compositional Security Notions

Before stating the new security definitions, we first need to introduce the notion
of simulatability. For the sake of simplicity, we only state this notion for multi-
plication algorithm, but this can easily be extended to more general algorithms.

Definition 20. A set P = {p1, . . . , p`} of ` probes of a multiplication algorithm
can be simulated with at most t shares of each input, if there exists two sets
I = {i1, . . . , it} and J = {j1, . . . , jt} of t indices from {0, . . . , d} and a random
function f taking as input 2t bits and outputting ` bits such that for any fixed
bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , p`} (which implicitly de-
pends on (ai)0≤i≤d, (bj)0≤j≤d, and the random coins used in the multiplication
algorithm) and {f(ai1 , . . . , ait , bj1 , . . . , bjt)} are identical.

We write f(ai1 , . . . , ait , bj1 , . . . , bjt) = f(aI , bJ).

Definition 21. An algorithm is d-non-interferent (or d-NI) if and only if every
set of at most d probes can be simulated with at most d shares of each input.

While this notion might be stronger than the notion of security we used, all
our concrete constructions in Sections 5 and 6 satisfy it. The proof of Algorithm 3
is indeed a proof by simulation, while the small cases in Section 6 are proven
using the verifier by Barthe et al. in [4], which directly proves NI.

Definition 22. An algorithm is d-tight non-interferent (or d-TNI) if and only
if every set of t ≤ d probes can be simulated with at most t shares of each input.

While this notion of d-tight non-interference was assumed to be stronger than
the notion of d-non-interference in [3], we show hereafter that these two security
notions are actually equivalent. In particular, this means that all our concrete
constructions are also TNI.

Proposition 23. (d-NI ⇔ d-TNI) An algorithm is d-non-interferent if and
only if it is d-tight non-interferent.

Randomness Complexity of Private Circuits for Multiplication 25

Proof. The right-to-left implication is straightforward from the definitions. Let
us thus consider the left-to-right direction.

For that purpose, we first need to introduce a technical lemma. Again, for
the sake of simplicity, we only consider multiplication algorithm, with only two
inputs, but the proof can easily be generalized to any algorithm.

Lemma 24. Let P = {p1, . . . , p`} be a set of ` probes which can be simulated
by the sets (I, J) and also by the sets (I ′, J ′). Then it can also be simulated by
(I ∩ I ′, J ∩ J ′).

Proof. Let f the function corresponding to I, J and f ′ the function correspond-
ing to I ′, J ′. We have that for any bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions
{p1, . . . , p`}, {f(aI , bJ)}, and {f ′(aI′ , bJ′)} are identical. Therefore, f does not
depend on ai nor bj for i ∈ I \ I ′ and j ∈ J \ J ′, since f ′ does not depend
on them. Thus, P can be simulated by only shares from I ∩ I ′, J ∩ J ′ (using
the function f where the inputs corresponding to ai and bj for i ∈ I \ I ′ and
j ∈ J \ J ′ are just set to zero, for example). ut

We now assume that an algorithm A is d-NI, that is, every set of at most d
probes can be simulated with at most d shares of each input. Now, by contradic-
tion, let us consider a set P with minimal cardinality t < d of probes on A, such
that it cannot be simulated by at most t shares of each input. Let us consider
the sets I, J corresponding to the intersection of all sets I ′, J ′ (respectively) such
that the set P can be simulated by I ′, J ′. The sets I, J also simulate P thanks
to Lemma 24. Furthermore, by hypothesis, t < |I| ≤ d or t < |J | ≤ d. Without
loss of generality, let us suppose that |I| > t.

Let i∗ be an arbitrary element of {0, . . . , d} \ I (which is not an empty set as
|I| ≤ d). Let us now consider the set of probes P ′ = P ∪ {ai∗}. By hypothesis,
P ′ can be simulated by at most |P ′| = t+ 1 shares of each input. Let I ′, J ′ two
sets of size at most t + 1 simulating P ′. These two sets also simulate P ⊆ P ′,
therefore, I ∩ I ′, J ∩ J ′ also simulate P . Furthermore, i∗ ∈ I, as all the shares ai
are independent. Since i∗ /∈ I, |I ∩ I ′| ≤ t and I ∩ I ′ (I, which contradicts the
fact that I and J were the intersection of all sets I ′′, J ′′ simulating P . ut

Definition 25. An algorithm A is d-strong non-interferent (or d-SNI) if and
only if for every set I of t1 probes on intermediate variables (i.e., no output wires
or shares) and every set O of t2 probes on output shares such that t1 + t2 ≤ d,
the set I ∪ O of probes can be simulated by only t1 shares of each input.

The composition of two d-SNI algorithms is itself d-SNI, while that of d-TNI
algorithms is not necessarily d-TNI. This implies that d-SNI gadgets can be
directly composed while maintaining the d-privacy property, whereas a so-called
refreshing gadget must sometimes be involved before the composition of d-TNI
algorithms. Since the latter refreshing gadgets consume the same quantity of
random values as ISW, limiting their use is crucial if the goal is to reduce the
global amount of randomness.

26 Sonia Belaïd et al.

A A

A

A A

A
A

A

A

Fig. 6: AES ·254

7.2 Building Compositions with our New Algorithms

In [3], the authors show that the ISW multiplication is d-SNI and use it to build
secure compositions. Unfortunately, our new multiplication algorithms are d-TNI
but not d-SNI. Therefore, as discussed in the previous section, they can replace
only some of the ISW multiplications in secure compositions. Let us take the
example of the AES inversion that is depicted in [3]. We can prove that replacing
the first (A7) and the third (A2) ISW multiplications by d-TNI multiplications
(e.g., our new constructions) and moving the refreshing algorithm R in different
locations preserves the strong non-interference of the inversion, while benefiting
from our reduction of the randomness consumption.

The tweaked inversion is given in Figure 6. ⊗ denotes the d-SNI ISW mul-
tiplication, ·α denotes the exponentiation to the power α, Ai refers to the i-th
algorithm or gadget (indexed from left to right), R denotes the d-SNI refreshing
gadget, Ii denotes the set of internal probes in the i-th algorithm, Sij denotes
the set of shares from the j inputs of algorithm Ai used to simulate all further
probes. Finally, x denotes the inversion input and O denotes the set of probes at
the output of the inversion. The global constraint for the inversion to be d-SNI
(and thus itself composable) is that: |S8∪S9| ≤

∑
1≤i≤9 |Ii|, i.e., all the internal

probes can be perfectly simulated with at most
∑

1≤i≤9 |Ii| shares of x.

Proposition 26. The AES inversion given in Figure 6 with A1 and A4 being
d-SNI multiplications and A2 and A7 being d-TNI multiplications is d-SNI.

Proof. From the d-probing model, we assume that the total number of probes
used to attack the inversion is limited to d, that is

∑
1≤i≤9 |Ii| + |O| ≤ d.

As in [3], we build the proof from right to left by simulating each algorithm.
Algorithm A1 is d-SNI, thus |S1

1 |, |S1
2 | ≤ |I1|. Algorithm A2 is d-TNI, thus

|S2
1 |, |S2

2 | ≤ |I1 + I2|. As explained in [3], since Algorithm A3 is affine, then
|S3| ≤ |S2

1 + I3| ≤ |I1 + I2 + I3|. Algorithm A4 is d-SNI, thus |S4
1 |, |S4

2 | ≤ |I4|.
Algorithm A5 is d-SNI, thus |S5| ≤ |I5|. Algorithm A6 is affine, thus |S6| ≤
|S5 + I6| ≤ |I5 + I6|. Algorithm A7 is d-TNI, thus |S7

1 |, |S7
2 | ≤ |S6 +S4

1 + I7| ≤
|I4 + I5 + I6 + I7|. Algorithm A8 is d-SNI, thus |S8| ≤ |I8|. Algorithm A9 is
affine, thus |S9| ≤ |I9 + S8| ≤ |I8 + I9|. Finally, all the probes of this inversion

Randomness Complexity of Private Circuits for Multiplication 27

can be perfectly simulated from |S9 ∪S7
1 | ≤ |I4 + I5 + I6 + I7 + I8 + I9| shares

of x, which proves that the inversion is still d-SNI. ut

From Proposition 26, our new constructions can be used to build d-SNI algo-
rithms. In the case of the AES block cipher, half of the d-SNI ISWmultiplications
can be replaced by ours while preserving the whole d-SNI security.

8 New Automatic Tool for Finding Attacks

In this section, we describe a new automatic tool for finding attacks on com-
pression algorithms for multiplication which is developed in Sage (Python) [27].
Compared to the verifier developed by Barthe et al. [4] and based on Easycrypt,
to find attacks in practice, our tool is not as generic as it focuses on compression
algorithms for multiplication and its soundness is not perfect (and relies on some
heuristic assumption). Nevertheless, it is order of magnitudes faster.

A non-perfect soundness means that the algorithm may not find an attack
and can only guarantee that there does not exist an attack except with prob-
ability ε. We believe that, in practice, this limitation is not a big issue as if
ε is small enough (e.g., 2−20), a software bug is much more likely than an at-
tack on the scheme. Furthermore, the running time of the algorithm depends
only linearly on log(1/ε). Concretely, for all the schemes we manually tested for
d = 3, 4, 5 and 6, attacks on invalid schemes were found almost immediately.
If not used to formally prove schemes, our tool can at least be used to quickly
eliminate (most) incorrect schemes, and enables to focus efforts on trying to
prove “non-trivially-broken” schemes.

8.1 Algorithm of the Tool

From Theorem 7, in order to find an attack P = {p1, . . . , p`} with ` ≤ d, we
just need to find a set P = {p1, . . . , p`} satisfying Condition 1. If no such set P
exists, the compression algorithm for multiplication is d-private.

A naive way to check the existence of such a set P is to enumerate all the
sets of d probes. However, there are

(
N
d

)
such sets, with N being the number of

intermediate variables of the algorithm. For instance, to achieve 4-privacy, our
construction (see Section 6) uses N = 81 intermediate variables, which makes
more than 220 sets of four variables to test. In [4], the authors proposed a faster
way of enumerating these sets by considering larger sets which are still inde-
pendent from the secret. However, their method falls short for the compression
algorithms in our paper as soon as d > 6, as shown in Section 8.4. Furthermore
even for d = 3, 4, 5, their tool takes several minutes to prove security (around 5
minutes to check security of Algorithm 3 with d = 5) or to find an attack for
incorrect schemes, which prevent people from quickly checking the validity of a
newly designed scheme.

To counteract this issue, we design a new tool which is completely differ-
ent and which borrows ideas from coding theory to enumerate the sets of d or

28 Sonia Belaïd et al.

Table 2: Intermediate results of Algorithm 4
non-deterministic (ν = 12) deterministic (ν′ = 9)

γ1 = a0b0 + r0 γ7 = c1 γ′1 = a0b0 γ′6 = a1b0
γ2 = a0b0 + r0 + a0b2 γ8 = r1 γ′2 = a0b2 γ′7 = a2b2
γ3 = c0 γ9 = a2b2 + r1 γ′3 = a2b0 γ′8 = a1b2
γ4 = r0 γ10 = a2b2 + r1 + r0 γ′4 = a1b1 γ′9 = a2b1
γ5 = a1b1 + r1 γ11 = a2b2 + r1 + r0 + a1b2 γ′5 = a0b1
γ6 = a1b1 + r1 + a0b1 γ12 = c2

less intermediate variables. Let γ1, . . . , γν be all the intermediate results whose
expression functionally depends on at least one random and γ′1, . . . , γ

′
ν′ be the

other intermediate results that we refer to as deterministic intermediate results
(ν + ν′ = N). We remark that all the αi,j = aibj are intermediate results and
that no intermediate result can functionally depend on more than one shares’
product αi,j = aibj without also depending on a random bit. Otherwise, the
compression algorithm would not be d-private, according to Lemma 17. As this
condition can be easily tested, we now assume that the only deterministic inter-
mediate results are the αi,j = aibj that we refer to as γ′k in the following. As an
example, intermediate results of Algorithm 4 are depicted in Table 2.

An attack set P = {p1, . . . , p`} can then be separated into two sets Q =
{γi1 , . . . , γiδ} and Q′ = {γi′1 , . . . , γi′δ′}, with ` = δ + δ′ ≤ d. We remark that
necessarily

∑
p∈Q p does not functionally depend on any random value. Actually,

we even have the following lemma:

Lemma 27. Let A(a, b; r) be a compression algorithm for multiplication. Then
A is d-private if and only if there does not exist a set of non-deterministic probes
Q = {γi1 , . . . , γiδ} with δ ≤ d such that

∑
p∈Q p = aᵀ ·M · b where the column

space or the row space of M contains a vector of Hamming weight at least δ+1.
Furthermore, if such a set Q exists, there exists a set {γi′1 , . . . , γi′δ′}, with

δ + δ′ ≤ d, such that P = Q ∪Q′ is an attack.
Moreover, the lemma is still true when we restrict ourselves to sets Q such

that there exists no proper subset Q̂ (Q such that
∑
p∈Q̂ p does not functionally

depend on any random.

Proof. The two first paragraphs of the lemma can be proven similarly to Lemma 17.
Thus, we only need to prove its last part.

By contradiction, let us suppose that there exists a set Q of non-deterministic
probes Q = {γi1 , . . . , γiδ} such that

∑
p∈Q p = aᵀ ·M · b and the column space

(without loss of generality, by symmetry of the ai’s and bi’s) of M contains a
vector of Hamming weight at least δ+ 1, but such that any subset Q̂ (Q where∑
p∈Q̂ p that does not functionally depend on any random. Consequently, the

sum
∑
p∈Q̂ p = aᵀ · M̂ · b, is such that the column space (still without loss of

generality) of M̂ does not contain any vector of Hamming weight at least |Q̂|+1.

Randomness Complexity of Private Circuits for Multiplication 29

First, let us set M̄ = M̂ + M (over F2), so
∑
p∈Q\Q̂ p = aᵀ · M̄ · b, as∑

p∈Q̂ p +
∑
p∈Q\Q̂ =

∑
p∈Q p = aᵀ ·M · b and let δ̂ = |Q̂| and δ̄ = |Q \ Q̂| =

δ − δ̂. Let also ω, ω̂, and ω̄ be the maximum Hamming weights of the vectors
in the column space of M , M̂ , and M̄ , respectively. Since M = M̂ + M̄ , then
ω ≤ ω̂+ ω̄ and since ω > δ+1, and δ = δ̂+ δ̄, then ω̂ > δ̂ or ω̄ > δ̄. We set Q̃ = Q̂
if ω̂ > δ̂, and Q̃ = Q \ Q̂ otherwise. According to the definitions of δ̂ and ω̄ , we
have that Q̃ (Q is such that

∑
p∈Q p = aᵀ · M̃ · b where the column space of

M̃ contains a vector of Hamming weight at least |Q̃| + 1. This contradicts the
definition of Q and concludes the proof of the lemma. ut

To quickly enumerate all the possible attacks, we first enumerate the sets
Q = {γi1 , . . . , γiδ} of size δ ≤ d such that

∑
p∈Q p does not functionally depend

on any random bit (and no proper subset of Q̂ (Q is such that
∑
p∈Q̂ p does not

functionally depend on any random bit), using information set decoding, recalled
in the next section. Then, for each possible set Q, we check if the column space
or the row space of M (as defined in the previous lemma) contains a vector of
Hamming weight at least δ + 1. A naive approach would consist in enumerating
all the vectors in the row space and the column space of M . Our tool however
uses the two following facts to perform this test very quickly in most cases:

– whenM contains at most δ non-zero rows and at most δ non-zero columns,
Q does not yield an attack;

– whenM contains exactly δ+1 non-zero rows (resp. columns), that we assume
to be the first δ + 1 (without loss of generality), Q yields an attack if and
only if the vector (uᵀ

δ+1,0
ᵀ
d−δ) is in the row space (resp. (uδ+1,0d−δ) is in

the column space) of M (this condition can be checked in polynomial time
in d).

8.2 Information Set Decoding and Error Probability

We now explain how to perform the enumeration step of our algorithm using
information set decoding. Information set decoding was introduced in the original
security analysis of the McEliece cryptosystem in [20, 22] as a way to break the
McEliece cryptosystem by finding small code words in a random linear code.
It was further explored by Lee and Brickell in [18]. We should point out that
since then, many improvements were proposed, e.g., in [19, 26]. However, for
the sake of simplicity and because it already gives very good results, we use the
original information set decoding algorithm. Furthermore, it is not clear that the
aforementioned improvements also apply in our case, as the codes we consider
are far from the Singleton bound.

We assume that random bits are denoted r1, . . . , rR. For each intermediate
γk containing some random bit, we associate the vector τ ∈ ZR2 , where τi = 1
if and only if γk functionally depends on the random bit ri. We then consider
the matrix Γ ∈ ZR×ν2 whose k-th column is τ . For instance, for Algorithm 4, we

30 Sonia Belaïd et al.

have:

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Γ =
(

1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 1 1 1

)
r0
r1

.

For every δ ≤ d, enumerating the sets Q = {γi1 , . . . , γiδ}, such that
∑
p∈Q p

does not functionally depend on any random, consists in enumerating the vectors
x of Hamming weight δ such that Γ · x = 0 (specifically, {i1, . . . , iδ} are the
coordinates of the non-zero components of x). Furthermore, we can restrict
ourselves to vector x such that no vector x̂ < x satisfies Γ · x̂ = 0 (where
x̂ < x means that x̂ 6= x and for any 1 ≤ i ≤ ν, if xi = 0 then x̂i = 0), since we
can restrict ourselves to sets Q such that no proper subset Q̂ (Q is such that∑
p∈Q̂ p does not functionally depend on any random bit. This is close to the

problem of finding code words x of small Hamming weight for the linear code of
parity matrix Γ and we show this can be solved using information set decoding.

The basic idea is the following one. We first apply a row-reduction to Γ . Let
us call the resulting matrix Γ ′. We remark that, for any vector x, Γ ·x = 0 if and
only if Γ ′ ·x = 0 and thus we can use Γ ′ instead of Γ in our problem . We assume
in a first time that the first R columns of Γ are linearly independent (recall that
the number ν of columns of Γ is much larger than its number R of rows), so
that the R first columns of Γ ′ forms an identity matrix. Then, for any k∗ > R, if
the k∗-th column of Γ ′ has Hamming weight at most d− 1, we can consider the
vector x defined as xk∗ = 1, xk = 1 when Γ ′k,k∗ = 1 , and xk = 0 otherwise; and
this vector satisfies the conditions we were looking for: its Hamming weight is
at most d and Γ ′ ·x = 0 . That way, we have quickly enumerated all the vectors
x of Hamming weight at most d such that Γ ′ · x = 0 and with the additional
property that xk = 0 for all k > R except for at most6 one index k∗. Without
the condition Γ ′ ·x = 0, there are (ν −R+ 1) ·

∑d−1
i=0

(
R
i

)
+
(
R
d

)
such vectors, as

there are
∑d
i=0
(
R
i

)
vectors x such that HW(x) ≤ d and xk = 0 for every k > R,

and there are (ν−R) ·
∑d−1
i=0

(
R
i

)
vectors x such that HW(x) ≤ d and xk = 1, for

a single k > R. In other words, using row-reduction, we have been able to check
(ν−R+ 1) ·

∑d−1
i=0

(
R
i

)
+
(
R
d

)
possible vectors x among at most

∑d
i=1
(
ν
i

)
vectors

which could be used to mount an attack, by testing at most ν −R vectors.7

Then, we can randomly permute the columns of Γ and repeat this algorithm.
Each iteration would find an attack (if there was one attack) with probability
at least

(
(ν − R + 1) ·

∑d−1
i=0

(
R
i

)
+
(
R
d

))
/
∑d

i=1

(
ν
i

)
. Therefore, after K iterations, the

6 We have seen that for one index k∗, but it is easy to see that, as the first R columns
of Γ ′ form an identity matrix, there does not exist such vector x so that xk = 0 for
all k > R anyway.

7 There are exactly
∑d

i=1

(
ν
i

)
vectors of Hamming weight at most d, but here we recall

that we only consider vectors x satisfying the following additional condition: there
is no vector x̂ < x such that Γ · x̂ = 0. We also remark that the vectors x generated
by the described algorithm all satisfy this additional condition.

Randomness Complexity of Private Circuits for Multiplication 31

error probability is only

ε ≤

(
1−

(ν −R+ 1) ·
∑d−1
i=0

(
R
i

)
+
(
R
d

)∑d
i=1
(
ν
i

))K
,

and the required number of iterations is linear with log(1/ε), which is what we
wanted.

Now, we just need to handle the case when the first R columns of Γ are
not linearly independent, for some permuted matrix Γ at some iteration. We
can simply redraw the permutation or taking the pivots in the row-reduction
instead of taking the first R columns of Γ . In both cases, this may slightly bias
the probability. We make the heuristic assumption that the bias is negligible. To
support this heuristic assumption, we remark that if we iterate the algorithm
for all the permutations for which the first R columns of Γ are not linearly
independent, then we would enumerate all the vectors x we are interested in,
thanks to the additional condition that there is no vector x̂ < x such that
Γ · x̂ = 0.

8.3 The Tool

The tool takes as input a description of a compression algorithm for multiplica-
tion similar to the ones we used in this paper (see Figure 2 for instance) and the
maximum error probability ε we allow, and tries to find an attack. If no attack
is found, then the scheme is secure with probability 1 − ε. The tool can also
output a description of the scheme which can be fed off into the tool in [4].

The source code of the tool and its documentation are provided in [1].

8.4 Complexity Comparison

It is difficult to compare the complexity of our new tool to the complexity of the
tool proposed in [4] since it strongly depends on the tested algorithm. Neverthe-
less, we try to give some values for the verification time of both tools when we
intentionally modify our constructions to yield an attack. From order 2 to 4, we
start with our optimal constructions and we just invert two random bits in an
output share ci. Similarly, for orders 5 and 6, we use our generic construction
and apply the same small modification. The computations were performed on
a Intel(R) Core(TM) i5-2467M CPU @ 1.60GHz and the results are given in
Table 3. We can see that in all the considered cases, our new tool reveals the
attack in less than 300 ms while the generic verifier of Barthe et al. needs up to
26 minutes for order d = 6.

Acknowledgements. The authors thank the anonymous reviewers for their
constructive comments. This work was supported in part by the French ANR
Project ANR-12-JS02-0004 ROMAnTIC, the Direction Générale de l’Armement
(DGA), the CFM Foundation.

32 Sonia Belaïd et al.

Table 3: Complexities of exhibiting an attack at several orders
Time to find an attack

Order Target Algorithm Verifier [4] New tool
d = 2 tweaked Algorithm 4 less than 1 ms less than 10 ms
d = 3 tweaked Algorithm 5 36 ms less than 10 ms
d = 4 tweaked Algorithm 6 108 ms less than 10 ms
d = 5 tweaked Algorithm 3 6.264 s less than 100 ms
d = 6 tweaked Algorithm 3 26 min less than 300 ms

References

1. https://github.com/fabrice102/private_multiplication
2. Barker, E.B., Kelsey, J.M.: Sp 800-90a. recommendation for random number gen-

eration using deterministic random bit generators. Tech. rep., Gaithersburg, MD,
United States (2012)

3. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B.: Compositional
verification of higher-order masking: Application to a verifying masking compiler.
Cryptology ePrint Archive, Report 2015/506 (2015), http://eprint.iacr.org/
2015/506

4. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (Apr
2015)

5. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: How to remove intractability assumptions. In: 20th ACM STOC. pp. 113–
131. ACM Press (May 1988)

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (Dec 2014)

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 14. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (May
2014)

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (Aug 1999)

9. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (Mar 2014)

10. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (May 2014)

11. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 401–429. Springer,
Heidelberg (Apr 2015)

https://github.com/fabrice102/private_multiplication
http://eprint.iacr.org/2015/506
http://eprint.iacr.org/2015/506

Randomness Complexity of Private Circuits for Multiplication 33

12. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 159–188.
Springer, Heidelberg (Apr 2015)

13. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
158–172. Springer, Heidelberg (Aug 1999)

14. Ishai, Y., Kushilevitz, E., Li, X., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Zuckerman, D.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp.
576–588. Springer, Heidelberg (Jul 2013)

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (Aug 2003)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996)

17. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

18. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT’88. LNCS, vol. 330, pp. 275–
280. Springer, Heidelberg (May 1988)

19. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359
(1988)

20. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
progress report 42(44), 114–116 (1978)

21. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology 24(2), 292–321 (Apr
2011)

22. Prange, E.: The use of information sets in decoding cyclic codes. Information The-
ory, IRE Transactions on 8(5), 5–9 (September 1962)

23. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (May 2013)

24. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (Aug 2015)

25. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (Aug 2010)

26. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolf-
mann, J. (eds.) Coding Theory and Applications, 3rd International Colloquium,
Toulon, France, November 2-4, 1988, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 388, pp. 106–113. Springer (1988)

27. The Sage Developers: Sage Mathematics Software (Version 6.8) (2015), http://
www.sagemath.org

28. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982)

http://www.sagemath.org
http://www.sagemath.org

	Randomness Complexity of Private Circuits for Multiplication
	Introduction
	Our Problem
	Our Contributions

	Preliminaries
	Notation
	Private Circuits
	ISW Algorithm

	Algebraic Characterization
	Matrix Notation
	Algebraic Condition
	Algebraic Characterization

	Theoretical Lower and Upper Bounds
	A Splitting Lemma
	Simple Linear Lower Bound
	Better Linear Lower Bound
	(Non-Constructive) Quasi-Linear Upper Bound

	New Construction
	Optimal Small Cases
	Composition
	Compositional Security Notions
	Building Compositions with our New Algorithms

	New Automatic Tool for Finding Attacks
	Algorithm of the Tool
	Information Set Decoding and Error Probability
	The Tool
	Complexity Comparison

	Acknowledgments

