
Faster Algorithms for Solving LPN

Bin Zhang1,2, Lin Jiao1,3, and Mingsheng Wang4

1TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
3University of Chinese Academy of Sciences, Beijing 100049, China

4State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{zhangbin,jiaolin}@tca.iscas.ac.cn

Abstract. The LPN problem, lying at the core of many cryptographic
constructions for lightweight and post-quantum cryptography, receives
quite a lot attention recently. The best published algorithm for solv-
ing it at Asiacrypt 2014 improved the classical BKW algorithm by us-
ing covering codes, which claimed to marginally compromise the 80-bit
security of HB variants, LPN-C and Lapin. In this paper, we develop
faster algorithms for solving LPN based on an optimal precise embed-
ding of cascaded concrete perfect codes, in a similar framework but with
many optimizations. Our algorithm outperforms the previous methods
for the proposed parameter choices and distinctly break the 80-bit se-
curity bound of the instances suggested in cryptographic schemes like
HB+, HB#, LPN-C and Lapin.

Keywords: LPN, BKW, Perfect code, HB, Lapin

1 Introduction

The Learning Parity with Noise (LPN) problem is a fundamental problem in
modern cryptography, coding theory and machine learning, whose hardness
serves as the security source of many primitives in lightweight and post-quantum
cryptography. It is closely related to the problem of decoding random linear
codes, which is one of the most important problems in coding theory, and has
been extensively studied in the last half century.

In the LPN problem, there is a secret x ∈ {0, 1}k and the adversary is asked
to find x given many noisy inner products ⟨x,g⟩ + e, where each g ∈ {0, 1}k
is a random vector and the noise e is 1 with some probability η deviating from
1/2. Thus, the problem is how to efficiently restore the secret vector given some
amount of noisy queries of the inner products between itself and certain random
vectors.

The cryptographic schemes based on LPN are appealing both for theoretical
and practical reasons. The earliest proposal dated back to the HB, HB+, HB#

and AUTH authentication protocols [12, 18–20]. While HB is a minimalistic pro-
tocol secure in a passive attack model, the modified scheme HB+ with one extra

round is found to be vulnerable to active attacks, i.e., man-in-the-middle attacks
[14]. HB# was subsequently proposed with a more efficient key representation
using a variant called Toeplitz-LPN. Besides, there is also a message encryp-
tion scheme based on LPN, i.e., the LPN-C scheme in [13] and some message
authentication codes (MACs) using LPN in [10, 20], allowing for constructions
of identification schemes provably secure against active attacks. Another no-
table scheme, Lapin, was proposed as a two-round identification protocol [16],
based on the LPN variant called Ring-LPN where the samples are elements of
a polynomial ring. Recently, an LPN-based encryption scheme called Helen was
proposed with concrete parameters for different security levels [11].

It is of primordial importance to study the best possible algorithms that can
efficiently solve the LPN problem. The seminal work of Blum et al. in [5], known
as the BKW algorithm, employs an iterated collision procedure of the queries to
reduce the dependency on the information bits with a folded noise level. Levieil
and Fouque proposed to exploit the Fast Walsh-Hadamard (FWHT) Transform
in the process of searching for the secret in [22]. They also provided different
security levels achieved by different instances of LPN, which are referenced by
most of the work thereafter. In [21], Kirchner suggested to transform the problem
into a systematic form, where each secret bit appears as an observed symbol
perturbed by noise. Then Bernstein and Lange demonstrated in [4] the utilization
of the ring structure of Ring-LPN in matrix inversion to further reduce the attack
complexity, which can be applied to the common LPN instances by a slight
modification as well. None of the above algorithms manage to break the 80-bit
security of Lapin, nor the parameters suggested in [22] as 80-bit security for
LPN-C [13]. At Asiacrypt 2014, a new algorithm for solving LPN was presented
in [15] by using covering codes. It was claimed that the 80-bit security bound
of the common (512, 1/8)-LPN instance can be broken within a complexity of
279.7, and so do the previously unbroken parameters of HB variants, Lapin and
LPN-C1. It shared the same beginning steps of Gaussian elimination and collision
procedure as that in [4], followed by the covering code technique to further reduce
the dimension of the secret with an increased noise level, also it borrowed the
well known Walsh Transform technique from fast correlation attacks on stream
ciphers [2, 7, 23], renamed as subspace hypothesis testing.

In this paper, we propose faster algorithms for solving LPN based on an op-
timal precise embedding of cascaded perfect codes with the parameters found by
integer linear programming to efficiently reduce the dimension of the secret infor-
mation. Our new technique is generic and can be applied to any given (k, η)-LPN
instance, while in [15] the code construction methods for covering are missing
and only several specific parameters for (512, 1/8)-LPN instance were given in
their presentation at Asiacrypt 2014. From the explicit covering, we can derive
the bias introduced by covering in our construction accurately, and derive the
attack complexity precisely. It is shown that following some tradeoff techniques,

1 The authors of [15] redeclared their results in their presentation at Asiacrypt 2014,
for the original results are incorrect due to an insufficient number of samples used
to learn an LPN secret via Walsh-Hadamard Transform.

appropriate optimization of the algorithm steps in a similar framework as that
in [15] can reduce the overall complexity further. We begin with a theoretical
justification of the experimental results on the current existing BKW algorithms,
and then propose a general form of the BKW algorithm which exploits tuples in
collision procedure with a simulation verification. We also propose a technique
to overcome the data restriction efficiently based on goodness-of-fit test using
χ2-statistic both in theory and experiments. In the process, we theoretically an-
alyze the number of queries needed for making a reliable choice for the best
candidate and found that the quantity 8lln2/ϵ2f is much more appropriate when

taking a high success probability into account2, where ϵf is the bias of the final
approximation and l is the bit length of the remaining secret information. We al-
so provide the terminal condition of the solving algorithm, correct an error that
may otherwise dominate the complexity of the algorithm in [15] and push the
upper bound up further, which are omitted in [15]. We present the complexity
analysis of the improved algorithm based on three BKW types respectively, and
the results show that our algorithm well outperforms the previous ones. Now it
is the first time to distinctly break the 80-bit security of both the (512, 1/8)-
and (532, 1/8)- LPN instances, and the complexity for the (592, 1/8)-instance
just slightly exceeds the bound. A complexity comparison of our algorithm with
the previous attacks is shown in Table 1. More tradeoff choices are possible and
can be found in Section 6.2.

Table 1. Comparison of different algorithms with the instance (512, 1/8)

Algorithm
Complexities (log2)

Data Memory Time

Levieil-Fouque [22] 75.7 84.8 87.5
Bernstein-Lange [4] 68.6 77.6 85.8

Corrected [15] 63.6 72.6 79.71

This paper 63.5 68.2 72.8
1 The number of queries we chosen is the twice as that presented for
correction in the presentation at Asiacrypt 2014 to assure a success
probability of almost 1. Note that if the same success probability is
achieved, the complexity of the attack in [15] will exceed the 280 bound.

This paper is organized as follows. We first introduce some preliminaries of
the LPN problem in Section 2 with a brief review of the BKW algorithm. In
Section 3, a short description of the algorithm using covering codes in [15] is
presented. In Section 4, we present the main improvements and more precise
data complexity analysis of the algorithm for solving LPN. Then we propose
and analyze certain BKW techniques in Section 5. In Section 6, we complete the
faster algorithm with more specific accelerated techniques at each step, together
with the applications to the various LPN-based cryptosystems. Finally, some
conclusions are provided in Section 7.

2 The authors of [15] have chosen 4lln2/ϵ2f to correct the original estimate of 1/ϵ2f as
the number of queries in their presentation at Asiacrypt 2014.

2 Preliminaries

In this Section, some basic notations of the LPN problem are introduced with a
review of the BKW algorithm that is relevant to our analysis later.

2.1 The LPN Problem

Definition 1 (LPN problem). Let Berη be the Bernoulli distribution, i.e., if
e← Berη then Pr[e = 1] = η and Pr[e = 0] = 1− η. Let ⟨x,g⟩ denote the scalar
product of the vectors x and g, i.e., x · gT , where gT denotes the transpose of
g. Then an LPN oracle ΠLPN (k, η) for an unknown random vector x ∈ {0, 1}k
with a noise parameter η ∈ (0, 1

2) returns independent samples of

(g
$←− {0, 1}k, e← Berη : ⟨x,g⟩+ e).

The (k, η)-LPN problem consists of recovering the vector x according to the sam-
ples output by the oracle ΠLPN (k, η). An algorithm S is called (n, t,m, δ)-solver

if Pr[S = x : x
$←− {0, 1}k] ≥ δ, and runs in time at most t and memory at most

m with at most n oracle queries.

This problem can be rewritten in a matrix form as z = xG + e, where e =
[e1 e2 · · · en] and z = [z1 z2 · · · zn], each zi = ⟨x,gi⟩+ ei, i = 1, 2, . . . , n. The
k × n matrix G is formed as G = [gT

1 gT
2 · · · gT

n]. Note that the cost of solving
the first block of the secret vector x dominates the total cost of recovering x
according to the strategy applied in [1].

Lemma 1 (Piling-up Lemma). Let X1, X2, . . . , Xn be independent binary
random variables where each Pr[Xi = 0] = 1

2 (1 + ϵi), for 1 ≤ i ≤ n. Then,

Pr[X1 +X2 + · · ·+Xn = 0] =
1

2
(1 +

n∏
i=1

ϵi).

2.2 The BKW Algorithm

The BKW algorithm is proposed in the spirit of the generalized birthday algo-
rithm [25], working on the columns of G as

gi + gj = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b

], and (zi + zj) = x(gT
i + gT

j) + (ei + ej),

which iteratively reduces the effective dimension of the secret vector. Let the bias
ϵ be defined by Pr[e = 0] = 1

2 (1 + ϵ), then Pr[ei + ej = 0] = 1
2 (1 + ϵ2) according

to the pilling-up lemma. Formally, the BKW algorithm works in two phases:
reduction and solving. It applies an iterative sort-and-merge procedure to the
queries and produces new entries with the decreasing dimension and increasing
noise level; finally it solves the secret by exhausting the remaining and test the
presence of the expected bias. The framework is as follows.

Algorithm 1 Framework of the BKW Algorithm

Input: The k × n matrix G and received z, the parameters b, t.

1: Put the received vector as a first row in the matrix, G0 ←
[
z
G

]
.

Reduction phase:
2: for i = 1 to t do
3: Sorting: Partition the columns of Gi−1 by the last b bits.
4: Merging: Form pairs of columns in each partition to obtain Gi

5: end for
Solving phase:
6: for x ∈ {0, 1}k−bt do
7: return the vector x that [1 x]Gt has minimal weight.
8: end for

Algorithm 2 Reduction of LF1

1: Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1 s.t. the columns in Vj have the same last b
bits.

2: for each Vj do
3: Randomly choose v∗ ∈ Vj as the representative.

For v ∈ Vj ,v ̸= v∗, Gi = Gi ∪ (v + v∗), ignoring the last b entries of 0.
4: end for

Algorithm 3 Reduction of LF2

1: Partition Gi−1 = V0 ∪V1 ∪ · · · ∪ V2b−1 s.t. columns in Vj have the same last b bits.
2: for each Vj do
3: For each pair v,v′ ∈ Vj ,v ̸= v′, Gi = Gi ∪ (v + v′), ignoring the last b entries

of 0.
4: end for

There are two approaches, called LF1 and LF2 in [22] to fulfill the merging
procedure, sharing the same sorting approach with different merging strategies,
which is described in the following Algorithm 2 and 3. It is easy to see that
LF1 works on pairs with a representative in each partition, which is discarded
at last; while LF2 works on any pair. For each iteration in the reduction phase,

the noise level is squared, as e
(i)
j = e

(i−1)
j1

+ e
(i−1)
j2

with the superscript (i) being
the iteration step. Assume the noises remain independent at each step, we have

Pr[
∑2t

j=1 ej = 0] = 1
2 (1 + ϵ2

t

) by the piling-up lemma.

3 The Previous Algorithm Using Covering Codes

In this section, we present a brief review of the algorithm using covering codes
in [15], described in the following Algorithm 4.

Alg. 4 contains five main steps: step 1 transforms the problem into system-
atic form by Gaussian elimination (Line 2); step 2 performs several BKW steps
(Line 3-5); jumping to step 4, it uses a covering code to rearrange the samples

Algorithm 4 The Algorithm using covering codes [15]

Input: n queries (g, z)s of the (k, η)-LPN instance, the parameters b, t, k2, l, w1, w2.
1: repeat
2: Pick random column permutation π and perform Gaussian elimination on π(G),

resulting in [I L0];
3: for i = 1 to t do
4: Perform LF1 reduction phase on Li−1 resulting in Li.
5: end for
6: Pick a [k2, l] linear code and group the columns of Lt by the last k2 bits accord

ing to their nearest codewords.
7: Set k1 = k − tb− k2;
8: for x′

1 ∈ {0, 1}k1 with wt(x′
1) ≤ w1 do

9: Update the observed samples.
10: Use FWHT to compute the numbers of 1s and 0s

for each y ∈ {0, 1}l, and pick the best candidate.
11: Perform hypothesis testing with a threshold.
12: end for
13: until: Acceptable hypothesis is found.

(Line 6); step 3 guesses partial secret and Step 5 uses the FWHT to find the
best candidate under the guessing, moreover it performs hypothesis testing to
determine whether to repeat the algorithm (Line 7-13). Now we take a closer
look at each step respectively.

Step 1. Gaussian elimination. This step systematizes the problem, i.e., change
the positions of the secret vector bits without changing the associated noise lev-
el [21]. Precisely, from z = xG + e, apply a column permutation π to make
the first k columns of G linearly independent. Then form the matrix D such
that Ĝ = DG = [I ĝT

k+1 ĝT
k+2 · · · ĝT

n]. Let ẑ = z + [z1 z2 · · · zk]Ĝ, thus

ẑ = xD−1Ĝ + e + [z1 z2 · · · zk]Ĝ = (xD−1 + [z1 z2 · · · zk])Ĝ + e, where

ẑ = [0 ẑk+1 ẑk+2 · · · ẑn]. Let x̂ = xD−1 + [z1 z2 · · · zk], then ẑ = x̂Ĝ + e.

From the special form of the first k components of Ĝ and ẑ, it is clear that
Pr[x̂i = 1] = Pr[ei = 1] = η. The cost of this step is dominated by the computa-
tion of DG, which was reduced to C1 = (n− k)ka bit operations through table
look-up in [15], where a is some fixed value.

Step 2. Collision procedure. This is the BKW part with the sort-and-
match technique to reduce the dependency on the information bits [5, 22]. From

Ĝ = [I L0], we iteratively process t steps of the BKW reduction on L0, resulting
in a sequence of matrices Li, i = 1, 2, . . . , t. Each Li has n − k − i2b columns
when adopting the LF13 type that discards about 2b samples at each step. One
also needs to update ẑ in the same fashion. Let m = n − k − t2b, this proce-
dure ends with z′ = x′G′ + e′, where G′ = [I Lt] and z′ = [0 z′1 z′2 · · · z′m].

3 With the corrected number of queries, the algorithm in [15] exceeds the security
bound of 80-bit. In order to obtain a complexity smaller than 280, the LF2 reduction
step is actually applied.

The secret vector is reduced to a dimension of k′ = k − tb, and also remains
Pr[x′

i = 1] = η for 1 ≤ i ≤ k′. The noise vector e′ = [e1 · · · ek′ e′1 · · · e′m],
where e′i =

∑
j∈τi,|τi|≤2t ej and τi contains the positions added up to form the

(k′ + i)-th column. The bias for e′i is ϵ2
t

accordingly, where ϵ = 1 − 2η. The
complexity of this step is dominated by C2 =

∑t
i=1(k + 1− ib)(n− k − i2b).

Step 3. Partial secret guessing. Divide x′ into [x′
1 x′

2], accordingly divide

G′ =

[
G′

1

G′
2

]
, where x′

1 is of length k1 and x′
2 is of length k2 with k′ = k1 + k2.

This step guesses all vectors x′
1 ∈ {0, 1}k1 that wt(x′

1) ≤ w1, where wt() is the
Hamming weight of vectors. The complexity of this step is determined by up-
dating z′ with z′+x′

1G
′
1, denoted by C3 = m

∑w1

i=0

(
k1

i

)
i. The problem becomes

z′ = x′
2G

′
2 + e′.

Step 4. Covering-code. A linear covering code is used in this step to further
decrease the dimension of the secret vector. Use a [k2, l] linear code C with cov-
ering radius dC to rewrite any g′

i ∈ G′
2 as g′

i = ci + ẽi, where ci is the nearest
codeword in C and wt(ẽi) ≤ dC . Let the systematic generator matrix and its
parity-check matrix of C be F and H, respectively. Then the syndrome decoding
technique is applied to select the nearest codeword. The complexity is cost in
calculating syndromes Hg′T

i , i = 1, 2, . . . ,m, which was recursively computed in
[15], as C4 = (k2− l)(2m+2l). Thus, z′i = x′

2c
T
i +x′

2ẽ
T
i + e′i, i = 1, 2, . . . ,m. But

if we use a specific concatenated code, the complexity formula of the syndrome
decoding step will differ, as we stated later.

In [15], ϵ′ = (1−2 d
k2
)w2 is used to determine the bias introduced by covering,

where d is the expected distance bounded by the sphere-covering bound, i.e., d
is the smallest integer that

∑d
i=0

(
k2

i

)
> 2k2−l, and w2 is an integer that bounds

wt(x′
2). But, we find that it is not proper to consider the components of error

vector ẽi as independent variables, which is also pointed out in [6]. Then Bogos
et. al. update the bias estimation as follows: when the code has the optimal
covering radius, the bias of ⟨x′

2, ẽi⟩ = 1 assuming that x′
2 has weight w2 can be

found according to

Pr[⟨x′
2, ẽi⟩ = 1|wt(x′

2) = w2] =
1

S(k2, d)

∑
i≤d, i odd

(
c

i

)
S(k2 − w2, d− i)

where S(k2, d) is the number of k2-bit strings with weight at most d. Then the
bias is computed as δ = 1−2Pr[⟨x′

2, ẽi⟩ = 1|wt(x′
2) = w2], and the final complex-

ity is derived by dividing a factor of the sum of covering chunks.4 Later based
on the calculation of the bias in [6], the authors of [15] further require that the

4 We feel that there are some problems in the bias estimation in Bogos et. al. paper.
In their work, the bias is computed as 1 − 2Pr[(x, e) = 1 | wt(x) = c] with the
conditional probability other than the normal probability Pr[(x,e)=1]. Note that
the latter can be derived from the total probability formula by traversing all the
conditions. Further, the weights of several secret chunks are assumed in a way that
facilitates the analysis, which need to be divided at last to assure its occurrence.
Here instead of summing up these partial conditional probabilities, they should be

Hamming weight bound w2 is the largest weight of x′
2 that the bias ϵ̃(w2) is not

smaller than ϵset, where ϵset is a preset bias. Still this holds with probability.

Step 5. Subspace hypothesis testing. It is to count the number of equal-
ity z′i = x′

2c
T
i in this step. Since ci = uiF, one can count the number of e-

quality z′i = yuT
i equivalently, for y = x′

2F
T . Group the samples (g′

i, z
′
i) in

sets L(ci) according to the nearest codewords and define the function f(ci) =∑
(g′

i,z
′
i)∈L(ci)

(−1)z′
i on the domain of C. Due to the bijection between Fl

2 and

C, define the function g(u) = f(ci) on the domain of Fl
2, where u represents

the first l bits of ci for the systematic feature of F. The Walsh transform of
g is defined as {G(y)}y∈Fl

2
, where G(y) =

∑
u∈Fl

2
g(u)(−1)⟨y,u⟩. The authors

considered the best candidate as y0 = arg maxy∈Fl
2
|G(y)|. This step calls for

the complexity C5 = l2l
∑w1

i=0

(
k1

i

)
, which runs for every guess of x′

1 using the
FWHT [7]. Note that if some column can be decoded into several codewords,
one needs to run this step more times.

Analysis. In [15], it is claimed that it calls for approximately m ≈ 1/(ϵ2
t+1

ϵ′2)
samples to distinguish the correct guess from the others, and estimated n ≈
m+ k+ t2b as the initial queries needed when adopting LF1 in the process. We
find that this is highly underestimated. Then they correct it as 4lln2/ϵ2f in the

presentation at Asiacrypt 2014, and adopt LF2 reduction steps with about 3 · 2b
initial queries.

Recall that two assumptions are made regarding to the Hamming weight
of secret vector, and it holds with probability Pr(w1, k1)· Pr(w2, k2), where
Pr(w, k) =

∑w
i=0(1 − η)k−iηi

(
k
i

)
since Pr[x′

i = 1] = η. If any assumption is
invalid, one needs to choose another permutation to run the algorithm again.
The authors showed the number of bit operations required for a success run of
the algorithm using covering codes as

C =
C1 + C2 + C3 + C4 + C5

Pr(w1, k1)Pr(w2, k2)
.

4 Our Improvements and Analysis

In this section, we present the core improvement and optimizations of our new
algorithm with complexity analysis.

4.1 Embedding Cascaded Perfect Codes

First note that in [15], the explicit code constructions for solving those LPN
instances to support the claimed attacks5 are not provided. Second, it is suspi-
cious whether there will be a good estimation of the bias, with the assumption

multiplied together. The Asiacrypt’14 paper has the similar problem in their analysis.
Our theoretical derivation is different and new. We compute Pr[(x, e) = 1] according
to the total probability formula strictly and thus the resultant bias precisely without
any assumption, traversing all the conditional probabilities Pr[(x, e) = 1 | wt(e) = i].

5 There is just a group of particular parameters for (512, 1/8)-LPN instance given in
their presentation at Asiacrypt 2014, but the other LPN instances are missing.

of Hamming weight restriction, which is crucial for the exact estimate of the
complexity. Instead, here we provide a generic method to construct the covering
codes explicitly and compute the bias accurately.

Covering code is a set of codewords in a space with the property that every
element of the space is within a fixed distance to some codeword, while in par-
ticular, perfect code is a covering code of minimal size. Let us first look at the
perfect codes.

Definition 2 (Perfect code [24]). A code C ⊂ Qn with a minimum distance
2e + 1 is called a perfect code if every x ∈ Qn has distance ≤ e to exactly one
codeword, where Qn is the n-dimensional space.

From this definition, there exists one and only one decoding codeword in the
perfect code for each vector in the space.6 It is well known that there exists only
a limited kinds of the binary perfect codes, shown in Table 2. Here e is indeed

Table 2. Types of all binary perfect codes

e n l Type

0 n n {0, 1}n
1 2r − 1 2r − r − 1 Hamming code
3 23 12 Golay code
e 2e+ 1 1 repetition code
e e 0 {0}

the covering radius dC .

Confined to finite types of binary perfect codes and given fixed parameters
of [k2, l], now the challenge is to efficiently find the configuration of some perfect
codes that maximize the bias. To solve this problem, we first divide the G′

2

matrix into several chunks by rows partition, and then cover each chunk by a
certain perfect code. Thereby each g′

i ∈ G′
2 can be uniquely decoded as ci chunk

by chunk. Precisely, divide G′
2 into h sub-matrices as

G′
2 =

G′

2,1

G′
2,2
...

G′
2,h

 .

For each sub-matrix G′
2,j , select a [k2,j , lj] perfect code Cj with the covering

radius dCj to regroup its columns, where j = 1, 2, . . . , h. That is, g′
i,j = ci,j +

ẽi,j , wt(ẽi,j) ≤ dCj for g′
i,j ∈ G′

2,j , where ci,j is the only decoded codeword in

6 There exists exactly one decodable code word for each vector in the space, which
facilitates the definition of the basic function in the Walsh transform. For other codes,
the covering sphere may be overlapped, which may complicate the bias/complexity
analysis in an unexpected way. It is our future work to study this problem further.

Cj . Then we have

z′i = x′
2g

′T
i + e′i =

h∑
j=1

x′
2,jg

′T
i,j + e′i

=

h∑
j=1

x′
2,j(ci,j + ẽi,j)

T + e′i =

h∑
j=1

x′
2,jc

T
i,j +

h∑
j=1

x′
2,j ẽ

T
i,j + e′i,

where x′
2 = [x′

2,1,x
′
2,2, . . . ,x

′
2,h] is partitioned in the same fashion as that of G′

2.
Denote the systematic generator matrix of Cj by Fj . Since ci,j = ui,jFj , we have

z′i =
h∑

j=1

x′
2,jF

T
j u

T
i,j +

h∑
j=1

x′
2,j ẽ

T
i,j + e′i

= [x′
2,1F

T
1 ,x

′
2,2F

T
2 , . . . ,x

′
2,hF

T
h] ·

uT
i,1

uT
i,2
...

uT
i,h

+
h∑

j=1

x′
2,j ẽ

T
i,j + e′i.

Let y = [x′
2,1F

T
1 ,x

′
2,2F

T
2 , . . . ,x

′
2,hF

T
h], ui = [ui,1,ui,1, . . . ,ui,h], and ẽi =

∑h
j=1

ẽi,j =
∑h

j=1 x
′
2,j ẽ

T
i,j . Then z′i = yuT

i + ẽi + e′i, which conforms to the procedure
of Step 5. Actually, we can directly group (g′

i, z
′
i) in the sets L(u) and define

the function g(u) =
∑

(g′
i,z

′
i)∈L(u)(−1)z

′
i , for each ui still can be read from ci

directly without other redundant bits due to the systematic feature of those
generator matrices. According to this grouping method, each (g′

i, z
′
i) belongs to

only one set. Then we examine all the y ∈ Fl
2 by the Walsh transform G(y) =∑

u∈Fl
2
g(u)(−1)⟨y,u⟩ and choose the best candidate.

Next, we consider the bias introduced by such a covering fashion. We find
that it is reasonable to treat the error bits ẽ·,j coming from different perfect
codes as independent variables, while the error components of ẽ·,j within one
perfect code will have correlations to each other (here we elide the first subscript
i for simplicity). Thus, we need an algorithm to estimate the bias introduced by a
single [k, l] perfect code with the covering radius dC , denoted by bias(k, l, dC , η).

Equivalently, it has to compute the probability Pr[xeT = 1] at first, where
Pr[xi = 1] = η. In order to ensure xeT = 1, within the components equal to 1
in e, there must be an odd number of corresponding components equal to 1 in
x , i.e., |supp(x) ∩ supp(e)| is odd. Thereby for wt(e) = i, 0 ≤ i ≤ dC , we have

Pr[xeT = 1|wt(e) = i] =
∑

1≤j≤i
j is odd

ηj(1− η)i−j

(
i

j

)
.

Moreover, Pr[wt(e) = i] = 2l
(
k
i

)
/2k, as the covering spheres are disjoint for

perfect codes. We have

Pr[xeT = 1] =

dC∑
i=0

2l
(
k
i

)
2k

 ∑
1≤j≤i
j is odd

ηj(1− η)i−j

(
i

j

) .

Additionally,

∑
1≤j≤i
j is even

ηj(1− η)i−j

(
i

j

)
+

∑
1≤j≤i
j is odd

ηj(1− η)i−j

(
i

j

)
= (η + 1− η)i,

∑
1≤j≤i
j is even

ηj(1− η)i−j

(
i

j

)
−

∑
1≤j≤i
j is odd

ηj(1− η)i−j

(
i

j

)
= (1− η − η)i,

we can simplify
∑

1≤j≤i, j is odd η
j(1 − η)i−j

(
i
j

)
as [1 − (1 − 2η)i]/2. Then we

derive the bias introduced by embedding the cascading as ϵ̃ =
∏h

j=1 ϵj according

to the pilling-up lemma, where ϵj = bias(k2,j , lj , dCj , η) = 1 − 2Pr[x2,j ẽ
T
·,j = 1]

for Cj . Note that this is an accurate estimation without any assumption on the
hamming weights.

Now we turn to the task to search for the optimal cascaded perfect codes C1,
C2, . . . , Ch that will maximize the final bias, given a fixed [k2, l] pair according
to the LPN instances.

Denote this process by an algorithm, called construction(k2, l, η). First, we
calculate the bias introduced by each type of perfect code exploiting the above
algorithm bias(k, l, dC , η). In particular, for Hamming code, we compute bias(2r−
1, 2r − r − 1, 1, η) for r : 2r − 1 ≤ k2 and 2r − r − 1 ≤ l. For repetition code, we
compute bias(2r+1, 1, r, η) for r : 2r+1 ≤ k2. We compute bias(23, 12, 3, η) for
the [23,12] Golay code, and always have bias(n, n, 0, η) equal to 1 for {0, 1}n, n =
1, 2, Also it can be proved that bias(r, 0, r, η) = [bias(1, 0, 1, η)]r for any r.
Second, we transform the searching problem into an integer linear programming
problem. Let the number of [2r − 1, 2r − r − 1] Hamming code be xr and the
number of [2r+1, 1] repetition code be yr in the cascading. Also let the number
of [23, 12] Golay code, [1, 0] code {0} and [1, 1] code {0, 1} in the cascading be
z, v and w respectively. Then the searching problem converts into the following
form.

∑
r:2r−1≤k2

2r−r−1≤l

(2r − 1)xr +
∑

r:2r+1≤k2

(2r + 1)yr + 23z + v + w = k2,∑
r:2r−1≤k2

2r−r−1≤l

(2r − r − 1)xr +
∑

r:2r+1≤k2

yr + 12z + w = l,

max

 ∏
r:2r−1≤k2

2r−r−1≤l

bias(2r − 1, 2r − r − 1, 1, η)xr

 ·
·

 ∏
r:2r+1≤k2

bias(2r + 1, 1, r, η)yr

 bias(23, 12, 3, η)zbias(1, 0, 1, η)v.

We perform the logarithm operations on the target function and make it
linear as

max
∑

r:2r−1≤k2

2r−r−1≤l

xrlog[bias(2
r − 1, 2r − r − 1, 1, η)] + vlog[bias(1, 0, 1, η)]+

+
∑

r:2r+1≤k2

yrlog[bias(2r + 1, 1, r, η)] + zlog[bias(23, 12, 3, η)].

Given the concrete value of η, we can provide the optimal cascaded perfect

Table 3. Optimal cascaded perfect codes employed in Section 6.4

LPN instances
(k, η)

Parameters
[k2, l]

Cascaded perfect codes h log2ϵ̃

LF1
(512, 1/8) [172, 62] y2 = 9 , y3 = 5 , z = 4 18 -15.1360
(532, 1/8) [182, 64] y2 = 11, y3 = 5 , z = 4 20 -16.3859
(592, 1/8) [207, 72] y3 = 8 , y4 = 4 , z = 5 17 -18.8117

LF2
(512, 1/8) [170, 62] y2 = 10, y3 = 4 , z = 4 18 -14.7978
(532, 1/8) [178, 64] y2 = 13, y3 = 3 , z = 4 20 -15.7096
(592, 1/8) [209, 72] y3 = 7 , y4 = 5 , z = 5 17 -19.1578

LF(4)
(512, 1/8) [174, 60] y2 = 1 , y3 = 11, z = 4 16 -15.9152
(532, 1/8) [180, 61] y2 = 2 , y3 = 11, z = 4, v = 1 18 -16.7328
(592, 1/8) [204, 68] y2 = 14, y3 = 6 , z = 4 24 -19.2240

codes with fixed parameters by Maple. We present in Table 3 the optimal cas-
caded perfect codes with the parameters chosen in Section 6.4 for our improved
algorithm when adopting various BKW algorithms for different LPN instances.
From this table, we can find that the optimal cascaded perfect codes usually
select the [23, 12] Golay code and the repetition codes with r at most 4.

It is worth noting that the above mentioned process is a generic method that
can be applied to any (k, η)-LPN instance, and finds the optimal perfect codes
combination to be embedded. In the current framework, the results are optimal
in the sense that the concrete code construction/the bias is optimally derived
from the integer linear programming.

4.2 Data Complexity Analysis

In this section, we present an analysis of the accurate number of queries needed
for choosing the best candidate in details. We first point out the distinguisher

statistic S between the two distributions corresponding to the correct guess and
the others. It is obvious to see that S obeys Ber 1

2 (1−ϵf)
if y is correct, thus we

deduce Pr[Si = 1] = 1
2 (1 − ϵf) = Pr[z′i ̸= yuT

i], where ϵf = ϵ2
t

ϵ′ indicates the
bias of the final noise for simplicity. Since G(y) calculates the difference between
the number of equalities and inequalities, we have S =

∑m
i=1 Si =

1
2 (m−G(y)).

It is clear that the number of inequalities should be minimum if y is correct.
Thus the best candidate is y0 = arg miny∈Fl

2
S = arg maxy∈Fl

2
G(y), rather than

arg maxy∈Fl
2
|G(y)| claimed in [15]. Then, let XA=B be the indicator function of

equality. Rewrite Si = Xz′
i=yuT

i
as usual. Then Si is drawn from Ber 1

2 (1+ϵf)
if y

is correct and Ber 1
2
if y is wrong, which is considered to be random. Take S =∑m

i=1 Si, we consider the ranking procedure for each possible y ∈ Fl
2 according

to the decreasing order of the grade Sy.
Let yr denote the correct guess, and yw otherwise. Given the independency

assumption and the central limit theorem, we have

Syr − 1
2 (1 + ϵf)m√

1
2 (1− ϵf)

1
2 (1 + ϵf)m

∼ N (0, 1), and
Syw − 1

2m
1
2

√
m

∼ N (0, 1),

where N (µ, σ2) is the normal distribution with the expectation µ and vari-
ance σ2. Thus we can derive Syr ∼ N (12 (1 + ϵf)m, 1

4 (1 − ϵ2f)m) and Syw ∼
N (m2 ,

m
4). According to the additivity property of normal distributions, Syr −

Syw ∼ N (12ϵfm, 1
4 (2− ϵ2f)m). Therefore, we obtain the probability that a wrong

yw has a better rank than the right yr, i.e., Syr < Syw is approximately

Φ
(
−
√
ϵ2fm/(2− ϵ2f)

)
, where Φ(·) is the distribution function of the standard

normal distribution. Let ρ = ϵ2fm/(2− ϵ2f) ≈ 1
2ϵ

2
fm, and this probability be-

comes Φ(−√ρ) ≈ e−ρ/2/
√
2π. Since we just select the best candidate, i.e., Syr

should rank the highest to be chosen. Thus Syr gets the highest grade with prob-

ability approximatively equal to (1−Pr[Syr < Syw])
2l−1 ≈ exp(−2le−ρ/2/

√
2π).

It is necessary to have 2l ≤ eρ/2, i.e., at least m ≥ 4lln2/ϵ2f to make the proba-
bility high. So far, we have derived the number of queries used by the authors
of [15] in their presentation at Asiacrypt 2014.

Furthermore, we have made extensive experiments to check the real suc-
cess probability according to different multiples of the queries. The simulations
show that m = 4lln2/ϵ2f provides a success probability of about 70%, while for

m = 8lln2/ϵ2f the success rate is closed to 17. To be consistent with the practical

experiments, we finally estimate m as 8lln2/ϵ2f hereafter. Updating the complex-

ities for solving different LPN instances in [15] with the m = 8lln2/ϵ2f number
of queries, the results reveal that the algorithm in [15] is not so valid to break
the 80-bit security bound. In addition, in [15] there is a regrettable missing of
the concrete terminal condition. It was said that a false alarm can be recog-
nized by hypothesis testing, without the derivation of the specific threshold. To

7 It is also analyzed that it calls for a number of 8lln2/ϵ2f to bound the failure proba-
bility in [6]. However, it uses the Hoeffding inequality, which is the different analysis
method from ours.

Fig. 1. Distributions according to yw and yr

ensure the completeness of our improved algorithm, we solve this problem as
follows. Denote the threshold by T , and adopt the selected best candidate y
as correct if Sy ≥ T . The density functions of the corresponding distributions
according to yw and yr are depicted in Fig. 1, respectively. Then it is clear to
see that the probability for a false alarm is Pf = Pr[Sy ≥ T |y is wrong]. It
is easy to estimate Pf as 1 − Φ(λ), where λ = (T − m

2)/
√

m
4 . Following our

improvements described in Section 4.1, there is no assumption on the weight of
x′
2 now. The restricted condition is that the expected number of false alarms

over all the (2l
∑w1

i=0

(
k1

i

)
)/Pr(w1, k1) basic tests is lower than 1. Thus we derive

λ = −Φ−1

(
Pr(w1,k1)

2l
∑w1

i=0 (
k1
i)

)
and the algorithm terminal condition is Sy ≥ T , i.e.,

G(y) ≥ λ
√
m, for Sy = 1

2 (m+G(y)) according to the definition above.

4.3 An Vital Flaw in [15] That May Affect the Ultimate Results

As stated in [15], it took an optimized approach to calculate DgT for each
column in G. Concretely, for a fixed value s, divide the matrix D into a =
⌈k/s⌉ parts, i.e., D = [D1,D2, . . . ,Da], each sub-matrix containing s columns
(possibly except the last one). Then store all the possible values of Dix

T for
x ∈ Fs

2 in tables indexed by i = 1, 2, . . . , a. For a vector g = [g1,g2, . . . ,ga]
partitioned according to D, we have DgT = D1g

T
1 +D2g

T
2 + · · ·+Dag

T
a , where

Dig
T
i can be read directly from the stored tables. The complexity of this step

is to add those intermediate results together to derive the final result, shown as
C1 in Section 3. It was stated that the cost of constructing the tables is about
O(2s), which can be negligible. Since the matrix D can only be obtained from
the online querying and then refreshed for each iteration, this procedure should
be reprocessed for each iteration and cannot be pre-computed in advance in the
offline phase. Thus it is reasonable to include PC1/ (Pr(w1, k1)Pr(w2, k2)) in the
overall complexity.

5 Variants of the BKW Algorithm

In this section, we first present a theoretical analysis of the previous BKW
algorithms with an emphasis on the differences in the reduction phase. Then we
extend the heuristic algorithm LF2 into a series of variant algorithms denoted by
LF(κ), as a basis of the improved algorithm proposed in Section 6. Furthermore,
we verify the performance of these BKW algorithms in experiments

5.1 LF1

LF1 works as follows. Choose a representative in each partition, add it to the rest
of samples in the same partition and at last discard the representative, shown
in the Algorithm 2 in Section 2.2. It is commonly believed that LF1 has no
heuristics, and follows a rigorous analysis of its correctness and performance in
theory. However, having checked the proof in [22], we find that the authors have
overlooked the fact that the noise bits are no more independent after performing
the xor operations among the pairs of queries, which can be easily examined
in the small instances. Thus there is no reason in theory to apply the pilling-up
lemma for calculating the bias as shown in the proof. Thereby there is no need
to treat it superior to other heuristic algorithms for the claimed strict proof.

Fortunately, by implementing LF1 algorithm, we find that the dependency
does not affect the performance of the algorithm, shown in the Table 4 in the
Appendix. That is, the number of queries in theory with the independency as-
sumption supports the corresponding success rate in practice. Thus we keep the
independence assumption for the noise bits hereafter.

5.2 LF2

LF2 computes the sum of pairs from the same partition, shown in Algorithm 3 in
Section 2.2. LF2 is more efficient and allows fewer queries compared to LF1. Let
n[i], i = 1, 2, . . . , t be the excepted number of samples via the i-th BKW step,
and n[0] = n. We impose a restriction that n[i] is not larger than n for any i to
LF2 with the following considerations. One is to control the dependence within
certain limits, another is to preserve the number of samples not overgrowing,
which will also stress on the complexity otherwise. The simulations done with
the parameters under the restriction confirm the performance of LF2 shown in
Table 4 in the Appendix, and encounter with the statement that the operations
of every pair have no visible effect on the success rate of the algorithm in [22].

5.3 Variants: LF(κ)

Here we propose a series of variants of the BKW algorithm, called LF(κ), which
not only consider pairs of columns, but also consider κ-tuples that add to 0 in
the last b entries. We describe the algorithm as follows. It is easy to see that
the number of tuples satisfying the condition has an expectation of E =

(
n
κ

)
2−b,

Algorithm 5 Reduction of LF(κ)

1: Find sufficient κ-tuples from Gi−1 that add to 0 in the last b entries.
2: for each κ-tuple do
3: Calculate the sum of κ-tuple, joint it into Gi after discarding its last b bits of 0.
4: end for

given the birthday paradox. Similarly, define the excepted number of samples
via the i-th BKW step as n[i], i = 1, 2, . . . , t. We have n[i] =

(
n[i−1]

κ

)
2−b, which

also applies to LF2 when κ = 2. We still impose the restriction that n[i] is not

larger than n for any i. The bias introduced by the variant decreases as ϵκ
t

. We
have implemented and run the variant algorithm for κ = 3, 4 under the data
restriction, and verified the validity of these algorithms, shown in Table 4.

The extra cost of these variant BKW algorithms is to find a number of
n[i] such κ-tuples at each step. It is fortunate that this is the same as the
κ-sum problem investigated in [25], which stated that the κ-sum problem for a
single solution can be solved in κ2b/(1+⌊log2κ⌋) time and space [25]; moreover, one
can find n[i] solutions to the κ-sum problem with n[i]1/(1+⌊log2κ⌋) times of the
work for a single solution, as long as n[i] ≤ 2b/⌊log2κ⌋ [25]. Thus this procedure
of the variant BKW algorithms adds a complexity of κ(2bn[i])1/(1+⌊log2κ⌋) in
time at each step, and κ2b/(1+⌊log2κ⌋) in space. Additionally, it stated that the
lower bound of the computational complexity of κ-sum problem is 2b/κ. Thus
it is possible to remove the limitation of the extra cost from the variant BKW
algorithms if a better algorithm for κ-sum problem is proposed.

In Section 6, we present the results of the improved algorithms by embedding
optimal cascaded perfect codes, which adopt LF1, LF2 and LF(4) at Step 2
respectively. We choose κ = 4 when adopting the variant BKW algorithm for the
following reasons. If κ increases, the bias ϵκ

t

introduced by LF(κ) falls sharply,
and then we cannot find effective attack parameters. Since particularly stressed
in [25] it takes a complexity of 2b/3 in time and space for a single solution when
κ = 4, it calls for an extra cost of (2bn[i])1/3 in time at each step and 2b/3

in space when adopting the variant LF(4)8 . Additionally, since the birthday

paradox that n[i] = (
(
n[i−1]

4

)
) · 2−b, we derive that n[i] = n[i−1]4

4! · 2−b, then

n[i− 1] =
(
4! · 2b · n[i]

)1/4
.

8 Can LF(4) be equivalent to two consecutive LF2 steps? The answer is no. We can
illustrate this in the aspect of the number of vectors remained. If we adopt LF(4)

one step, then the number of vectors remained is about s =
(
n
4

)
· 2−b = n4

4!
· 2−b.

While if we first to reduce the last b1 positions with LF2, then the number of vectors

remained is t1 =
(
n
2

)
· 2−b1 = n2

2
· 2−b1 . Then, we do the second LF2 step regarding

to the next b − b1 positions and the number of vectors remained changes into t2 =(
t1
2

)
· 2−(b−b1) = (n2/2·2−b1)2

2
· 2−(b−b1) = n4

8
· 2−b−b1 . We can see that s is obviously

not equal to t2, so they are not equivalent. Indeed, LF(k) is algorithmically converted
into several LF2, the point here is that we need to run the process a suitable number
of times to find a sufficient number of samples.

5.4 Simulations

We have checked the performance as well as the correctness of the heuristic
assumption by extensive simulations shown below. The experimental data adopt
the numbers of queries estimated in theory, and obtain the corresponding success
rate. In general, the simulations confirmed the validity of our theoretical analysis
and the heuristic assumption, though the simulations are just conducted on some
small versions of (k, η) for the limitation of computing power.

Table 4. Simulation data

LF1

Problem Parameters Results
η k t b l log2n success rate

0.01 60 5 10 10 12.38 98/100
0.02 65 5 12 5 14.35 92/100
0.05 60 4 12 12 14.16 96/100
0.10 70 4 15 10 17.62 88/100
0.15 40 3 10 10 15.27 99/100
0.20 50 3 14 8 18.66 92/100
0.30 65 2 20 25 22.14 84/100

LF2

Problem Parameters Results
η k t b l log2n success rate

0.01 60 5 9 15 9.95 96/100
0.02 50 5 9 5 9.96 89/100
0.05 55 4 11 11 11.93 99/100
0.10 70 4 16 6 16.90 91/100
0.15 55 3 15 10 16.75 97/100
0.20 60 3 18 6 19.76 90/100
0.30 60 2 18 24 19.66 80/100

LF(3)

Problem Parameters Results
η k t b l log2n success rate

0.01 60 3 14 18 8.30 98/100
0.05 80 3 25 5 13.76 94/100
0.10 55 2 22 11 12.85 90/100
0.15 60 2 27 6 15.34 93/100
0.20 40 1 20 20 12.07 90/100

LF(4)

Problem Parameters Results
η k t b l log2n success rate

0.02 65 2 22 21 8.87 95/100
0.05 70 2 29 12 11.38 92/100
0.15 50 1 29 21 12.14 90/100
0.20 45 1 32 13 13.16 91/100

5.5 A Technique to Reduce the Data Complexity

We briefly present a technique that applies to the last reduction step in LF2,
aiming to reduce the number of queries. For simplicity, we still denote the sam-
ples at last step by (gt−1, z), which accords with z = xgT

t−1 + e and consists
of k dimensions. Let the number of samples remained before running the last
reduction step be nt−1 and the aim is to further reduce b dimensions at this
step, i.e., l = k− b for solving. This step runs as: (1) Sort the samples according
to the last a bits of gt−1 (a ≤ b), and merge pairs from the same partition to
generate the new samples (g′

t−1, z
′). (2) Sort (g′

t−1, z
′) into about B = 2b−a

groups according to the middle b − a bits of g′
t−1 with each group containing

about m =
(
n
2

)
2−b new samples. In each group, the value of x[l+1,l+a]g

′T
[l+1,l+a]

is constant given an assumed value of x[l+1,l+a], denoted by α. Here x[a,b] means
the interval of components within the vector x. Thus in each group, the bias
(denoted by ϵ) for the approximation of z′ = x[1,l]g

′T
[1,l] contains the same sign,

which may be different from the real one, for z′ = x[1,l]g
′T
[1,l] + α + e′ according

to the assumed value of x[l+1,l+a].
To eliminate the influence of the different signs among the different groups,

i.e., no matter what value of x[l+1,l+a] is assumed, we take χ2-test to distinguish
the correct x[1,l]. For each group, let the number of equalities be m0. Then
we have Si = (m0 − m

2)
2/(m2) + (m − m0 − m

2)
2/(m2) = W 2/m, to estimate

the distance between the distributions according to the correct x[1,l] and wrong
candidates considered as random, where W is the value of the Walsh transform
for each x[1,l]. If x[1,l] is correct, then Si ∼ χ2

1(mϵ2); otherwise, Si ∼ χ2
1, referred

to [9]. Here, χ2
M denotes the χ2-distribution with M degrees of freedom, whose

mean is M and the variance is 2M ; and χ2
M (ξ) is the non-central χ2-distribution

with the mean of ξ + M and variance of 2(2ξ + M). Moreover, If M > 30, we
have the approximation χ2

M (ξ) ∼ N (ξ+M, 2(2ξ+M)) [8]. We assume that the

Sis are independent, and have the statistic S =
∑B

j=1 Si. If x[1,l] is correct, then

S ∼ χ2
B(Bmϵ2) ∼ N (B(1+ϵ2m), 2B(1+2ϵ2m); otherwise, S ∼ χ2

B ∼ N (B, 2B),
when B > 30, according to the additivity property of χ2-distribution. Hereto,
we exploit a similar analysis as Section 4.1 to estimate the queries needed to
make the correct x[1,l] rank highest according to the grade S, and result in m ≥
4lln2
Bϵ2

(
1 +

√
1 + B

2lln2

)
by solving a quadratic equation in m. Further amplify the

result as m > 4lln2√
Bϵ2

and we find that this number decreases to a
√
B-th of the

original one with the success rate close to 1. We have simulated this procedure for
the independence assumption, and the experimental data verified the pprocess.
This technique allows us to overcome the lack of the data queries, while at the
expense of some increase of the time complexity, thus we do not adopt it in the
following Section 6.

6 Faster Algorithm with the Embedded Perfect Codes

In this section, we develop the improved algorithm for solving LPN with the
key ideas introduced in the above Sections 4 and 5. Our improved algorithm
for solving LPN has a similar framework as that in [15], but exploits a precise
embedding of cascaded concrete perfect codes at Step 4 and optimizes each step
with a series of techniques. The notations here follow those in Section 3.

We first formalize our improved algorithm in high level according to the
framework, shown in Algorithm 6. We start by including an additional step to
select the favorable queries.

Step 0. Sample selection. We select the data queries in order to transfer
the (k, η)-LPN problem into a (k − c, η)-LPN problem compulsively. It works
as follows. Just take the samples that the last c entries of g all equal 0 from
the initial queries. Thus we reduce the dimension of the secret vector x by c-bit
accordingly, while the number of initial queries needed may increase by a factor
of 2c. We only store these selected z and g without the last c bits of 0 to form
the new queries of the reduced (k − c, η)-LPN instance, and for simplicity still

Algorithm 6 Improved Algorithm with the embedding cascaded perfect codes

Input: (k, η)-LPN instance of N queries, algorithm parameters c, s, u, t, b, f, l, k2, w1.
1: Select n samples that the last c bits of g all equal 0 from the initial queries, and

store those selected z and g without the last c bits of 0.
2: Run the algorithm construction(k2, l, η) to generate the optimal cascaded perfect

codes and deduce the bias ϵ̃ introduced by this embedding.
3: repeat
4: Pick a random column permutation π and perform Gaussian elimination on

π(G) to derive [I L0];
5: for i = 1 to t do
6: Perform the BKW reduction step (LF1, LF2, LF(4)) on Li−1 resulting in Li.
7: end for
8: Based on the cascading, group the columns of Lt by the last k2 bits according

to their nearest codewords chunk by chunk.
9: Set k1 = k − c− tb− k2;
10: for x′

1 ∈ {0, 1}k1 with wt(x′
1) ≤ w1 do

11: Update the observed samples.
12: Use FWHT to compute the numbers of 1s and 0s

for each y ∈ {0, 1}l, and pick the best candidate.
13: Perform hypothesis testing with a threshold.
14: end for
15: until: Acceptable hypothesis is found.

denoted by (g, z). Note that the parameter k used hereafter is actually k − c,
and we do not substitute it for a clear comparison with [15].

As just stated, the number of initial queries is N = 2cn. To search for the
desirable samples that the last c entries of g being 0, we can just search for the
samples that the Hamming weight of its last c entries equals to 0 with a com-
plexity of log2 c [17]. But, this can be sped up by pre-computing a small table
of Hamming weight, and look up the table within a unit constant time O(1).
The pre-computation time and space can be ignored compared to those of the
other procedures, for usually c is quite small. Thus, the complexity of this step
is about C0 = N .

Step 1. Gaussian elimination. This step is still to change the position distri-
bution of the coordinates of the secret vector and is similar as that described in
Section 3. Here we present several improvements of the dominant calculation of
the matrix multiplication DG.

In [15], this multiplication is optimized by table look-up as DgT = D1g
T
1 +

D2g
T
2 + · · ·+Dag

T
a , now we further improve the procedure of constructing each

table Dix
T for x ∈ Fs

2 by computing the products in a certain order. It is easy
to see that the product Dix

T is a linear combination of some columns in Di. We
partition x ∈ Fs

2 according to its weight. For x with wt(x) = 0, Dix
T = 0. For all

x with wt(x) = 1, we can directly read the corresponding column. Then for any
x with wt(x) = 2, there must be a x′ with wt(x) = 1 such that wt(x+ x′) = 1.
Namely, we just need to add one column to the already obtained product Dix

′T ,

which is within k bit operations. Inductively, for any x with wt(x) = w, there
must be a x′ with wt(x′) = w − 1 such that wt(x + x′) = 1. Thus, the cost of
constructing one tableDix

T ,x ∈ Fs
2 can be reduced to k

∑s
i=2

(
s
i

)
= (2s−s−1)k.

The total complexity is PC11 = (2s− s− 1)ka for a tables, which is much lower
than the original k22s. We also analyze the memory needed for storing the tables
[x,Dix

T]x∈Fs
2
, i = 1, 2, . . . , a, which is M11 = 2s(s+ k)a.

Next, we present an optimization of the second table look-up to sum up the
a columns, each of which has k dimensions. Based on the direct reading from the
above tables, i.e, D1g

T
1 +D2g

T
2 + · · ·+Dag

T
a , this addition can be divided into

⌈k/u⌉ additions of a u-dimensional columns, depicted in the following schematic.
We store a table of all the possible additions of a u-dimensional vectors and

Fig. 2. Schematic of addition

read it ⌈k/u⌉ times to compose the sum of a k-dimensional vectors required.
Thus the complexity of Step 1 can be reduced to C1 = (n− k)(a+ ⌈k/u⌉) from
(n− k)ak.

Now we consider the cost for constructing the tables of all the possible ad-
ditions of a u-dimensional vectors. It will cost 2uau(a − 1) bit operations by
the simple exhaustive enumeration. We optimize this procedure as follows. It
is true that any addition of a u-dimensional repeatable vectors can be reduced
to the addition of less than or equal to a u-dimensional distinct nonzero vec-
tors, for the sum of even number of same vectors equals 0. Thus, the prob-
lem transforms into the one that enumerates all the additions of i distinct
nonzero u-dimensional vectors, where i = 2, . . . , a. We find that every nonze-
ro vector appears

(
2u−1−1

i−1

)
times in the enumeration of all the additions of the

i distinct nonzero vectors. Then the total number of nonzero components of
the vectors in the enumeration for i can be the upper bound of the bit op-
erations for the addition, i.e., ≤

(
2u−2
i−1

)
·
∑u

j=1

(
u
j

)
j bit operations. Moreover,

each nonzero vector appears the same number of times in the sums of the enu-
meration, which can be bounded by

(
2u−1

i

)
/(2u − 1). We store the vectors as

storing sparse matrix expertly and the memory required for this table is con-

fined to
[(

2u−2
i−1

)
+
(
2u−1

i

)
/(2u − 1)

]
·
[∑u

j=1

(
u
j

)
j
]
. We can simply

∑u
j=1

(
u
j

)
j as∑u−1

j=0

(
u−1
j−1

)
u = u2u−1. Thus the total complexity for constructing this table is

PC12 =
∑a

i=2 u2
u−1

(
2u−2
i−1

)
in time and M12 =

∑a
i=2

i+1
i u2u−1

(
2u−2
i−1

)
in mem-

ory. For each addition of a u-dimensional columns derived from the original a
k-dimensional columns, we discard all the even number of reduplicative columns
and read the sum from the table. Moreover, this table can be pre-computed in
the off-line phase and applied to each iteration. Since the table here is in the
similar size to that used at Step 1 in [15], we still consider the complexity of
the first table look-up as O(1), which is the same as that in [15]. This step has
another improved method in [3]

Step 2. Collision procedure. This step still exploits the BKW reduction to
make the length of the secret vector shorter. As stated in Section 5, we adopt
the reduction mode of LF1, LF2 and LF(4) to this step, respectively. Similarly,
denote the expected number of samples remained via the i-th BKW step by
n[i], i = 0, 1, . . . , t, where n[0] = n, n[t] = m and m is the number of queries re-
quired for the final solving phase. First for LF1, n[i] = n− k− i2b, as it discards
about 2b samples at each BKW step. We store a table of all the possible addi-
tions of two f -dimensional vectors similarly as that in Step 1. For the merging
procedure at the i-th BKW step, we divide each pair of (k+1− ib)-dimensional
columns into ⌈k+1−ib

f ⌉ parts, and read the sum of each part directly from the

table. The cost for constructing the table is PC2 = f2f−1(2f − 2) and the mem-
ory to store the table is M2 = 3

2f2
f−1(2f − 2). Then the cost of this step is

C2 =
∑t

i=1⌈
k+1−ib

f ⌉(n − k − i2b) for LF1, for the samples remained indicated
the pairs found.

Second for LF2, we have n[i] =
(
n[i−1]

2

)
2−b following the birthday para-

dox. We still do the merging as LF1 above and it calls for a cost of C2 =∑t
i=1⌈

k+1−ib
f ⌉n[i], and also a pre-computation of PC2 = f2f−1(2f − 2) in time

and M2 = 3
2f2

f−1(2f − 2) in memory.

Third for LF(4), we similarly have n[i] =
(
n[i−1]

4

)
2−b. We need to store a

table of all the possible additions of four f -dimensional vectors. For the merg-
ing procedure at the i-th BKW step, we divide each 4-tuple of (k + 1 − ib)-
dimensional columns into ⌈k+1−ib

f ⌉ parts, and read the sum of each part directly

from the table. The cost of constructing the table is PC2 =
∑4

i=2 f2
f−1

(
2f−2
i−1

)
and the memory to store the table is

∑4
i=2

i+1
i f2f−1

(
2f−2
i−1

)
. Additionally, there

is still one more cost for finding the 4-tuples that add to 0 in the last b en-
tries. This procedure has a cost of (2bn[i])1/3 as stated in Section 5.3. Hence,

Step 2 has the complexity of C2 =
∑t

i=1

(
⌈k+1−ib

f ⌉n[i] + (2bn[i])1/3
)
for LF(4).

Moreover, it needs another memory of 2b/3 to search for the tuples, i.e., M2 =∑4
i=2

i+1
i f2f−1

(
2f−2
i−1

)
+ 2b/3 for LF(4).

Step 3. Partial secret guessing. It still guesses all the vectors x′
1 ∈ {0, 1}k1

that wt(x′
1) ≤ w1 and updates z′ with z′ + x′

1G
′
1 at this step. We can optimize

this step by the same technique used at Step 1 for multiplication. Concretely, the
product x′

1G
′
1 is a linear combination of some rows in G′

1. We calculate these
linear combinations in the increasing order of wt(x′

1). For wt(x
′
1) = 0, x′

1G
′
1 = 0

and z′ does not change. For all the x′
1 with wt(x′

1) = 1, we calculate the sum

of z′ and the corresponding row in G′
1, which costs a complexity of m. Induc-

tively, for any x′
1 with wt(x′

1) = w, there must be another x′
1 of weight w − 1

such that the weight of their sum equals 1, and the cost for calculating this sum
based on the former result is m. Thus the cost of this step can be reduced from
m

∑w1

i=0

(
k1

i

)
i to C3 = m

∑w1

i=1

(
k1

i

)
.

Step 4. Covering-coding. This step still works as covering each g′
i ∈ G′

2 with
some fixed code to reduce the dimension of the secret vector. The difference is
that we propose the explicit code constructions of the optimal cascaded perfect
codes. According to the analysis in Section 6.1, we have already known the spe-
cific constructing method, the exact bias introduced by this constructing method
and covering fashion, thus we do not repeat it here. One point to illustrate is
how to optimize the process of selecting the codeword for each g′

i ∈ G′
2 online.

From Table 3, we find that the perfect code of the longest length chosen for those
LPN instances is the [23,12] Golay code. Thus we can pre-compute and store the
nearest codewords for all the vectors in the space corresponding to each perfect
code with a small complexity, and read it for each part of g′

i online directly.
Here we take the [23,12] Golay code as an example, and the complexity for the
other cascaded perfect codes can be ignored by taking into consideration their
small scale of code length. Let H be the parity-check matrix of the [23, 12] Golay
code corresponding to its systematic generator matrix. We calculate all the syn-
dromes HgT for g ∈ F23

2 in a complexity of PC4 = 11 · 23 · 223. Similarly, it can
be further reduced by calculating them in an order of the increasing weight and
also for the reason that the last 11 columns of H construct an identity matrix.
Based on the syndrome decoding table of the [23, 12] Golay code, we find the
corresponding error vector e to HgT since HgT = H(cT + eT) = HeT , and
derive the codeword c = g+ e. We also obtain u, which is the first 12 bits of c.
We store the pairs of (g,u) in the table and it has a cost of M4 = (23+12)·223 in
space. For the online phase, we just need to read from the pre-computed tables
chunk by chunk, and the complexity of this step is reduced to C4 = mh.

Step 5. Subspace hypothesis testing. At this step, it still follows the solving
phase but with a little difference according to the analysis in Section 6.1. The
complexity for this step is still C5 = l2l

∑w1

i=0

(
k1

i

)
. Here we have to point that the

best candidate chosen is y0 = arg maxy∈Fl
2
G(y), rather than arg maxy∈Fl

2
|G(y)|.

According to concrete data shown in the following tables, we estimate the suc-
cess probability as 1 − Pr[Sy < T |y is correct] considering the missing events,
and the results will be close to 1.

6.1 Complexity Analysis

First, we consider the final bias of the approximation z′i = yuT
i in our improved

algorithm. As the analysis in Section 6.1, we derive the bias introduced by em-
bedding optimal cascaded perfect codes, denoted by ϵ̃. The bias introduced by
the reduction of the BKW steps is ϵ2

t

for adopting LF1 or LF2 at Step 2, while
ϵ4

t

for adopting LF(4). Thus the final bias is ϵf = ϵ2
t

ϵ̃ for adopting LF1 or LF2,

and ϵf = ϵ4
t

ϵ̃ for adopting LF(4).

Second, we estimate the number of queries needed. As stated in Section 4.1,
it needs m = 8lln2/ϵ2f queries to distinguish the correct guess from the others
in the final solving phase. Then the number of queries for adopting LF1 at Step
2 is n = m + k + t2b. For adopting LF2, the number of queries is computed as
follows, n[i] ≈ ⌈(2b+1n[i + 1])1/2⌉, i = t − 1, t − 2, . . . , 0, where n[t] = m and
n = n[0]. Similarly for adopting LF(4), the number of queries is computed as
n[i] ≈ ⌈(4!2bn[i+ 1])1/4⌉. Note that the number of initial queries needed in our
improved algorithm should be N = n2c for the selection at Step 0, whatever the
reduction mode is adopted at Step 2.

Finally, we present the complexity of our improved algorithm. The tables
for vector additions at Step 1 and Step 2 can be constructed offline, as there
is no need of the online querying data. The table for decoding at Step 4 can
be calculated offline as well. Then the complexity of pre-computation is Pre =
PC12 + PC2 + PC4. The memory complexity is about M = nk +M11 +M12 +
M2 +M4 for storing those tables and the queries data selected. There remains
one assumption regarding to the Hamming weight of the secret vector x′

1, and
it holds with the probability Pr(w1, k1), where Pr(w, k) =

∑w
i=0(1− η)k−iηi

(
k
i

)
for Pr[x′

i = 1] = η. Similarly, we need to choose another permutation to run
the algorithm again if the assumption is invalid. Thus we are expected to meet
this assumption within 1/Pr(w1, k1) times iterations. The complexity of each
iteration is PC11 +C1 +C2 +C3 +C4 +C5. Hence, the overall time complexity
of our improved algorithm online is

C = C0 +
PC11 + C1 + C2 + C3 + C4 + C5

Pr(w1, k1)
.

6.2 Complexity Results

Now we present the complexity results for solving the three core LPN instances
by our improved algorithm when adopting LF1, LF2 and LF(4) at Step 2, re-
spectively.

Note that all of the three LPN instances aim to achieve a security level of
80-bit, and this is indeed the first time to distinctly break the first two instances.
Although we do not break the third instance, the complexity of our algorithm is
quite close to the security level and the remained security margin is quite thin.
More significantly, our improved algorithm can provide security evaluations to
any LPN instances with the proposed parameters, which may be a basis of some
cryptosystems.

We briefly illustrate the following tables. Here for each algorithm adopting
a different BKW reduction type, we provide a corresponding table respectively;
each contains a sheet of parameters chosen in the order of appearance and a
sheet of overall complexity of our improved algorithm (may a sheet of queries
numbers via each BKW step as well). There can be several choices when choosing
the parameters, and we make a tradeoff in the aspects of time, data and mem-
ory. From Table 6 and 7, we can see the parameters chosen strictly follow the
restriction that n[i] ≤ n for i = 1, 2, . . . , t for LF2 and LF(4), as stated in Section

Table 5. The complexity for solving the three LPN instances by our improved algo-
rithm when adopting LF1

LPN instance
Parameters

Selected data log2nc s u t b f l k2 w1

(512, 1/8) 5 51 8 5 63 31 62 172 1 66.291
(532, 1/8) 5 53 8 5 65 32 64 182 1 68.584
(592, 1/8) 4 59 9 5 73 36 72 207 1 75.557

LPN instance
Complexities

Time
log2C

Initial data
log2N

Memory
log2M

Pre-computation
log2Pre

(512, 1/8) 75.897 71.291 75.281 66.164
(532, 1/8) 78.182 73.584 77.629 68.053
(592, 1/8) 84.715 79.557 84.764 76.391

5. We also present an attack adopting LF(4) to (592, 1/8)-instance without the
covering method but directly solving. The parameters are c = 15, s = 59, u = 8,
t = 3, b = 178, f = 17, l = k2 = 35, w1 = 1, and the queries data via each BKW
step is n = 260.859, n[1] = 260.853, n[2] = 260.827, n[3] = 260.725. The overall
complexity is C = 281.655 in time, N = 275.859 for initial data, M = 272.196 in
memory and Pre = 268.540 for the pre-computation.

Table 6. The complexity for solving three LPN instances by our improved algorithm
when adopting LF2

LPN instance
Parameters

Selected data log2nc s u t b f l k2 w1

(512, 1/8) 5 51 8 5 64 31 62 170 1 64.987
(532, 1/8) 7 53 8 5 66 32 64 178 1 66.983
(592, 1/8) 4 59 9 5 73 36 72 209 1 73.985

LPN instance
Data via each BKW step

log2n[1] log2n[2] log2n[3] log2n[4] log2n[5]

(512, 1/8) 64.974 64.948 64.896 64.792 64.583
(532, 1/8) 66.966 66.932 66.863 66.726 66.453
(592, 1/8) 73.970 73.940 73.880 73.759 73.519

LPN instance
Complexities

Time
log2C

Initial data
log2N

Memory
log2M

Pre-computation
log2Pre

(512, 1/8) 74.732 69.987 73.983 66.164
(532, 1/8) 76.902 73.983 76.028 68.053
(592, 1/8) 83.843 77.985 83.204 76.391

Table 7. The complexity for solving three LPN instances by our improved algorithm
when adopting LF(4)

LPN instance
Parameters Selected

data
Data via each BKW step

c s u t b f l k2 w1 log2n log2n[1] log2n[2]

(512, 1/8) 10 47 8 2 156 16 60 174 1 53.526 53.519 53.490
(532, 1/8) 15 47 8 2 162 17 61 180 1 55.504 55.433 55.149
(592, 1/8) 18 53 8 2 177 17 68 204 1 60.513 60.468 60.288

LPN instance
Complexities

Time
log2C

Initial data
log2N

Memory
log2M

Pre-computation
log2Pre

(512, 1/8) 72.844 63.526 68.197 68.020
(532, 1/8) 74.709 70.504 69.528 69.231
(592, 1/8) 81.963 78.513 70.806 69.231

Remark 1. All the results above strictly obey that m = 8lln2/ϵ2f , which is
much more appropriate for evaluating the success probability, rather than the
m = 4lln2/ϵ2f which is chosen by the authors of [15] in their presentation at
Asiacrypt 2014. If we choose the data as theirs for comparison, our complexity
can be reduced to around 271, which is about 28 time lower than that in [15].

6.3 Concrete Attacks

Now we briefly introduce these three key LPN instances and the protocols based
on them. The first one with parameter of (512, 1/8) is widely accepted in various
LPN-based cryptosystems, e.g., HB+ [19], HB# [12] and LPN-C [13]. The 80-
bit security of HB+ is directly based on that of (512, 1/8)-LPN instance. Thus
we can yield an active attack to break HB+ authentication protocol straight
forwardly. HB# and LPN-C are two cryptosystems with the similar structures
for authentication and encryption. There exist an active attack on HB# and a
chosen-plaintext attack on LPN-C. The typical parameter settings of the column-
s number are 441 for HB#, and 80 (or 160) for LPN-C. These two cryptosystems
both consist of two version: secure version as Random- HB# and LPN-C, effi-
cient version as Toeplitz- HB# and LPN-C. For the particularity of Toeplitz
Matrices, if we attack its first column successively, then the cost for determining
the remaining vectors can be bounded by 240. Thus we break the 80-bit security
of these efficient versions employing Toeplitz matrices, i.e., Toeplitz-HB# and
LPN-C. For the random matrix case, the most common method is to attack it
column by column. Then the complexity becomes a columns number multiple
of the complexity attacking one (512, 1/8)-LPN instance9. That is, it has a cost
of 441 × 272.177 ≈ 280.962 to attack Random-HB#, which slightly exceeds the

9 Here, we adjust the parameter of (512, 1/8)-LPN instance in Table 6 that c changes
into 16. Then the complexity of time, initial data, memory and pre-computation are
respectively C = 272.177, N = 269.526, M = 268.196 and Pre = 268.020.

security level, and may be improved by some advanced method when conduct-
ing different columns. Similarly, the 80-bit security of Random- LPN-C can be
broke with a complexity of at most 160× 272.177 ≈ 279.499.

The second LPN instance with the increased length (532, 1/8) is adopted as
the parameter of an irreducible Ring-LPN instance employed in Lapin to achieve
80-bit security [16]. Since the Ring-LPN problem is believed to be not harder
than the standard LPN problem, the security level can be break easily. It is
urgent and necessary to increase the size of the employed irreducible polynomial
in Lapin for 80-bit security. The last LPN instance with (592, 1/8) is a new design
parameter recommended to use in the future. However, we do not suggest to use
it, for the security margin between our attack complexity and the security level
is too small.

7 Conclusions

In this paper, we have proposed faster algorithms for solving the LPN problem
based on an optimal precise embedding of cascaded concrete perfect codes, in the
similar framework to that in [15], but with more careful analysis and optimized
procedures. We have also proposed variants of BKW algorithms using tuples
for collision and a technique to reduce the requirement of queries. The results
beat all the previous approaches, and present efficient attacks against the LPN
instances suggested in various cryptographic primitives. Our new approach is
generic and is the best known algorithm for solving the LPN problem so far,
which is practical to provide concrete security evaluations to the LPN instances
with any parameters in the future designs. It is our further work to study the
problem how to cut down the limitation of candidates, and meanwhile employ
other type of good codes, such as nearly perfect codes.

Acknowledgements. The authors would like to thank one of the anonymous
reviewers for very helpful comments. This work is supported by the program of
the National Natural Science Foundation of China (Grant No. 61572482), Na-
tional Grand Fundamental Research 973 Programs of China (Grant No. 2013CB-
338002 and 2013CB834203) and the program of the National Natural Science
Foundation of China (Grant No. 61379142).

References

1. M. Albrecht, C. Cid, J. C. Faugère, R. Fitzpatrick, and L. Perret. On the complexity
of the BKW algorithm on LWE. Designs, Codes and Cryptography, 74(2):325–354,
2015.

2. C. Berbain, H. Gilbert, and A. Maximov. Cryptanalysis of Grain. In M. Rob-
shaw, editor, Fast Software Encryption–FSE’2006, volume 4047 of Lecture Notes in
Computer Science, pages 15–29. Springer Berlin Heidelberg, 2006.

3. D. Bernstein. Optimizing linear maps modulo 2. available at http://binary.cr.

yp.to/linearmod2-20090830.pdf

4. D. Bernstein and T. Lange. Never trust a bunny. In J. H. Hoepman and I. Ver-
bauwhede, editors, Radio Frequency Identification. Security and Privacy Issues, vol-
ume 7739 of Lecture Notes in Computer Science, pages 137–148. Springer Berlin
Heidelberg, 2013.

5. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM, 50(4): 506–519, 2003.

6. S. Bogos, F. Tramer, and S. Vaudenay. On solving LPN using BKW and variants.
available at https://eprint.iacr.org/2015/049.pdf.

7. P. Chose, A. Joux, and M. Mitton. Fast correlation attacks: An algorithmic point
of view. In L. Knudsen, editor, Advances in Cryptology–EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 209–221. Springer Berlin
Heidelberg, 2002.

8. H. Cramér. Mathematical methods of statistics, volume 9. Princeton university
press, 1999.

9. F. Drost, W. Kallenberg, D. Moore, and J. Oosterhoff. Power approximation-
s to multinomial tests of fit. Journal of the American Statistical Association,
84(405):130–141, 1989.

10. Y. Dodis, E. Kiltz, K. Pietrzak, and D. Wichs. Message authentication, revisited.
In D. Pointcheval and T. Johansson, editors, Advances in Cryptology–EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 355–374. Springer
Berlin Heidelberg, 2012.

11. A. Duc and S. Vaudenay. Helen: A public-key cryptosystem based on the LP-
N and the decisional minimal distance problems. In A. Youssef, A. Nitaj, and
A. Hassanien, editors, Progress in Cryptology–AFRICACRYPT 2013, volume 7918
of Lecture Notes in Computer Science, pages 107–126. Springer Berlin Heidelberg,
2013.

12. H. Gilbert, M. Robshaw, and Y. Seurin. HB#: Increasing the security and effi-
ciency of HB+. In N. Smart, editor, Advances in Cryptology–EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 361–378. Springer Berlin
Heidelberg, 2008.

13. H. Gilbert, M. Robshaw, and Y. Seurin. How to encrypt with the LPN prob-
lem. In L. Aceto, I. Damg̊ard, L. Goldberg, M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, editors, Automata, Languages and Programming, volume 5126 of
Lecture Notes in Computer Science, pages 679–690. Springer Berlin Heidelberg,
2008.

14. H. Gilbert, M. Robshaw, and H. Sibert. Active attack against HB+: a provably
secure lightweight authentication protocol. Electronics Letters, 41(21):1169–1170,
2005.

15. Q. Guo, T. Johansson, and C. Löndahl. Solving LPN using covering codes. In
P. Sarkar and T. Iwata, editors, Advances in Cryptology–ASIACRYPT 2014, volume
8873 of Lecture Notes in Computer Science, pages 1–20. Springer Berlin Heidelberg,
2014.

16. S. Heyse, E. Kiltz, V. Lyubashevsky, C. Paar, and K. Pietrzak. Lapin: An efficient
authentication protocol based on ring-LPN. In A. Canteaut, editor, Fast Software
Encryption–FSE’2012, volume 7549 of Lecture Notes in Computer Science, pages
346–365. Springer Berlin Heidelberg, 2012.

17. Helger Lipmaa and Shiho Moriai Efficient Algorithms for Computing the Differ-
ential Properties of Addition. In M. Matsui, editor, Fast Software Encryption–
FSE’2001, volume 2355 of Lecture Notes in Computer Science, pages 336–350.
Springer Berlin Heidelberg, 2002.

18. N. Hopper and M. Blum. Secure human identification protocols. In C. Boyd,
editor, Advances in Cryptology–ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 52–66. Springer Berlin Heidelberg, 2001.

19. A. Juels and S. Weis. Authenticating pervasive devices with human protocols. In
V. Shoup, editor, Advances in Cryptology–CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 293–308. Springer Berlin Heidelberg, 2005.

20. E. Kiltz, K. Pietrzak, D. Cash, A. Jain, and D. Venturi. Efficient authentica-
tion from hard learning problems. In K. Paterson, editor, Advances in Cryptology–
EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
7–26. Springer Berlin Heidelberg, 2011.

21. Paul Kirchner. Improved generalized birthday attack. available at
http://eprint.iacr.org/2011/377.pdf.

22. R. Levieil and P. A. Fouque. An improved LPN algorithm. In R. De Prisco and
M. Yung, editors, Security and Cryptography for Networks, volume 4116 of Lecture
Notes in Computer Science, pages 348–359. Springer Berlin Heidelberg, 2006.

23. Y. Lu and S. Vaudenay. Faster correlation attack on Bluetooth keystream generator
E0. In M. Franklin, editor, Advances in Cryptology–CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 407–425. Springer Berlin Heidelberg,
2004.

24. J. H. Van Lint. Introduction to coding theory, volume 86. Springer Science &
Business Media, 1999.

25. D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in
Cryptology–CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 288–304. Springer Berlin Heidelberg, 2002.

