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Abstract. In lattice cryptography, worst-case to average-case reduc-
tions rely on two problems: Ajtai’s SIS and Regev’s LWE, which both
refer to a very small class of random lattices related to the group G = Znq .
We generalize worst-case to average-case reductions to all integer lattices
of sufficiently large determinant, by allowing G to be any (sufficiently
large) finite abelian group. Our main tool is a novel generalization of lat-
tice reduction, which we call structural lattice reduction: given a finite
abelian group G and a lattice L, it finds a short basis of some lattice
L̄ such that L ⊆ L̄ and L̄/L ' G. Our group generalizations of SIS
and LWE allow us to abstract lattice cryptography, yet preserve worst-
case assumptions: as an illustration, we provide a somewhat conceptu-
ally simpler generalization of the Alperin-Sheriff-Peikert variant of the
Gentry-Sahai-Waters homomorphic scheme. We introduce homomorphic
mux gates, which allows us to homomorphically evaluate any boolean
function with a noise overhead proportional to the square root of its
number of variables, and bootstrap the full scheme using only a linear
noise overhead.

1 Introduction

A lattice is a discrete subgroup of Rm. Nearly two decades after its introduc-
tion, lattice-based cryptography has emerged as a credible alternative to classical
public-key cryptography based on factoring or discrete logarithm. It offers new
properties (such as security based on worst-case assumptions) and new func-
tionalities, such as noisy multilinear maps and fully-homomorphic encryption.
The worst-case guarantees of lattice-based cryptography come from two prob-
lems: Ajtai’s short integer solution (SIS) [1] and Regev’s learning with errors
(LWE) [37]. These average-case problems are provably as hard as solving certain
lattice problems in the worst case, such as GapSVP (the decision version of the
shortest vector problem) and SIVP (finding short lattice vectors).
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As noted by Micciancio [25], the SIS problem can be defined as finding short
vectors in a random lattice from a class An,m,q of m-dimensional integer lattices
related to the finite abelian group G = Znq , where n is the dimension of the worst-
case lattice problem and q needs to be sufficiently large: any g = (g1, . . . , gm) ∈
Gm chosen uniformly at random defines a lattice Lg ∈ An,m,q formed by all
x = (x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G; and SIS asks, given g, to find a

short (nonzero) x ∈ Lg. The class An,m,q has an algebraic meaning: for suitable
parameters, the distribution of Lg is statistically close to the uniform distribution
over the finite set LG,m of all full-rank lattices L ⊆ Zm such that Zm/L ' G.
This suggests that Ajtai’s lattices are very rare among all integer lattices: in
fact, Nguyen and Shparlinski [31] recently showed that the set ∪G cyclicLG,m
of all full-rank integer lattices L ⊆ Zm such that Zm/L is cyclic (unlike Znq )
has natural density 1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large m), which implies that

Ajtai’s classes An,m,q form a minority among all integer lattices.

This motivates the natural question of whether other classes of random lat-
tices enjoy similar worst-case to average-case reductions: if we call GSIS the SIS
generalization (introduced by Micciancio [25, Def 5.2]) to any finite abelian group
G, does GSIS have similar properties as SIS for other groups than G = Znq ? This
would imply that the random lattices of LG,m are also hard. Ajtai (in the pro-
ceedings version of [1]) and later Regev [36] noticed that the choice G =

∏n
i=1 Zqi

where the qi’s are distinct prime numbers of similar bit-length also worked. Mic-
ciancio [25] gave another choice of G, to obtain a better worst-case to average-
case connection (at that time): his G is actually constructed by an algorithm [25,
Lemma 2.11] given as input a very special lattice (for which solving the closest
vector problem is easy); if the input lattice is Zn, then G = (Zq)n. However, all
these choices of G are very special, and it was unknown if the hardness properties
held outside a small family of finite abelian groups.

A similar question can be asked for LWE, which is known as a dual prob-
lem of SIS, and has been used extensively in lattice-based encryption. However,
in order to define GLWE by analogy with GSIS, we need to change the usual
definition of LWE based on linear algebra. Any finite abelian group G is iso-
morphic to its dual group Ĝ formed by its characters, i.e. homomorphisms from
G to the torus T = R/Z. We define search-GLWE as the problem of learning
a character ŝ ∈ Ĝ chosen uniformly at random, given noisy evaluations of ŝ at
(public) random points g1, . . . , gm ∈ G, namely one is given gi and a “Gaus-
sian” perturbation of ŝ(gi) for all 1 ≤ i ≤ m. Decisional-GLWE is defined as the
problem of distinguishing the previous “Gaussian” perturbations of ŝ(gi) from
random elements in T. If G = (Zq)n, it can be checked that GLWE is LWE.
If G = Zp for some large prime p, search-GLWE is a randomized version of
Boneh-Venkatesan’s Hidden Number Problem (HNP) [8] (introduced to study
the bit-security of Diffie-Hellman key exchange, but also used in side-channel
attacks on discrete-log based signatures [30]), which asks to recover a secret
number s ∈ Zp, given random t1, . . . , tm chosen uniformly from Zp and approx-
imations of each sti mod p. Here, randomized means that the approximations
given are “Gaussian” perturbations of sti mod p. Thus, GLWE captures LWE
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and the HNP as a single problem, instantiated with different groups. Alterna-
tively, GLWE can be viewed as a lattice problem: solving a randomized version
of bounded distance decoding (with “Gaussian” errors) for the dual lattice of Lg.

Our results. We show that the worst-case to average-case reductions for
SIS and LWE (search and decisional) can be generalized to GSIS and GLWE,
provided that G is any sufficiently large finite abelian group, e.g. of order
nΩ(max(n,rank(G))) if n is the dimension of the worst-case lattice problem and
rank (G) denotes the minimal size of a generating set for G: note that the order
of G is the determinant of the average-case lattice. For GSIS and search-GLWE,
our reductions are direct from worst-case problems. We transfer decisional-LWE
hardness results to decisional-GLWE by generalizing the modulus-dimension
switching technique of Brakerski et al. [11].

We believe that our results offer a cleaner high-level picture of worst-case
to average-case reductions: previous work tend to focus on quantitative aspects
(such as decreasing the worst-case approximation factor, or the parameter q,
etc.), including work on the ring setting, where one introduces a trade-off be-
tween security and efficiency. The ring setting offers more efficient primitives
but requires (much) stronger worst-case assumptions: in the ring variants of SIS
and LWE, the worst-case lattices are restricted to classes of very special lattices
known as ideal lattices.

Our reductions are based on a new tool, which we call structural lattice
reduction, and which is of independent interest: Becker et al. [5] recently used
it to design new exponential-space algorithms for lattice problems. In lattice
reduction, one is given a full-rank lattice L ⊆ Zn and wants to find a short basis
of L. In our structural lattice reduction, one is further given a finite abelian
group G of rank ≤ n, and wants to find a short basis of some overlattice L̄
of L such that L̄/L ' G effectively, i.e. there exists an efficiently computable
surjective map ϕ from L̄ to G with kerϕ = L. Our key point is that previous
worst-case to average-case reductions (e.g. [20,11]) implicitly used a trivial case7

of structural lattice reduction: if B is a short basis of a full-rank lattice L ⊆ Zn
and q is an integer, then q−1B is a short basis of the lattice L̄ = q−1L such that
L̄/L ' Znq , which summarizes the importance of Znq in SIS and LWE.

Our GSIS reduction shows that in some sense all integer lattices are hard.
Indeed, the set of full-rank lattices L ⊆ Zm (of sufficiently large co-volume
≥ nΩ(m)) can be partitioned based on the finite abelian group Zm/L, and the
reduction implies that each partition cell LG,m has this worst-case to average-
case property: finding short vectors in a lattice chosen uniformly at random from
LG,m is as hard as finding short vectors in any integer lattice of dimension n.

Consider the special case G = Zp for a large prime p. Then our GSIS re-
duction provides the first hardness results for the random lattices in LZp,m used
in many experiments [18,14] to benchmark lattice reduction algorithms, as well
as in Darmstadt’s SVP internet challenges. And our GLWE reduction provides

7 There is a more technical reduction implicitly proposed in [25], but unfortunately
too restrictive on the choice of G
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a general hardness result for the HNP: previously, [11, Cor 3.4] established the
hardness for HNP when the large prime p is replaced by qn where q is smooth.

Finally, our generalizations of SIS and LWE allow us to abstract (the many)
lattice-based schemes based on SIS and/or LWE, where the role of G = (Zq)n
was not very explicit in most descriptions (typically based on linear algebra).
We believe such an abstraction can have several benefits. First, it can clarify
analyses and designs: the El Gamal cryptosystem is arguably better described
with an arbitrary group G, rather than by focusing on the historical choice
G = Z∗p; comparisons and analogies with “traditional” public-key cryptography
based on factoring or discrete logarithm will be easier. We illustrate this point
by providing a somewhat conceptually simpler GLWE-based generalization of
the Alperin-Sheriff-Peikert variant [2] of the Gentry-Sahai-Waters homomorphic
scheme [21]: this generalization becomes essentially as simple as trapdoor-based
fully-homormophic encryption proposals such as [38]. It is based on a GLWE
variant of El Gamal encryption, which naturally generalizes Regev’s LWE en-
cryption [37]. We also provide a new decryption circuit based on Mux gates,
which can bootstrap the system with a polynomial noise overhead, and is ar-
guably simpler than [2]. Second, it opens up the possibility of obtaining more
efficient schemes using different choices of G than G = (Zq)n. We do not claim
that there are better choices than (Zq)n, but such a topic is worth investigating,
which we leave to future work. Many factors influence efficiency: trapdoor gen-
eration, hashing, efficiency of the security reduction, etc. For instance, hashing
onto Zp can sometimes be more efficient than onto (Zq)n for large n, which could
be useful in certain settings, like digital signatures.

Furthermore, our abstraction may also be helpful to better understand at-
tacks on GSIS and GLWE. For instance, there are similarities between Bleichen-
bacher’s algorithm [6] for HNP and the BKW algorithm [7] for LWE: by viewing
LWE and HNP as two different instances of the same problem GLWE, one can
focus on the main ideas. And we note that among several classes of random
lattices having a worst-case to average-case reduction, it could be that some are
weaker than others, when it comes to the best attack known.

Related work. Baumslag et al. also introduced in [4] group generalizations
of LWE for non-commutative groups, but did not obtain hardness result. [16]
showed a self-reducibility property for some special non-commutative groups.

Open problems. Similarly to [11], our strongest hardness result for decisional-
GLWE bypasses search-GLWE: a direct search-to-decision equivalence for all
sufficiently large G is open. Adapting structural lattice reduction to the ring
setting is open: current ring results only address the average-case hardness of
very few classes of lattices, and it would be interesting to tackle more classes.
Our reductions require the order of G to be large compared to the worst-case
lattice dimension, and we would like to minimize this constraint: the GLWE case
G = Zn2 is essentially LPN, whose hardness is open; here, the order 2n does not
grow quickly enough with respect to the rank n for our reduction. On the other
hand, Micciancio and Peikert [27] recently decreased q for SIS.
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Roadmap. Sect. 2 gives background. Sect. 3 presents our group generalizations
of SIS and LWE. Sect. 4 presents structural lattice reduction. Sect. 5 and 6 show
hardness of GSIS and decisional-GLWE. In Sect. 7, we give an example of ab-
stracting lattice cryptography: El Gamal-like encryption and fully-homomorphic
encryption from GLWE. Detailed missing proofs can be found in the full version
of the paper [17]. In particular, we compare structural reduction with previous
work of Ajtai [1] and Micciancio [25]: and show that all previous SIS reductions
can be captured by our overlattice framework.

2 Background and Notation

Zq denotes Z/qZ. We use row notation for vectors and matrices. In is the n× n
id. matrix. A function negl(n) is negligible if it vanishes faster than any inverse
polynomial. ‖B‖ = max1≤i≤n ‖bi‖ is the maximal row norm of a matrix B.

Lattices. A lattice L is of the form L(B) = {
∑n
i=1 αibi, αi ∈ Z} for some basis

B = (b1, . . . ,bn) of linearly independent vectors in Rm. If L ⊆ Zm, L is an
integer lattice. The dimension n of span(L) is the dimension dim(L) of L. The
(co)-volume vol(L) is

√
det(BBt) for any basis B of L. For 1 ≤ i ≤ dim(L),

λi(L) is the i-th minimum of L, (smallest radius of the 0-ball containing at least
i linearly indep. lattice vectors) The dual lattice L× is the set of all u ∈ span(L)
s.t. 〈u,v〉 ∈ Z for all v ∈ L. If B is a basis of L, its dual basis B× = (BBt)−1B is
a basis of L×. For a factor γ = γ(n) ≥ 1, GapSVPγ asks, given d ≥ 0 and a basis
B of an n-dim lattice L, to decide if λ1(L) ≤ d or λ1(L) > γd. ApproxSIVPγ
asks a full-rank family of lattice vectors of norm ≤ γλn(L).

Gram-Schmidt Orthogonalization (GSO). The GSO of a lattice basis B =
(b1, ...,bn) is the unique decomposition B = µ · D · Q, where µ is a lower
triangular matrix with unit diagonal, D is a positive diagonal matrix, and Q
has orthonormal rows. We let B∗ = DQ whose i-th row b∗i is πi(bi), where πi
denotes the orthogonal projection of bi over span{b1, . . . ,bi−1}⊥. We use the
notation B[i,j] for the block [πi(bi), . . . , πi(bj)]. If B× is the dual basis of B and

(B×)∗ denotes its GSO matrix, then ‖(b×i )∗‖ · ‖b∗n−i+1‖ = 1 for 1 ≤ i ≤ n.

(Explicit) Finite abelian groups. Any finite abelian group G is isomorphic to

a product
∏k
i=1 Zqi of cyclic groups. We call rank of G the minimal number

of cyclic groups in such decompositions: this should not be confused with the
rank of an abelian group. We say that G is explicit if one knows q1, . . . , qk ∈ N
and an isomorphism

∏k
i=1 Zqi → G computable in poly-time: wlog k is the

rank and qi+1|qi. The isomorphism induces k generators e1, . . . , ek ∈ G s.t.
G = 〈e1〉 ⊕ · · · ⊕ 〈ek〉 and each ei has order qi. If the inverse of the isomorphism
is also computable in polynomial time, we say that G is fully-explicit.

Overlattices. When a lattice L̄ contains a sublattice L of the same dimension
n, L̄ is an overlattice of L. Then L̄/L is a finite abelian group of rank ≤ n and
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order vol(L)/ vol(L̄). Then we note L̄/L
ϕ' G for some ϕ, i.e. ϕ : L̄ → G is a

surjective morphism s.t kerϕ = L.

Lattice reduction. Cai [13] introduced the basis length of a lattice L as bl(L) =
minbasis B ‖B∗‖. Then: λn(L) ≥ bl(L) ≥ λn(L)/

√
n, bl(L) ≥ λ1(L), and bl(L) ≥

vol(L)1/n. Lattice reduction can find bases B with small ‖B∗‖. A basis B is
LLL-reduced [23] with factor ε

LLL
≥ 0 if its GSO satisfies |µi,j | ≤ 1

2 for all

1 ≤ j < i and ‖b∗i ‖
2 ≤ (1+ε

LLL
)(
∥∥b∗i+1

∥∥2
+µi+1,i ‖b∗i ‖

2
). Then it is folklore that:

‖B∗‖ ≤
(

(1 + ε
LLL

)
√

4/3
)(n−1)/2

bl(L). Given ε
LLL

> 0 and a basis B of a lattice

L ⊆ Zn, LLL [23] outputs an LLL-reduced basis of factor ε
LLL

in time polynomial

in 1/ε
LLL

and size(B). Usually, (1 + ε
LLL

)
√

4/3 =
√

2 or ε
LLL

= 1/ poly(n).

2.1 Gaussian Measures

The statistical distance between two distributions P and Q over a domain X is
∆(P,Q) = 1

2

´
a∈X |P(a)−Q(a)|da or 1

2

∑
a∈X |P(a)−Q(a)| when X is discrete.

P and Q are (statistically) ε-indistinguishable if ∆(P,Q) < ε. We write y ←
P (resp. ←ε P) for a sample y from the distrib. P (resp. a distribution ε-
indistinguishable from P). And ←≈ means ←ε for some negligible function ε.

Gaussian Distributions. The Gaussian Distribution (over Rn) DRn,σ,c centered
at c ∈ Rn of parameter σ ∈ R≥0 has a density function proportional to
ρRn,σ,c(x) = exp

(
−π‖x− c‖2/σ2

)
. If c is omitted, then c = 0. For any count-

able subset C ⊆ Rn (a lattice L or a coset x+L), ρRn,σ,c(C) is
∑

u∈C ρRn,σ,c(u).
The discrete Gaussian distribution DC,σ,c over a lattice or coset C ⊂ Rn is
DC,σ,c(x) = ρRn,σ,c(x)/ρRn,σ,c(C) where x ∈ C. One can sample efficiently the
discrete Gaussian distribution within negligible distance [20,35] or exactly [11]:

Lemma 1. There is a poly-time algorithm which, given c ∈ Qn, a basis B of a
lattice L ⊆ Qn and σ ≥ ‖B∗‖ ·

√
ln(2n+ 4)/π, samples the dist. DL,σ,c.

Reciprocally, a short lattice basis is derived from short discrete Gaussian samples:

Proposition 1 (Cor. of [36, Lemma 14]) Let ε > 0 and L(B) be an n-dim
lattice. Given m = O(n) indep. samples yi ←ε DL,si s.t.

√
2ηε(L) ≤ si ≤ σ, 1 ≤

i ≤ m, one can compute in poly-time a basis C of L s.t. ‖C∗‖ ≤
√
n/2π ·maxi si.

Modular Distributions and Smoothing Parameter. The distributions DRn,σ,c and
DL̄,σ,c over an overlattice L̄ ⊇ L can be projected modulo L: DRn/L,σ,c (resp.
DL̄/L,σ,c) has density DRn,σ,c(x+L) for x ∈ Rn/L (resp. L̄/L). Both DRn/L,σ and
DL̄/L,σ converge (uniformly) to the uniform distribution when σ increases. This
is quantified by the smoothing parameter ηε(L) [28], i.e. the minimal σ > 0 for

ε > 0 s.t. ρRn, 1σ (L×\ {0}) ≤ ε, i.e.
∥∥∥DRn/L,σ(x + L)− 1

vol(L)

∥∥∥
∞
≤ ε

vol(L) :

Lemma 2 (see Cor 2.8 of [20]). If L̄ is an overlattice of L, ε ∈ (0, 1/2),
σ ≥ ηε(L) and c ∈ Rn, then DL̄/L,σ,c+L is within stat. distance ≤ 2ε from the

uniform distribution over L̄/L.
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For any n-dim basis B, ηε(L(B)) ≤ ηε(L(B∗)) ≤ ηε(Zn) · ‖B∗‖ where ηε(Zn) ≤√
log
(
2n · (1 + 1

ε )
)
/π. In particular, ηε(L) ≤ ηε(Zn) · bl(L). Finally, we give

a technical lemma (proved in App. A.2 of the full version [17]), analogous to
[37,35].

Lemma 3. Let K = R or T. Let c ∈ R, u ∈ Rn, α, σ ∈ R≥0, ε ∈ (0, 1/2) and

z + L be a coset of an n-dim lattice L ⊆ Rn. Assume that
(

1
σ2 + ‖u‖2

α2

)−1/2

≥
ηε(L). Then DK,α,c+〈u,v〉 where v ← Dz+L,σ is within statistical distance ≤ 4ε

from DK,
√
α2+σ2‖u‖2,c. This still holds when K = 1

NZ or 1
NZ/Z if α ≥ ηε( 1

NZ).

3 Lattice Factor Groups and Generalizations of SIS/LWE

3.1 Lattice Factor Groups

If L is a full-rank lattice ⊆ Zm, its factor group Zm/L is a finite abelian group
of order vol(L). For any finite abelian group G, denote by LG,m the (finite) set
of full-rank lattices L ⊆ Zm such that Zm/L ' G. The following elementary
characterization of LG,m is a consequence of [33]:

Theorem 1. Let G be a finite abelian group and L be a full-rank lattice
in Zm. Then L ∈ LG,m if and only if G has rank ≤ m and there exists
g = (g1, . . . , gm) ∈ Gm s.t. the gi’s generate G and L = Lg where Lg =
{(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G}.

Given G, Alg. 5 (App. A) samples efficiently lattices from the uniform distribu-
tion over LG,m, and its correctness follows from Lemma 4. Previously, efficient
sampling was only known for G = Zp for large prime p [22].

Lemma 4. Let G be a finite abelian group. Let g = (g1, . . . , gm) ∈ Gm be such
that the gi’s generate G. Let h = (h1, . . . , hm) ∈ Gm. Then Lg = Lh if and only
if there is an automorphism ψ of G such that hi = ψ(gi) for all 1 ≤ i ≤ m. In
such a case, ψ is uniquely determined.

We note that several implementations of lattice-based cryptography (such
as [19]) implicitly used lattices in LG,m for some large cyclic group G. Recently,
Nguyen and Shparlinski [31] showed that such lattices are dominant: the set
∪G cyclicLG,m of all full-rank integer lattices L ⊆ Zm such that Zm/L is cyclic
has natural density 1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large m).

3.2 The Group-SIS Problem (GSIS)

Micciancio [25] introduced the Homogeneous SIS problem which is a natural
generalization of SIS to an arbitrary finite abelian group G. In this paper, we
call it Group-SIS problem (GSIS). The parameters are m ≥ 1 and a bound
β > 0. One picks g = (g1, . . . , gm) ∈ Gm uniformly at random. GSIS(G,m, β)
asks to find a non-zero vector x ∈ Zm s.t.

∑m
i=1 xigi = 0 and ‖x‖ ≤ β. In other
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words, GSIS asks to find short vectors in random relation lattices Lg = {x ∈
Zms.t.

∑m
i=1 xigi = 0}. For instance, GSIS(Znq ,m, β) is SIS, and GSIS(Zq,m, β)

is finding short vectors in random m-dimensional co-cyclic lattices of volume q.
If #G denotes the order of G, the existence of a GSIS-solution is guaranteed if
β ≥
√
m(#G)1/m.

GSIS is connected to LG,m as follows. As soon as m ≥ n + 2 log log #G + 5
(resp. m > 2 log #G + 2), g1, . . . , gm generate G with probability ≥ 1/e [24,32]
(resp. ≥ 1−1/#G), in which case Zm/Lg ' G. In particular, if m > 2 log #G+2,
the distribution of GSIS lattices Lg is statistically close to the distribution of
Alg. 5, and therefore the uniform distribution over LG,m, in which case GSIS is
equivalent to finding short vectors in random lattices from LG,m.

Finally, we note that to establish hardness of GSIS, it suffices to focus on
low-rank groups G. Indeed, if G′ = G×H for some groups G,H, then GSIS over
G can trivially be reduced to GSIS over G′, by “projecting”G′ to G.

3.3 The Group-LWE Problem (GLWE)

We introduce the Group-LWE problem (GLWE), using the torus T = R/Z and
a finite abelian group G. Let Ĝ be the dual group of homomorphisms G→ T: it
is isomorphic to G but not canonically. If G is explicit, G = ⊕ki=1 〈ei〉 where ei
has order qi, and Ĝ is generated by ê1, . . . , êk defined as êi(

∑k
j=1 αjej) = αi/qi

mod 1 where 0 ≤ αj < qj .

Let S be a known distribution over Ĝ. Search-GLWE is the problem of learn-
ing a character ŝ ∈ Ĝ picked from S, given noisy evaluations of ŝ at (public)
random points a1, . . . , am ∈ G, namely one is given (for all i’s) ai and a “Gaus-
sian” perturbation of ŝ(ai). Like LWE, several noise distributions are possible.
As in [37], we focus on the continuous distribution where ŝ(a) is shifted by an
error e ← DR,α. These distributions need to be discretized in order to have a
finite representation. In App. B.4 of the full version, we present discrete versions
and show that they are at least as hard as the continuous version for suitable
parameters, which explains why we only consider the continuous GLWE problem
in the rest:

Definition 1. G = ⊕ki=1 〈ei〉 is an expl. finite abelian group, α > 0 and ŝ ∈ Ĝ.

– AG,α(ŝ) is the distribution over G× T defined by choosing a ∈ G uniformly
at random, setting b← DT,α,ŝ(a), and outputting (a, b) ∈ G× T.

– Search-GLWEG,α(S) asks to find ŝ from AG,α(ŝ) for a fixed ŝ ← S given
arbitrarily many independent samples. By finding ŝ, we mean finding si ∈ Z
s.t. ŝ =

∑k
i=1 siêi.

– Decisional-GLWEG,α(S) asks to distinguish AG,α(ŝ) from the uniform dis-
tribution over G × T for a fixed ŝ sampled from S given arbitrarily many
independent samples.

– For 0 < α < 1, (Search) Decisional-GLWEG,≤α(S) is the problem of solving
(Search) Decisional-GLWEG,β(S) for any β ≤ α respectively, i.e. when the
noise parameter is unknown yet ≤ α, by analogy with LWE.
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Search-GLWEG,m,α(S) and Decisional-GLWEG,m,α(S) denote the variants
where the algorithms have a bounded number m of samples. If S is omitted,
it is the uniform distribution over Ĝ.

If G = Znq , the canonical representation of G and Ĝ shows that GLWE is equiva-
lent to the fractional version of Regev’s original LWE. If G = Zp for some prime

p, then Ĝ can be defined by multiplications: ŝ is the homomorphism mapping any
t ∈ Zp to ts/p mod 1. Thus, GLWE can be viewed as a randomized version of
Boneh-Venkatesan’s Hidden Number Problem [8]: recover a secret number s mod
p, given approximations of sti mod p for many random integers ti’s. By analogy
with LWE (see [37,11]), there is a folklore reduction from (Search) Decisional-
GLWEG,≤α(S) to (Search) Decisional-GLWEG,α(S), respectively.

Lemma 5. (Adapted from [11, Lemma 2.13]) Let A be an algorithm for
Decisional-GLWEG,m,α(S) (resp. Search) with advantage at least ε > 0. Then
there exists an algorithm B for Decisional-GLWEG,m′,≤α(S) (resp. Search) us-
ing oracle access to A and with advantage ≥ 1/3, where both m′ and its running
time are poly(m, 1/ε, log #G).

Proof. (Sketch, see App.B.3 of the full version [17] for a detailed proof). Like
in LWE, the basic idea is to add noises in small increments to the distribution
obtained from the challenger, and feed it to the oracle solving the Decisional-
GLWEG,α(S) (resp. Search) and estimate the behavior of the oracle. ut

4 Structural Lattice Reduction

4.1 Overview

A basic result (following from structure theorems of finitely-generated modules
over principal ideal domains) states that for any full-rank sublattice L of a full-
rank lattice L̄ ⊆ Rn, there is a basis B̄ = (b̄1, . . . , b̄n) of L̄ and integers q1 ≥
q2 ≥ · · · ≥ qn ≥ 1 s.t. B = (q1b̄1, . . . , qnb̄n) is a basis of L. The qi’s can be made
unique by selecting powers of prime numbers, or by requiring each qi+1 to divide
qi, in which case q1, . . . , qn are the elementary divisors of the pair (L̄, L).

In this section, we introduce a lattice reduction converse, which we call struc-
tural lattice reduction. Lattice reduction asks to find a short basis of a given
full-rank lattice L ⊆ Zn. In structural lattice reduction, one is further given a
finite abelian group G of rank ≤ n, and wants to find a short basis of some
overlattice L̄ of L such that L̄/L ' G effectively. More precisely, given a basis B
of a full-rank lattice L ⊆ Zn, a suitable bound σ > 0 and integers q1 ≥ · · · ≥ qk
defining G = Zq1 × · · · × Zqk , one asks to compute a basis B̄ of an overlattice
L̄ ⊇ L such that ‖B̄∗‖ ≤ σ and B = (q1b̄1, . . . , qkb̄k, b̄k+1, . . . , b̄n) is a basis of
L. Interestingly, we do not require the input basis B to have integer or ratio-
nal coefficients, as long as its Gram-Schmidt coefficients are known with enough
precision. Indeed, our structural reduction algorithm can simply focus on finding
the rational transformation matrix between B̄ and B.
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Previous worst-case to average-case reductions implicitly used the group
G = Znq , thus L̄ = L/q. Here, finding a basis B̄ of L̄ with small ‖B̄∗‖ is the

same as finding a basis B = qB̄ of L with small ‖B∗‖, which is just lattice reduc-
tion. However, we obtain new problems and applications by considering different
choices of G. In the trivial case G = Znq , B̄ = q−1B implies that ‖B̄∗‖ = ‖B∗‖/q
where the factor q is exactly #G1/n: this suggests that in general, we might hope
to reduce ‖B̄∗‖ by a factor close to #G1/n, compared to ‖B∗‖.

Another trivial case of structural lattice reduction isG = Zq1×· · ·×Zqn where
the qi’s are distinct positive integers of similar bit-length. If B = (b1, . . . ,bn)
is a basis of L ⊆ Zn, then B̄ = (q−1

1 b1, . . . , q
−1
n bn) generates an overlattice L̄

such that B̄∗ = (q−1
1 b∗1, . . . , q

−1
n b∗n), and therefore ‖B̄∗‖ ≤ ‖B∗‖/minni=1 qi. The

factor minni=1 qi is close to #G1/n if the qi’s have similar bit-length. But if the
qi’s are unbalanced, such as when minni=1 qi = 1, then the bound is much weaker.
In particular, the case G = Zp for some large prime p looks challenging, as the
trivial choice B̄ = (p−1b1,b2, . . . ,bn) looks useless: L̄/L ' G but ‖B̄∗‖ is likely
to be essentially as big as ‖B∗‖, because for a typical reduced basis, the first
‖b∗i ‖’s have the same size.

4.2 Co-cyclic Lattice Reduction

As a warm-up, we solve structural lattice reduction when the target group G is
cyclic of order q, which we call co-cyclic lattice reduction. Let B̄ be a solution
of structural reduction on (L(B), G, σ): C = (qb̄1, b̄2, . . . , b̄n) is a basis of L s.t.
‖c1‖ ≤ qσ and ‖c∗i ‖ ≤ σ for all i ≥ 2.

Algorithm 1 Unbalanced Reduction
Input: an n×m basis B of an integer lattice L ⊆ Zm and a target length σ ∈ Q+. More generally, B can

be any n-dimensional projected block B = B′[i,i+n−1] of some basis B′ of L ⊆ Zm.
Output: an n×n unimodular matrix U such that C = UB satisfies ‖c∗i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices µ and C∗

2: If ‖c∗i ‖ ≤ σ for all i, return U
3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗k‖ > σ do
4: if ‖c∗i ‖ ≤ σ then
5: α← b−µi+1,ie
6: else

7: α←
⌈
−µi+1,i +

‖c∗i+1‖
‖c∗i ‖

√
(‖c∗i ‖ /σ)2 − 1

⌉
8: end if
9: (ci, ci+1) ← (ci+1 + α · ci, ci), (ui,ui+1) ← (ui+1 + α · ui, ui) and update the GS matrices µ and
C∗.

10: end for
11: return U

To find such a basis B̄, we first show how to transform B to ensure ‖b∗i ‖ ≤ σ
for all i ≥ 2, using a poly-time algorithm which we call unbalanced reduction
(see Alg. 6). This algorithm can be explained as follows: in dimension two, it is
easy to make b∗2 arbitrarily short by lengthening b1 (adding a suitable multiple
of b2), since ‖b1‖ × ‖b∗2‖ = vol(L) is invariant. Unbalanced reduction works
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by iterating this process on two-dimensional projected lattices, similarly to the
classical size-reduction process. However, one would like to make sure that the
resulting first basis vector c1 does not become too large, as follows:

Theorem 2 (Unbalanced reduction). Given an n-dim projected block B =
B′[i,i+n−1] of a lattice L ⊆ Zm and a target σ ∈ Q+, Alg. 6 outputs in polynomial

time an n×n unimodular matrix U such that C = UB satisfies ‖c1‖ ≤ nσδσ(B)
and ‖c∗i ‖ ≤ σ for i ≥ 2, and:

δν(B) ≤ δν(C) ≤ ‖c1‖
σδσ (B)

× δν (B) for all ν ≤ σ (1)

where δσ(B) =
def

n∏
j=1

max
(
1,
∥∥b∗j∥∥ /σ) . (2)

We call δσ(B) the cubicity-defect of B relatively to σ: it basically measures
by which amount the hypercube of side σ should be scaled up to cover the
parallelepiped spanned by b∗1, . . . ,b

∗
n. Alg. 6 can be found in App. A.2. The

proofs of Th. 2 and Alg. 6 can be found in App.C.2 of the full version of the
paper [17]. Th. 2 shows that Alg. 6 solves co-cyclic lattice reduction for q ≥
nδσ(B). However, this may not be suitable for our applications, since this lower
bound depends on B and might be unbounded. To address this issue, we now
show that LLL can bound δσ(B) depending only on n for appropriate σ:

Theorem 3 (LLL’s cubicity-defect). Let L be a full-rank lattice in Rn and
σ ≥ ((1 + ε

LLL
)
√

4/3)r · bl(L) for some r ≥ 0. If B is an LLL-reduced basis of L

with factor ε
LLL

, then δσ(B) ≤ ((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 .

By combining Th. 2 and 3, we obtain:

Theorem 4 (Co-cyclic Reduction). Given an n ×m basis of a lattice L ⊆
Zm, ε > 0 and a rational σ ≥ ((1 + ε

LLL
)
√

4/3)r · bl(L) for some r ≥ 0, and

an integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 , Alg. 2 computes a basis B̄ of
an overlattice L̄ ⊇ L in time polynomial in the basis size, σ and 1/ε, such that∥∥B̄∗∥∥ ≤ σ and (qb̄1, b̄2, . . . , b̄n) is a basis of L. In particular, L̄/L ' Zq.

For instance, Th. 4 with r = n implies that given a lattice L and any cyclic
group G of sufficiently large order 2Ω(n2), one can efficiently obtain a basis B̄ of
some overlattice L̄ of L such that L̄/L ' G and ‖B̄∗‖ ≤ bl(L): by comparison,
an LLL-reduced basis only approximates bl(L) to some exponential factor.

4.3 Arbitrary Groups

Using unbalanced reduction, we prove that for an arbitrary sufficiently large
finite abelian group G of rank ≤ n, given any basis B of the lattice L ⊆ Zn, one
can compute a basis B̄ of some overlattice L̄ of L s.t. L̄/L ' G effectively and
‖B̄∗‖ is essentially lower than ‖B∗‖/#G1/n. In particular, bl(L̄) is essentially
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Algorithm 2 Co-cyclic Reduction

Input: a basis of a full-rank integer lattice L ⊆ Zn, a factor ε > 0, and a rational σ ≥ ((1+ε
LLL

)
√

4/3)r ·bl(L)

for some r ≥ 0, and an integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8
+

(n−2r)
4

Output: a basis B̄ of an overlattice L̄ such that ‖B̄∗‖ ≤ σ and L̄/L ' Zq.
1: Apply Alg. 6 on an LLL-reduced basis with factor ε

LLL
output by the LLL algorithm.

2: return B̄ = ( c1
q
, c2, . . . , cn) where C is the basis of L returned by Alg. 6.

Algorithm 3 Structural Lattice Reduction

Input: σ, an n×m basis B of an integer lattice L, and (q1, . . . , qk) s.t. G =
∏k
i=1 Zqi satisfies the conditions

of Th. 5
Output: an n×m basis B̄ of an overlattice L̄ of L such that ‖B̄∗‖ ≤ σ and L̄/L ' G.
1: C ← B
2: for i = 1 to k do
3: if

∥∥C∗[i,n]

∥∥ ≤ σ return B̄ = ( c1
q1
, . . . , ck

qk
, ck+1, . . . , cn)

4: Compute the smallest ` ≥ σ such that ` · δ`(C[i,n]) = qiσ/(n− i+ 1).
5: V ← UnbalancedReduction(C[i,n], σ) using Alg. 6.
6: Apply V on (ci, . . . , cn)
7: end for
8: return B̄ = ( c1

q1
, . . . , ck

qk
, ck+1, . . . , cn)

#G1/n smaller than bl(L). Although this is slightly weaker than the result we
obtained (in the previous subsection) for cyclic groups G, it is sufficient for our
worst-case to average-case reductions.

Theorem 5 (Structural Lattice Reduction). Given an n × m basis B
of a lattice L ⊆ Zn, and k ≤ n integers q1 ≥ · · · ≥ qk defining the group
G =

∏k
i=1 Zqi s.t. nk(‖B∗‖ /σ)n ≤ #G or:

. #G ≥ n!
(n−k)!δσ(B) and for all i ≤ k, ‖B∗‖ /σ ≤ qi/(n+ 1− i)

Alg. 3 outputs in polynomial time in n,m, ‖B‖ , log(qi), a basis B̄ of an over-
lattice L̄ ⊇ L such that

∥∥B̄∗∥∥ ≤ σ and (q1b̄1, . . . , qnb̄n) is a basis of L where
qi = 1 for i > k. In particular, L̄/L ' G.

For instance, the condition nk(‖B∗‖ /σ)n ≤ #G in Th. 5 means that σ (and
therefore ‖B̄∗‖) can be chosen as low as nk/n‖B∗‖/(#G)1/n. The proof of Th. 5
can be found in App. C.3 of the full version [17]. Intuitively, Alg. 3 simply applies
unbalanced reduction iteratively, cycle by cycle of G.

4.4 Application

Structural reduction finds a short overlattice basis, which can be used to sample
short (overlattice) vectors, and provides effective isomorphisms:

Proposition 2 Let L and L̄ be two full-rank lattices such that L̄ ⊇ L and L̄/L '
G where G is an explicit finite abelian group. Given bases B and B̄ of resp. L
and L̄, one can compute in polynomial time a surjective morphism ϕ from L̄ to
G s.t. kerϕ = L ( i.e. L̄/L

ϕ' G), and a “dual” morphism ϕ× : L× → Ĝ s.t.

[ϕ×(u)](ϕ(v)) = 〈u,v〉 mod 1 for all u ∈ L× and all v ∈ L̄ (3)

Furthermore, preimages of ϕ× can be computed in polynomial time.
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5 Hardness of Group-SIS

Our result requires that the finite abelian group G is explicit (see Sect. 2).

5.1 Overview

The main idea behind the SIS reduction can be traced back to Mordell’s arrith-
metical proof [29] of Minkowski’s theorem. To prove the existence of short vectors
in a full-rank lattice L ⊆ Rn, Mordell implicitly presented an algorithm to find
short vectors from (exponentially many) long vectors, as follows. Let q ≥ 1 be
an integer and w1, . . . ,wm ∈ L be distinct of norm ≤ R where m > qn: for large
R, m can be as large as the volume of the R-radius ball divided by the volume
of L. Let vi = q−1wi ∈ q−1L. Since m > qn = [(q−1L) : L], there are i 6= j such
that vi ≡ vj mod L, i.e. vi − vj = q−1(wi −wj) ∈ L whose (nonzero) norm is
≤ 2R/q, which is short for appropriate choices of q and R.

This algorithm is not efficient since m is exponential in q, but it can be made
polynomial by reducing m to poly(n), using a SIS(m,n, q) oracle. Indeed, let L
be a full-rank integer lattice in Zn. The lattice L̄ = q−1L is an overgroup of L
such that L̄/L ' Znq = G explicitly: there is an efficiently computable surjective

morphism ϕ : L̄ → G s.t. L = kerϕ, e.g. for any basis (b̄1, . . . , b̄n) of L̄, let
ϕ(
∑n
i=1 xib̄i) = (x1 mod q, . . . , xn mod q) ∈ G.

Furthermore, if B̄ is short enough compared to the minima of L, it is possible
to sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution of parameter
as small as ηε(L). Fourier analysis guarantees that for such Gaussian distribu-
tions, each projection gi = ϕ(vi) is uniformly distributed over G. This allows us
to call an SIS oracle on (g1, . . . , gm), which outputs a short x ∈ Zm such that∑m
i=1 xigi = 0, i.e.

∑m
i=1 xiϕ(vi) = 0 which implies that v =

∑m
i=1 xivi ∈ L.

This v is provably non-zero with overwhelming probability, and is short because
the vi’s and x are, which concludes the reduction from worst-case SIVP to SIS.

With this formalization, we can replace the SIS oracle by a GSIS oracle if
we are able to sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution,
where L̄/L ' G. And this is exactly what structural lattice reduction ensures.
Previous SIS reductions used special choices of L̄ and sampled differently short
vectors in the overlattice: see App.H. of the full version [17] for a comparision
with previous works.

5.2 Reducing Worst-case ApproxSIVP to GSIS

Our main result formalizes the previous sketch and states that for appropriate
choices of (G,m, β), if one can solve GSIS(G,m, β) on average, then one can
approximate SIVP in the worst case, i.e. one can efficiently find short vectors in
every n-dimensional lattice:

Theorem 6. Let n ∈ N and ε = negl(n). Given as input a basis B of a full-rank
integer lattice L ⊆ Zn and σ ≥

√
2 bl(L), and an explicit finite abelian group G of

rank k ≤ n such that #G ≥ nk(‖B∗‖ /σ)n, Alg. 4 outputs (in random poly-time)
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Algorithm 4 Reducing ApproxSIVP to GSIS

Input: a basis B of a full-rank integer lattice L ∈ Zn, a parameter σ ≥
√

2 bl(L), a negl. ε > 0, an explicit
finite abelian group G satisfying the condition of Th. 6, and an oracle O solving GSIS(G,m, β) with
probability ≥ 1/ poly(n).

Output: A set S of n linearly independent vectors of L of norm ≤ σηε(Zn)
√
n/2πβ.

1: S ← ∅.
2: Call structural reduction (Alg. 3) on (B,G, σ) to get B̄ s.t. ‖B̄∗‖ ≤ σ and ϕ : L̄ → G (Prop. 2) where
L̄ = L(B̄).

3: repeat
4: Sample v1, · · · ,vm ∈ L̄ with distribution DL̄,σηε(Zn),0 using B̄.
5: gi = ϕ(vi) for 1 ≤ i ≤ m, forming a sequence g = (g1, . . . , gm) ∈ Gm.
6: Call the GSIS-oracle O on g, which returns x = (x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0.

7: v←
∑m
i=1 xivi ∈ L

8: if ‖v‖ ≤ σηε(Zn)
√
nπβ and v /∈ span(S) then S ← S ∪ {v}

9: until dim(S) = n
10: Return S

n linearly independent vectors of L with norm ≤ σηε(Zn)
√
nπβ, using polyno-

mially many calls to an oracle solving GSIS(G,m, β) with prob. ≥ 1/poly(n).

In particular, letting σ = ‖B‖∗
2ηε(Zn)

√
n/πβ

gives an incremental version of the

reduction, where the output basis is twice as short as the input. This general-
izes [28, Th. 5.9] and [20, Th. 9.2] with a GSIS oracle instead of SIS. Iterating
Th. 6 until σ =

√
2 bl(L) connects GSIS to worst-case ApproxSIVP.

Corollary 1. Let n ∈ N and ε = negl(n). Let (Gn)n∈N be a sequence of explicit
finite abelian groups of rank kn s.t. #Gn ≤ (βn/

√
mn)mn for mn ∈ N. If #Gn ≥

nkn
(
ηε(Zn)

√
2n/πβn

)max(n,kn)

, then using polynomially many calls to an oracle

solving GSIS(Gn,mn, βn) with prob. ≥ 1/ poly(n), one can solve worst-case n-
dimensional ApproxSIVP

ηε(Zn)
√
n/πβn

in (randomized) poly-time.

Consider the set of all full-rank integer lattices ⊆ Zm of volume ≥ ωn =

nm
(
ηε(Zn)

√
2n/πβn

)m
. This set can be partitioned as ∪GLG,m where G runs

over all finite abelian groups of order ≥ ωn and rank ≤ m. Each such G satisfies
the conditions of Cor. 1, and therefore GSIS over G is as hard as worst-case
lattice problems: for any partition cell LG,m, finding short vectors in a random
lattice from this cell is as hard as finding short vectors in any n-dim lattice.

6 Hardness of Decisional-Group-LWE

We transfer the following Decisional-LWE hardness results to Decisional-GLWE:

Theorem 7 ([37,34]). Let n ∈ N, qn ≥ 1 be a sequence of integers, and αn ∈
(0, 1) be a real sequence s.t. αnqn ≥ 2

√
n. There exists a quantum reduction

from worst-case n-dimensional GapSVPÕ(n/αn) to Decisional-GLWEZnqn ,αn . If

qn ≥ 2n/2 is smooth then there is a classical reduction between them.
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Theorem 8 ([11]). Let n ∈ N and qn ≥ 1 be a sequence of integers, and let
αn ∈ (0, 1) be a real sequence such that αn ≥ 2n1/4/2

√
n/2. There exists a classi-

cal reduction from worst-case
√
n-dimensional GapSVPÕ(

√
n/αn) to Decisional-

GLWEZnqn ,βn , where β2
n = 10nα2

n + n
q2n
· ω(log n)

To do so, we reduce Decisional-LWE to Decisional-GLWE using a technique
we call group switching. This technique transforms GLWE samples over a group
G to another group G′, generalizing the modulus-dimension switching technique
in [11], which is the special case G = Znq and G′ = Zn′q′ . We believe that the group
switching technique proposed below is useful to better understand the core idea
of the modulus-dimension switching technique.

Before presenting group switching, we note that the modulus-dimension
switching technique from [11] implicitly uses a special case of structural lat-
tice reduction. More precisely, Brakerski et al. [11] defined a special lattice Λ
(see Th 3.1 of [11]) to transform LWE samples over G = Znq to LWE samples

over G′ = Zn′q′ , but the meaning of Λ may look a bit mysterious. The lattice Λ is

defined as Λ = 1
q′Z

n′ ·H+Zn where H is some n′×n integer matrix: this matrix

is actually denoted by G in [11], but this would collide with our notation G for fi-
nite abelian groups. And [11] provided a good basis of Λ in special cases. We note
that the exact definition of Λ is not important: the quotient Λ/Zn turns out to
be isomorphic to the group G′ = Zn′q′ , as shown by the transformation mapping
1
q′x ·H + y ∈ Λ to x mod q′ ∈ G′. Thus, finding a good basis of Λ is actually a

special case of structural lattice reduction for the lattice Zn and the group G′.
Therefore, it is natural to use structural lattice reduction directly (instead of an
ad-hoc process) to obtain a more general statement than the modulus-dimension
switching technique of [11].

Since we have two groups G and G′ and two overlattices L̄ and L̄′ of Zn, we
have two morphisms ϕ : L̄ → G and ϕ′ : L̄′ → G′ with ker(ϕ) = ker(ϕ′) = Zn.
Both morphisms are associated to their dual morphism as in Prop. 2, i.e. ϕ× :
Zn → Ĝ and ϕ′× : Zn → Ĝ′, satisfying [ϕ′×(u)](ϕ′(v)) = 〈u,v〉 mod 1 for all
u ∈ Zn and all v ∈ L̄′ (resp. without primes).

We say that a distribution S over Zn is K-bounded if Prs←S [‖s‖ > K] ≤
negl(n). By extension, given a (public) morphism f : Zn → Ĝ, we say that a
distribution S over Ĝ is K-bounded (for f) if it is the image of a K-bounded
distribution8 by f . In the following, we choose ϕ× = f and ϕ its dual morphism
accordingly. Thus, any secret ŝ← S has with overwhelming probability a preim-
age s ∈ Zn of norm ≤ K. Note that the small s ∈ Zn may be hard to compute
from ŝ, however what matters is its existence. During group switching, the new
secret in Ĝ′ will be ϕ′×(s), and the new K-bounded distribution S ′ = ϕ′×(S).

Lemma 6 (Group Switching). Let G and G′ be two finite abelian groups
of rank ≤ n s.t. G is fully-explicit and G′ is explicit. Let L̄ be an overlat-
tice of Zn such that L̄/Zn ' G. Let B̄′ be a basis of an overlattice L̄′ of

8 Ideally, f should be collision resistant among samples from S. In the classical LWE
(G = Znq ), f maps s ∈ Zn to the secret character ŝ : y→ 1/q〈s,y〉 mod 1 in Ĝ.
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Zn such that L̄′/Zn ' G′. Let ϕ,ϕ′ and ϕ′× be defined as in Prop. 2. Let
r ≥ max

(√
2ηε(L̄), ‖B̄′∗‖ · ηε(Zn)

)
, where ε is some negligible function. Then,

there is an efficient randomized algorithm which, given as input a sample from
G× T, outputs a sample from G′ × T, with the following properties:
- If the input sample has uniform distribution in G×T, then the output sample
has uniform distribution in G′ × T (except with negligible distance).
- If the input is distributed according to AG,α(ŝ) for some ŝ = ϕ×(s) s.t. s ∈ Zn
and ‖s‖ ≤ K, then the output distribution is statistically close to AG′,β(ŝ′),
where ŝ′ = ϕ′×(s) ∈ Ĝ′ and β2 = α2 + r2(‖s‖2 +K2) ≤ α2 + 2(rK)2.

By combining Group Switching (Lemma 6) with structural reduction (Th. 5),
one derives a reduction between Decisional-GLWE of two groups G and G′:

Corollary 2 (GLWE to GLWE). Let n ∈ N and 0 < σn < 1 be a real
sequence. Let (Gn)n∈N and (G′n)n∈N be two sequences of finite abelian groups with
respective rank kn ≤ n and k′n ≤ n s.t. #Gn ≥ nkn(

√
2/σn)n (or if Gn = Znqn

where qn ≥
√

2/σn) and #G′n ≥ nk
′
n(1/σn)n. Assume that Gn is fully-explicit

and G′n is explicit. Let S be an arbitrary Kn-bounded distribution over Zn and
S = ϕ×(S) its image by some morphism ϕ× : Zn → Ĝn, αn, βn > 0 be two
real sequences and ε = negl(n) satisfying β2

n ≥ α2
n + 2(σnKn · ηε(Zn))2. Then

there is an efficient reduction from Decisional-GLWEGn,≤αn(S) to Decisional-

GLWEG′n,≤βn(S ′), where S ′ = ϕ′×(S) for some morphism ϕ′× : Zn → Ĝ′n

Proof. Given the canonical basis of Zn and Gn, structural reduction finds an
overlattice L̄ together with a basis C̄ s.t.

∥∥C̄∗∥∥ ≤ σn/√2. Therefore
√

2ηε(L̄) ≤
σnηε(Zn). And structural reduction on G′n and σn gives a short basis B̄′ of length
≤ σn and defines L̄′. The rest follows immediately from Lemma 6. ut

Using the normal form [3] of LWE, namely, if S is the image of the αnqn
√
n-

bounded distribution DZn,αnqn , through the canonical embedding which maps
s ∈ Zn to the character ŝ = y → 1/qn〈s,y〉 mod 1, we obtain the quan-
tum/classical hardness of Decisional-GLWE problem for any sufficiently large
finite abelian group, together with Theorems 7 and 8:

Corollary 3 (Quantum Hardness of GLWE). Let n ∈ N and qn ≥ 1 be a se-
quence of integers and (G′n)n∈N be a sequence of any finite abelian explicit groups
such that #G′n ≥ nkn(qn/

√
2)n where kn = rank (G′n) ≤ n. Let αn, βn ∈ (0, 1)

be two real sequences such that αnqn ≥ 2
√
n and βn = αn

√
n · ω(

√
log n). Then

there exists a quantum reduction from worst-case n-dimensional GapSVPÕ(n/αn)

to Decisional-GLWEG′n,βn .

The lower bound on #G′n is better than the lower bound on #Gn in Cor 1
and for solving Approx-SIVP using a Search-GLWE oracle (see App. E.2. of the
full version [17]), because group switching relies on structural reduction over Zn
rather than an arbitrary lattice: the canonical basis of Zn is orthonormal, which
simplifies the bound of Sect. 4.
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Corollary 4 (Classical Hardness of GLWE). Let n ∈ N and qn ≥ 1 be
a sequence of integers and (G′n)n∈N be a sequence of any finite abelian ex-
plicit groups such that #G′n ≥ nkn(qn/

√
2)n where kn = rank (G′n) ≤ n.

Let αn, βn ∈ (0, 1) be two real sequences such that αn ≥ 2n1/4/2
√
n/2 and

β2
n = n2α2

n · ω(log n) + n2

q2n
· ω(log2 n). There exists a classical reduction from

worst-case
√
n-dimensional GapSVPÕ(

√
n/αn) to Decisional-GLWEG′n,βn .

7 Abstracting Lattice Cryptography: Fully-Homomorphic
Encryption from GLWE

We showed that GSIS/GLWE are hard under the same worst-case assumptions
as SIS/LWE. This suggests to abstract lattice schemes based on SIS/LWE using
an arbitrary finite abelian group G, and check that the security proof carries
through. This may lead to a better understanding of the scheme and a clearer
presentation: lattice schemes are typically described using matrices and vectors,
which our abstraction avoids.

We illustrate this approach with fully-homomorphic encryption. First, we
introduce a GLWE-based El Gamal-like encryption scheme, which generalizes
Regev’s LWE-based encryption [37] and its dual version [20]. Next, we extend
this GLWE generalization of Regev’s encryption into a somewhat-homomorphic
encryption, by carefully abstracting the Alperin-Sheriff-Peikert variant [2] of the
Gentry-Sahai-Waters homomorphic scheme [21]. In particular, we show how to
evaluate any boolean function with a noise overhead proportional to the square
root of its number of variables, how to recognize any regular language with a noise
overhead proportional to the length of the tested word, and how to bootstrap
the whole system with only a linear noise overhead instead of quadratic in [2].

7.1 A GLWE Variant of El Gamal Encryption

El Gamal encryption combines the one-time pad with Diffie-Hellman. By anal-
ogy, we first present a GLWE variant of DH. We consider a (sufficiently large)
finite abelian group G and g = (g1, ..., gm) ∈ Gm chosen uniformly at random.
This defines two one-way functions:

– Let fg : Zm → G be the morphism defined by fg(x) =
∑m
i=1 xi.gi, where

xi.gi is defined by the Z-module structure of G. For suitable input distribu-
tions D, such as the uniform distribution over {0, 1}m or some well-chosen
discrete Gaussian distribution, the distribution of fg(x) becomes statistically
close to uniform (e.g. see the left-over-hash lemma), and fg becomes one-way
under GSIS.

– Let f×g : Ĝ× Tm → Tm defined by f×g (ŝ, e) = (ŝ(g1) + e1, . . . , ŝ(gm) + em):

if ŝ ∈R Ĝ and e is sampled from a suitable distribution such as Dmα , then
inverting f×g (ŝ, e) is search-GLWE, and distinguishing f×g (ŝ, e) from random
is decisional-GLWE.
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Consider the bilinear map θ : Ĝ× Zm → T defined by θ(ŝ,x) = ŝ(fg(x)). Then
θ(ŝ,x) can be efficiently computed from (ŝ,x). But it can be computed knowing
only (ŝ, fg(x)), or approximately knowing only (f×g (ŝ, e),x) by

∑m
i=1 cixi (where

c = f×g (ŝ, e)), provided that e and x are sampled from suitable distributions.
This motivates a GLWE noisy key exchange where Alice and Bob compute their
own approximation of θ(ŝ,x): Alice picks x ∈ Zm from some suitable distribution
D, and discloses y = fg(x); Bob picks ŝ ∈R Ĝ and e from the distribution
Dmα , and discloses c = f×g (ŝ, e). Alice computes her key as

∑m
i=1 cixi, and Bob

computes his key as ŝ(y) + e where e is sampled from Dα. Both keys are close to
θ(ŝ,x). But, as opposed to Diffie-Hellman, Alice and Bob do not have symmetric
roles, which leads to two El Gamal cryptosystems by swapping Alice and Bob
roles: this is why Regev encryption has a so-called dual variant [20]. We now give
a detailed description of the main cryptosystem, which generalizes Regev’s [37],
and which we use in our fully-homomorphic encryption.

Define the group H = G × Tk where k ∈ N+ and Tk = 1
2k
Z/Z ⊆ T is a

discretized torus.

GLWE.Gen(1n) : Takes as input a security parameter n, it chooses a Gaussian
parameter 0 < α < 1, a (sufficiently large) finite abelian group G and
m ∈ N. Choose g = (g1, ..., gm) ∈R Gm, ŝ ∈R Ĝ and m Gaussian sam-
ples e1, ..., em ← Dα. Set the public key pk = (g,y) ∈ Gm × Tmk , where
yi = ŝ(gi) + ei ∈ T, and the secret key sk = ŝ, i.e. y = f×g (ŝ, e).

GLWE.Enc(pk, µ) : Takes as input the public key pk = (g,y) ∈ Gm × Tmk and
a message µ ∈ {0, 1}. It selects x = (x1, ..., xm) ∈R {0, 1}m, and returns
(d, c) ∈ H, where d = fg(x) =

∑m
i=1 xigi ∈ G and c =

∑m
i=1 xiyi+µ/2 ∈ Tk.

Here,
∑m
i=1 xiyi is Alice’s key in the GLWE key exchange. Both d and c use

the Z-module structure of G and Tk.
GLWE.Dec(sk, (d, c)) : Returns µ = b2·(c−ŝ(d))e mod 2 where sk = ŝ and (d, c) ∈

H is the ciphertext.

One obtains a dual scheme by swapping the two one-way functions fg and f×g .

Lemma 7 (Correctness). If 0 < α < 1/(4 ·
√
m ·ω(

√
log n)), the main GLWE

public-key encryption scheme decrypts correctly with probability 1− negl(n).

Proof. We have: c − ŝ(d) =
∑m
i=1 xi(ŝ(gi) + ei) + µ/2 − ŝ(

∑m
i=1 xigi) = µ/2 +∑m

i=1 xiei. It is sufficient to show |
∑m
i=1 xiei| < 1/4. Let w ≤ m be the Hamming

weight of x, we know that
∑m
i=1 xiei is distributed as D√wα. Therefore, it implies

that |
∑m
i=1 xiei| <

√
wα ·ω(

√
log n) with probability 1−exp(−π ·ω(log n)) = 1−

negl(n). We obtain that |
∑m
i=1 xi.ei| <

√
wα · ω(

√
log n) ≤ 1/4 with probability

1− negl(n), as desired. ut

Lemma 8 (Security). If m ≥ 2(log #G + k) + ω(log n) and the GLWEG,m,α
assumption holds, then the main GLWE public-key encryption scheme is IND-
CPA secure.

Proof. g ∈ Gm is uniformly distributed. By the GLWEG,m,α assumption, y ∈
Tmk is computationally indistinguishable from uniform, hence (g,y) too. Since
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m ≥ 2 · log #H + ω(log n) and x ∈R {0, 1}m, the left-over-hash lemma ensures
that

∑m
i=1 xi(gi, yi) is computationally indistinguishable from uniform over H,

and hence (d, c) too. This proves IND-CPA security. ut

7.2 A GLWE Variant of GSW Homomorphic Encryption

We now show how to generalize the AP variant [2] of GSW [21] Homomor-
phic encryption. Let GLWE(G,α) be a black-box instance of GLWE El Gamal
encryption over the GLWE group G. All noises are discretized in the torus
Tk = 1

2k
Z/Z ⊆ T where 2kα ≈ ηε(Z). The group H = G × Tk is of special

interest.
First, recall that El Gamal encryption is homomorphic with respect to the

group operation. Because GLWE(G,α) is a noisy variant of El Gamal encryption,
it is also homomorphic for a bounded number of XOR. More precisely, any
GLWE ciphertext of a message µ ∈ {0, 1} can be written as c1 +µh1 ∈ H, where
c1 =

∑m
i=1 xi(gi, yi) ∈ H is a random ciphertext of 0, and h1 = (0, 1/2) ∈ H.

Here, we use the Z-module structure of H. The GLWE secret key ŝ induces a
homomorphism Phase : H → T defined as Phase((a, b)) = b− ŝ(a). By definition
of GLWE, we have Phase((gi, yi)) ≈ 0 for all 1 ≤ i ≤ m, but Phase(h1) =
1/2. It follows that the phase of a GLWE ciphertext of a message µ is ≈ µ/2,
which explains the GLWE decryption procedure: a ciphertext of 0 is close to
the kernel of the phase, while a ciphertext of 1 is far away. Because Phase is
a homomorphism and h1 has order 2 in H, if n messages µ1, . . . , µn ∈ {0, 1}
are GLWE-encrypted, then the sum of these n ciphertexts will de decrypted as
µ1 ⊕ · · · ⊕ µn, provided that n is not too large.

To achieve more homomorphic operations, one exploits a special property of
lattice problems which is not shared by discrete logarithm problems: with special
choices of generators, the SIS one-way function can be inverted. To do so, one first
extends h1 into a generating set of the Z-module H: let h2, . . . , h` ∈ H be such
that h = (h1, . . . , h`) is a generating set of H. Recall that the GSIS function
fg from Sect.7.1 can be defined over any group: here, we use H, so fh(x) =∑`
i=1 xihi ∈ H for (x1, . . . , x`) ∈ Z`. Since h generates H, fh is surjective, and

thus, admits a pseudo-inverse f−1
h from H to Z`, such that fh(f−1

h (b)) = b for
any b ∈ H. We also define Fh : Z`×` → H` by Fh(X) = (fh(x1), ..., fh(x`)),
where xi is the i-th row of X. Accordingly, we define F−1

h : H` → Z`×`.
Given a target in H, finding a short fh()-preimage corresponds to the GSIS

problem, which is in general hard, but it becomes easy for special choices of
h, like super-increasing knapsacks: following [26], we call gadget such a h. We
say that f−1

h () is β-bounded for h, if
∥∥f−1

h (b)
∥∥
∞ ≤ β ∈ R+ for any b ∈ H.

For instance, if the group G is ZN where 2p < N < 2p+1, a suitable gadget
is h = ((0, 1

2 ), (0, 1
4 ), . . . , (0, 1

2k
), (1, 0), (2, 0), . . . , (2p, 0)), f−1

h () ∈ {0, 1}` can be
computed by binary decomposition and is 1-bounded for h. This construction
can easily be generalized to any fully-explicit G, using component-wise binary
decomposition: if G = Znq , this corresponds to the Flatten/BitDecomp algo-
rithms proposed in [21] and [2]. However, other algorithms are possible, such as
ternary decompositions with preimages in {0,±1}`.
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Given the GLWE encryption scheme (GLWE.Gen, GLWE.Enc, GLWE.Dec) de-
scribed in Sect. 7.1 as a “black box”, we build homomorphic encryption using a
gadget h ∈ H` whose first element is (0, 1

2 ):

GSW.Gen(1n) : Takes as input a security parameter n, it runs the key generation
algorithm (pk, sk)← Gen(1n), where pk = (g,y) ∈ Gm×Tmk and sk = ŝ ∈ Ĝ.

GSW.Enc(pk, µ) : Takes as input the public key pk ∈ Gm × Tmk and a message
µ ∈ {0, 1}, it first generates ` ciphertexts c1 = GLWE.Enc(pk, 0), ..., c` =
GLWE.Enc(pk, 0) of zero, and returns c = (c1, ..., c`) + µ · h ∈ H`.
This is reminiscent of the GLWE scheme, where a GLWE-ciphertext of a
message µ is of the form c1+µh1 ∈ H where c1 is a random GLWE-ciphertext
of 0. Because the first entry of h is (0, 1

2 ), the first entry of c is a GLWE
encryption of µ.

GSW.Dec(sk, c) : Returns GLWE.Dec(ŝ, c1) where sk = ŝ and c1 ∈ H is the first
entry of c.

The security of the scheme and the correctness of decryption follow from that of
the GLWE cryptosystem:

Lemma 9. Suppose (Gen, Enc, Dec) uses samples from GLWEG,m,α. If m ≥
2(log #G + k) + ω(log n) and 0 < α < 1/(4 ·

√
m · ω(

√
log n)),

(GSW.Gen, GSW.Enc, GSW.Dec) is IND-CPA secure under the GLWEG,m,α assump-
tion, and GSW.Dec decrypts correctly with probability 1− negl(λ).

Proof. The proof of IND-CPA security is similar to Lemma 8. Since the first
entry of c is a ciphertext of µ under ŝ of the scheme (Gen, Enc, Dec), correctness
follows from Lemma 7. ut

We now describe our homomorphic operations on ciphertexts, namely how to
encode Not, And, and Mux gates. First, we note that the GSW-GLWE scheme
inherits the ⊕-homomorphic properties of the GLWE scheme. Any circuit can
be built using only Not and And elementary gates. We chose to add the Mux
ternary gate, which encodes the conditional operator Mux(a, b, c) = a?b:c, because
resulting circuits are smaller than NAND-only circuits, all binary gates can be
encoded by a single Mux (and a few Not), and it is trivial to batch-convert any
truth-table to its corresponding Mux-based binary decision diagram.

Definition 2 (Homomorphic operations). For all ciphertexts c1, c2, c3 ∈
H`, we define:

GSW.Not(c1) = h− c1, GSW.And(c1, c2) = Fc1

(
F−1
h (c2)

)
,

GSW.Mux(c1, c2, c3) = Fc1

(
F−1
h (c2)

)
+ Fh−c1

(
F−1
h (c3)

)
We express Xor(a, b) as Mux(a, Not(b), b). We naturally extend the Phase

homomorphism to H` as Phase : H` → T` defined as Phase(z) = (b1 −
ŝ(a1), . . . , b` − ŝ(a`)) ∈ T` where z = ((a1, b1), . . . , (a`, b`)) ∈ H`. Note that
a valid ciphertext of a bit µ is of the form c = z + µh where its homogeneous



21

part z has a small phase. This small Phase(z) = Phase(c− GSW.Dec(c).h) ∈ T`
will be denoted by Noise(c).

By definition, the decryption function will successfully decrypt any ciphertext
c ∈ H` such that ‖Noise(c)‖∞ < 1

4 , where the max-norm in T` is taken over all
coordinates centered in the interval (− 1

2 ,
1
2 ]. This is of course the case of fresh

GSW.GLWE ciphertexts, whose Gaussian noise has small parameter α.
We now show that the GSW.Not, GSW.And and GSW.Mux gates amplify the noise

only by a small factor if f−1
h () is β-bounded.

Lemma 10 (Worst-case noise of primitive gates). Suppose f−1
h () is β-

bounded for some β ∈ R+. Let c1, c2, c3 ∈ H` be three ciphertexts such that
c1 = z1 +µ1 ·h, c2 = z2 +µ2 ·h and c3 = z3 +µ3 ·h, where ‖Phase(z1)‖∞ ≤ B
and ‖Phase(z2)‖∞ , ‖Phase(z3)‖∞ < B′ for some B,B′ ∈ R+. Then:

GSW.Not(c1) = z + NOT(µ1) · h with ‖Phase(z)‖∞ = B (4)

GSW.And(c1, c2) = z′ + (µ1 AND µ2) · h with ‖Phase(z′)‖∞ ≤ `βB +B′ (5)

GSW.Mux(c1, c2, c3) = z′′+(µ1?µ2:µ3) · h with ‖Phase(z′′)‖∞ ≤ 2`βB +B′ (6)

Proof. By definition of GSW, we have GSW.Not(c1) = −z1 +NOT(µ1), so z = −z1,
which proves (4). Then,

GSW.And(c1, c2) = Fz1+µ1·h
(
F−1
h (c2)

)
= Fz1

(F−1
h (c2)) + µ1Fh(F−1

h (c2))

= Fz1
(F−1

h (c2)) + µ1 · c2 = Fz1
(F−1

h (c2)) + µ1z2︸ ︷︷ ︸
z′

+ µ1µ2 · h

Letting z′ = Fz1
(F−1

h (c2))+µ1z2, we have Phase(z′) = Phase(z1) · (F−1
h (c2))t+

µ1Phase(z2), and therefore ‖Phase(z′)‖∞ ≤ `
∥∥F−1

h (c2)
∥∥
∞ ‖Phase(z1)‖∞ +

‖Phase(z2)‖∞ ≤ `βB + B′, which proves (5). Finally, GSW.Mux(c1, c2, c3) is ex-
pressed as GSW.And(c1, c2) plus GSW.And(GSW.Not(c1), c3). By expanding, the ex-
pression takes the form z′′+ (µ2µ1 +µ3(1−µ1)) ·h where z′′ = Fz1

(F−1
h (c2)) +

Fz1
(F−1

h (c3)) + µ1z2 + (1 − µ1)z3. Thus, Phase(z′′) = Phase(z1) · (F−1
h (c2) +

F−1
h (c3)) + µ1Phase(z2) + (1 − µ1)Phase(z3). The norm of the first term is

bounded by 2`βB and among the last two terms, only one is non-zero, and its
norm is bounded by B′. Finally, the encoded message µ2µ1 + µ3(1− µ1) is pre-
cisely µ1?µ2:µ3. ut

As in [2, lemma 3.5], we can ensure that the noise of all the entries of a
ciphertext have independent Gaussian or Sub-Gaussian distributions. Namely,
we say that f−1

h is β-subgaussian if for each y ∈ H, f−1
h (y) returns a short Sub-

Gaussian vector of parameter β ≥ ηε(Lh). The noise propagation analysis of [2,
lemma 3.5] can be extended as follows:

Lemma 11 (All noises are Sub-Gaussian). Assume that f−1
h is β-

subgaussian for β ≥ ηε(Lh). In a circuit containing solely GSW.Not, GSW.And
and GSW.Mux gates, and whose inputs are either fresh GLWE ciphertexts or the
noiseless ciphertexts 0 and h, the output ciphertext of each individual gate has
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the form z + µh where µ is the encoded bit and the `-coordinates of Phase(z)
are statistically indistinguishable from independent Gaussian samples of Tk. We
define the noise parameter σ(Phase(z)) as the maximum of these ` Gaussian
parameters.

Thus, we may work directly with the square subgaussian parameter of the
noise, which follows pythagorean summation.

Lemma 12 (Average noise of primitive gates). Assume that f−1
h () is

√
β-

subgaussian for some β > 0. Let c1 = z1 + µ1 · h, c2 = z2 + µ2 · h, c3 =
z3 + µ3 · h ∈ H` be three ciphertexts of a circuit satisfying the constraints of
Lemma 11, and whose Gaussian parameters satisfy σ(Phase(z1))2 ≤ B and
σ(Phase(z2))2, σ(Phase(z3))2 < B′ for some B,B′ ∈ R+. Then:

GSW.Not(c1) = z + NOT(µ1) · h with σ(Phase(z))2 = B (7)

GSW.And(c1, c2) = z′ + (µ1 AND µ2) · h with σ(Phase(z′))2 ≤ `βB +B′ (8)

GSW.Mux(c1, c2, c3) = z′′ + (µ1?µ2:µ3) · h with σ(Phase(z′′))2 ≤ 2`βB +B′ (9)

Since (4), (5) and (6) define the same recurrence as (7), (8) and (9), we will
express the end of the paper only in terms of lemma 10, but all the bounds we
obtain on the ‖Noise‖ also apply to the σ(Noise)2 under Lemma 12.

7.3 Homomorphically Evaluating Arbitrary Functions

The result of the following corollary was already obtained in [2]; it states that in
a long chain of And gates where one of the bits is a fresh GLWE-GSW ciphertext,
the noise increases in fact linearly instead of exponentially. Here, we invert the
operands of the And gates, so that the overall noise in the resulting ciphertext
is smaller if one associates long conjunctions on the right.

Corollary 5 (Noise of Conjunctions). Suppose f−1
h () is β-bounded for some

β ∈ R+. Let c1, . . . , ck ∈ H` be k ciphertexts such that each ci = zi + µi · h
where ‖Phase(zi)‖∞ < B for some B ∈ R+. Then:

GSW.And(c1, GSW.And(c2, . . . GSW.And(ck−1, ck))) = z + (µ1µ2 . . . µk) · h

where ‖Phase(z‖∞ ≤ k`βB.

Proof. Apply (5) by induction on k. ut

Note that any boolean function with k inputs can always be put into dis-
junctive normal form, i.e. a disjoint union of conjunctive terms. One way to
homomorphically evaluate the result is to add the ciphertexts of all the terms,
which indeed preserves the {0, 1} message space. However, with this method,
the resulting noise will be proportional to the number of terms in the disjunctive
normal form, which may still be exponential in the number of inputs.

By using Mux-gates, we obtain the following corollary, which says that any
function can be homomorphically evaluated in a trivial way, where the noise
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grows proportionally to only the square root of the number of inputs. We re-
call that the truth table of a boolean function φ with k variables is a vector
T of length 2k such that each Tj = φ(e0, . . . , ek−1) where j =

∑
ei2

k−1−i.
The full binary decision diagram (BDD) of φ is a circuit representing a bi-
nary tree of Mux-gates, of depth k. The bottom level k consists in 2k leaves
Xk,j , each one is set to Tj . At each intermediate level i, we have 2i nodes
Xk,j = Mux(µi, Xi+1,2j+1, Xi+1,2j). By definition, the root X0,0 thus contains
φ(µ0, . . . , µk−1). See Fig. 1 for an example of truth table and its associated BDD
circuit.

Corollary 6 (Evaluating arbitrary functions). Assume that f−1
h () is β-

bounded for some β ∈ R+. Let φ be any boolean function with k inputs, and let
c1, . . . , ck ∈ H` be k ciphertexts such that each ci = zi+µi ·h where σ(zi)

2 < B
for some B ∈ R+. Then, the Mux-based Binary Decision Diagram of φ computes
a ciphertext c = z + φ(µ1, . . . , µk).h where ‖z‖∞ ≤ 2k`βB.

Proof. To evaluate the full BDD of φ homomorphically, we just replace each leaf
Xk,j by noiseless ciphertexts Tj .h, each bit µi by their encryption ci, and each
Mux gate by GSW.Mux. Apply (6) by induction on the depth, then all nodes Xi,j

at depth i have a noise bounded by 2(k − i)βB. ut

In the previous corollary, the full BDD tree of the function φ contains a
number of nodes which is exponential in the number of inputs. If the output
noise is indeed really small, the time complexity to evaluate all the gates remains
large when the simulated function has many variables. For some useful functions,
like the bootstrapping function in the next section, many of the subtrees turn
out to be equal. By merging them, the complexity to evaluate the circuit can be
significantly reduced.

Corollary 7 (Faster Evaluation of arbitrary functions). Assume that
f−1
h () is β-bounded for some β ∈ R+. Let φ be any boolean function with k

inputs, and let c1, . . . , ck ∈ H` be k ciphertexts such that each ci = zi + µi · h
where ‖Phase(zi)‖∞ < B for some B ∈ R+. We call N (φ) the number of disct-
inct subtrees in the full Binary Decision Diagram of φ. Then we can compute a
ciphertext c = z + φ(µ1, . . . , µk).h where ‖Phase(z)‖∞ ≤ 2k`βB by evaluating
N (φ) homomorphic GSW.Mux-gates.

Proof. It suffices to evaluate the ciphertext value in the root of theN (φ) subtrees
by increasing depth. There are at most two different leaves, whose ciphertext val-
ues 0 and h are given. Whenever we need to evaluate a subtree of non zero depth
i, the left and right subtrees have by definition already been fully evaluated, since
their depth i − 1 is strictly smaller. The root of the current tree is the GSW.Mux
of ci and the two subtrees roots. The last ciphertext to be evaluated is the root
of the full tree, which contains the encrypted result. ut

In the above corollary, Nerode’s partitioning algorithm for reducing determin-
istic automata can efficiently list the N (φ) identical subtrees. Indeed, a binary
decision diagram is just the mirror graph of a deterministic accessible automata.
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Fig. 1. Homomorphic evaluation of an arbitrary boolean function

Any truth table (top left) can be batch-converted to a full BDD (Binary decision
diagram) circuit (top right). When evaluated homomorphically, the output noise
is proportional to the square root of the number of inputs. After merging identical
subtrees, which can be efficiently achieved using Nerode’s partitioning algorithm,
one obtains the reduced BDD circuit (bottom right), which may sometimes be
much smaller. Here, the function φ was the Xor of all inputs. In this case, there are
only two different subtrees per levels, and the reduced BDD is therefore polynomial
in the number of inputs.
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More generally, the GSW.Mux gate allows to homomorphically evaluate the tran-
sitions of a deterministic automata, which leads to the following lemma.

Lemma 13 (Recognizing arbitrary rational langages). Let L be an arbi-
trary rational language of {0, 1}∗ and N (L̃) be the number of residuals of the mir-
ror language of L. Given k ciphertexts c1, . . . , ck of a message w = w1, . . . , wk,
one can compute a ciphertext c = z + L(w).h where L(w) = 1 iff w ∈ L and
‖Phase(z)‖∞ ≤ 2kβB by evaluating kN (L̃) GSW.Mux-gates.

Proof. Let A = (Q, i, T0, T1, F ) be a minimal deterministic automata of the
mirror language L̃ where Q is the set of states, i ∈ Q is the initial state, T0, T1

are the two transitions functions from Q to Q and F is the set of final states. Note
that #Q = N (L̃). We initialize #Q noiseless ciphertexts Xq,0 for q ∈ Q with
Xq,0 = h if q ∈ F and Xq,0 = 0 otherwise. Then for each letter we compute the
transition as follow: Xq,j = GSW.Mux(cj , XT1(q),j−1, XT0(q),j−1). And we output

Xi,k. We write a ≡ b when two ciphertexts a and b ∈ H` encrypt the same
bit. Then we have Xi,k ≡ XTwk (i),k−1 ≡ . . . ≡ XTw1

(Tw2
...(Twk (i))...),0, which

encrypts 1 iff Tw1
(Tw2

. . . (Twk(i)) . . .) ∈ F , i.e. iff wk . . . w1 is accepted by A iff
w1 . . . wk ∈ L. This proves correctness.

For the complexity, each Xq,j is computed with a single GSW.Mux gate and
the noise increases as in the previous corollary since the fresh-GSW.Mux depth of
the circuit is k. ut

Many arithmetic functions, including addition, multiplication and compari-
son correspond to polynomial-size deterministic automata, and in the next sec-
tion, we prove that a direct application of Corollary 7 suffices to bootstrap the
whole system, turning it into a fully homomorphic one.

7.4 Simple Bootstrapping Circuit with Polynomial Noise

Bootstrapping refers to Gentry’s homomorphic decryption, which allows to
turn suitable somewhat-homomorphic schemes into fully-homomorphic schemes.
Here, the decryption procedure is simply the GLWE decryption of the first entry.

The GLWE decryption of (d, c) ∈ G×T consists in computing c−ŝ(d) ∈ T and
deciding whether it is closer to 1

2 or 0. If the secret ŝ has n−1 bits (s1, . . . , sn−1),

this sum can be linearized as c−
∑n−1
i=1 sidi where c, d1, . . . , dn−1 ∈ T are publicly

computable. Necessarily n is always ≤ `. Furthermore, if the noise of (d, c) is 1
8 -

bounded, these n values can be rounded to their nearest multiple of 1
4n without

affecting the result of the decryption. Thus, bootstrapping a ciphertext (d, c) ∈ H
is equivalent to homomorphically evaluate on (s1, . . . , sn−1), its bootstrapping
boolean function φ(x1, . . . , xn−1) which returns the most significant bit of c′ −∑n−1
i=1 sid

′
i where c′ = b4n(c+ 1

4 )e, d′i = bdie are known integers modulo 4n.

Lemma 14 (Simple Bootstrapping). Given a GSW ciphertext c = z + µh ∈
H`, s.t. ‖Phase(z)‖∞ < 1

8 , whose first entry is (d, c) ∈ H, its bootstrap-

ping function φ satisfies N (φ) ≤ 4n2. Therefore, if f−1
h is 1-bounded, given
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? ? ? ?

w1?

w2?

wk−1

wk?

[...]

Output

Deterministic automata of the mirror language

Homomorphic recognition of the language

Fig. 2. A Mux-based circuit recognizing a regular language L and the correspond-
ing deterministic automata of the mirror L̃.

The automata on the top recognizes the regular expression L̃ =(110|00)∗(1|11|0).
The circuit below recognizes its mirror L =((110|00)∗(11|0))|((101)∗1). The circuit
transcripts the mirror graph of the automata: final states b, c are initialized with
a noiseless ciphertext of 1, non-final states a, d with 0. All transitions are reversed
and point to a GSW.Mux controlled by the encrypted current letter. After processing
all letters, the final output is the ciphertext corresponding to the automata’s initial
state a. As explained in the proof of Lemma 13, The result encrypts one iff the
word is in L.
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the bootstrapping key (BKi)i∈[1,n−1] where BKi encrypts the i-th bit of ŝ with
‖Noise(BKi)‖∞ ≤ B, one can compute a ciphertext c′ = z′ + µh of the same
message where ‖Phase(z′)‖∞ < 2n`B by evaluating at most 4n2 GSW.Mux gates.

Proof. The expression of φ as a sum proves that for all (x1, . . . , xk) and

(y1, . . . , yk) and (zk+1, . . . , zn) such that
∑k
i=1 xid

′i =
∑k
i=1 yid

′i mod 4n, then
φ(x1, . . . , xk, zk+1, . . . , zn) = φ(y1, . . . , yk, zk+1, . . . , zn). This proves that for
each index k ∈ [0, n − 1], there are at most 4n distinct partial functions of
φ by fixing the first k coordinates. And thus, N (φ) ≤ 4n2. The rest follows from
Corollary 7. ut

Recall that under the hypothesis of lemma 11, the max-norm of the noise can
be replaced by its square Gaussian parameter. It follows that the GLWE-GSW
scheme is fully homomorphic according to Gentry’s blueprint by design, as soon
as the initial GLWE Gaussian parameter is 1/Õ(`1.5), which represents a time
vs noise trade-off compared to the [2] proposal, and shows that the construction
of a homomorphic circuit amounts to analyzing a few intrinsic parameters of the
computed function.

We can obtain a [2]-like variant of the decryption circuit with Õ(n) gates,
and with noise overhead Õ(n) by composing homomorphic functions, as in the
following lemma.

Lemma 15 (CRT variant). Given a GLWE ciphertext c ∈ H, the gadget h
and its 1-bounded function f−1

h , let q =
∏t
i=1 pi be an integer larger than 4n

where pi are t = O(log(n)) distinct primes where pi = O(log(n)). We suppose
that the encryption of each individual bit BKi of ŝ are provided as bootstrapping
key with ‖Noise(BKi)‖∞ ≤ B. Then given as input a ciphertext of a bit µ, one
can compute a ciphertext c = z + µh of the same bit with noise ‖Phase(z)‖∞ =

Õ(`3) by evaluating Õ(`) homomorphic Mux-gates.

Proof. It suffices to evaluate φ′(y1, . . . , yt) where each yj = fj(s1, . . . , sn−1) for
the following functions:

– fj for j ∈ [1, t], takes n−1 bits and returns the O(log(pj)) bits of c′−
∑
sid
′
i

modulo pj . (fj can be viewed as O(log(pj)) boolean functions with a single
bit output).

– φ′ takes t numbers modulo p1, . . . , pt, and hence O(log(n) log log(n)) input
bits, and returns the most significant bit of their CRT lift modulo q.

As before, the expression of each fj as a sum proves that N (fj) ≤ (n − 1)pj
and that N (φ′) ≤ q.

∑t
k=1 log(pk). By Lemma 7, the homomorphic ciphertext of

each bit of yj has noise norm Õ(`n). Thus the output noise norm of y is Õ(`2n).

The total number of GSW.Mux gates is
∑t
j=1 log2(pj)N (fj) +N (φ′) = Õ(n) ut

Interestingly, the noise overhead obtained from this lemma is smaller than
the one from [2]. We compare our FHE scheme to previous ones in Table 1. In
that table, the GLWE group is taken as Znq , which makes our scheme based on
the standard LWE assumption. In this case, we could take ` = O(n log q).
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Schemes Primitive Gates #Gates in Boots. Boots. noise overhead

BGV12 [10] And, Xor, Const. Õ(n2) nO(logn)

Bra12 [9] And, Xor, Const. Õ(n2) nO(logn)

GSW13 [21] And, Xor, Nand, Const. Õ(n2) nO(logn)

BV14 [12] And, Xor, Const. Õ(n6/ε) Õ(nε)

AP14 [2] And, Not, Const. Õ(n) Õ(n2)

DM15 [15] Nand, Const. Õ(n) Õ(n1.5)

Ours Mux, Not, Const. Õ(n2) Õ(n)

Ours (with CRT) Mux, Not, Const. Õ(n) Õ(n1.5)
Table 1. Comparisons of LWE-based FHE Schemes

This table compares the primitive gates, the number of homomorphic gates to boot-
strap, and the average bootstrapping noise overhead, i.e. the ratio between the noise
parameter of the refreshed ciphertext and the (fresh) noise of the bootstrapping key.
Multiplying this value by O(

√
n) gives the minimal underlying GLWE inverse error rate

to make the scheme fully homomorphic. And multiplying this value by an additional
O(n) gives the SIVP approx. factor using the quantum worst-case to average-case re-
duction. Const. means constant gates (i.e. noiseless ciphertexts) Finally, note that the
construction in [15] necessarily relies on algebraic lattices, and that this scheme does
not support somewhat homomorphic evaluation of expressions: it must be bootstrapped
between each individual NAND gate.

Acknowledgements

Part of this work has been supported by Fonds Unique Interministériel (FUI)
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A Missing Algorithms

All missing algorithms were sketched in the main body. Here, we provide explicit
descriptions of these algorithms.

A.1 Alg. 5: Sampling lattices of given factor group

Algorithm 5 Sampling lattices of given factor group
Input: Integer m ≥ 1 and a finite abelian group G = Zq1 × · · · × Zqk such that 1 ≤ k ≤ m.
Output: A random lattice from the uniform distribution over LG,m.
1: Generate elements g1, . . . , gm uniformly at random from G until the gi’s generate G.
2: Return the lattice Lg where g = (g1, . . . , gm) ∈ Gm.

A.2 Alg. 6: Unbalanced Reduction

A.3 Alg. 7: Bootstrapping



31

Algorithm 6 Unbalanced Reduction
Input: an n×m basis B of an integer lattice L ⊆ Zm and a target length σ ∈ Q+. More generally, B can

be any n-dimensional projected block B = B′[i,i+n−1] of some basis B′ of L ⊆ Zm.
Output: an n×n unimodular matrix U such that C = UB satisfies ‖c∗i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices µ and C∗

2: If ‖c∗i ‖ ≤ σ for all i, return U
3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗k‖ > σ do
4: if ‖c∗i ‖ ≤ σ then
5: α← b−µi+1,ie
6: else

7: α←
⌈
−µi+1,i +

‖c∗i+1‖
‖c∗i ‖

√
(‖c∗i ‖ /σ)2 − 1

⌉
8: end if
9: (ci, ci+1) ← (ci+1 + α · ci, ci), (ui,ui+1) ← (ui+1 + α · ui, ui) and update the GS matrices µ and
C∗.

10: end for
11: return U

Algorithm 7 Bootstrapping algorithm

Input: A GLWE ciphertext c ∈ H, the gadget h and its functions f−1
h , and the

bootstrapping key (BKi,j)i∈[1,`],j∈[1,n] where BKi,1, . . . , BKi,n are encryptions of
the n = log2(`) + 3 most significant bits of Phase(hi).

Output: A GLWE-GSW ciphertext c′ ∈ H` encoding the same bit as c with polyno-
mial noise.

1: x← f−1
h (c) ∈ {0, 1}`

2: p← 0
3: Set the initial state (X0,0, ..., X0,8`−1) where Xi,j = 1 iff j ∈ [2`, 6`]
4: for each i ∈ [1, `] s.t. xi = 1 do
5: for j = 1 to n do . This loop adds Phase(hi) to the state
6: p← p+ 1
7: for k = 0 to 8`− 1 do . This loop adds 2n−j to the state iff BKi,j = 1
8: Xp,k ← GSW.Mux(BKi,j , Xp−1,k−2n−j mod 8`, Xp−1,k)
9: end for

10: end for
11: end for
12: return c′ = Xp,0 . This is the final rounding.


