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Abstract. We develop a new method to automatically prove security
statements in the Generic Group Model as they occur in actual papers.
We start by defining (i) a general language to describe security defini-
tions, (ii) a class of logical formulas that characterize how an adversary
can win, and (iii) a translation from security definitions to such formulas.
We prove a Master Theorem that relates the security of the construction
to the existence of a solution for the associated logical formulas. More-
over, we define a constraint solving algorithm that proves the security of
a construction by proving the absence of solutions.
We implement our approach in a fully automated tool, the gga∞ tool,
and use it to verify different examples from the literature. The results
improve on the tool by Barthe et al. (CRYPTO’14, PKC’15): for many
constructions, gga∞ succeeds in proving standard (unbounded) security,
whereas Barthe’s tool is only able to prove security for a small number
of oracle queries.

1 Introduction

The gold standard in provable security is to demonstrate security in the standard
model. However, proofs in the standard model sometimes rely on non-standard
hardness assumptions. In such situations, it is essential to prove that the hard-
ness assumptions used in the security proofs meet some minimal requirements,
for instance the absence of algebraic attacks. The accepted method for vali-
dating new DDH-like assumptions is to show absence of generic attacks, i.e.
attacks that solely exploit the underlying algebraic structure, using the Generic
Group Model [33, 38, 32, 35] or its bilinear and multilinear variants [17, 11]. The
Generic Group Model provides an algebraic setting for describing a wide class
of DDH-like assumptions, and is supported by so-called Master Theorems that
give a purely algebraic condition that ensures the security of an assumption in
the Generic Group Model (or its variants). Very roughly, the proof of the Mas-
ter Theorems uses the Schwartz-Zippel Lemma to prove a security reduction
between the Generic Group Model and a Symbolic Generic Group Model, in
which the security experiment is purely deterministic. Security in the Symbolic
Generic Group Model is trivially equivalent to a purely algebraic condition. For
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instance, the algebraic condition for a decisional assumption requires to prove
that the two sets of polynomials extracted from the left and right games have the
same linear dependencies. Therefore, and unavoidably, the difficulty of checking
the algebraic condition increases as the assumption becomes more complex, as
witnessed by unfortunate failures [39, 28, 24]. For some recent hypotheses, several
pages of error-prone calculations are required for proving that the algebraic con-
dition holds, and several authors have used computer algebra systems to carry
part of the verifications. These examples suggest the importance of building gen-
eral tools to assist proofs of security assumptions in the Generic Group Model.
One such tool is the Generic Group Analyzer [11], which uses SMT solvers and
computer algebra systems to analyze DDH-like assumptions. The tool takes as
input a description of an assumption and either returns an algebraic attack or a
concrete probability bound if the assumption is secure. The Generic Group An-
alyzer primarily works for non-interactive assumptions, in which the adversary
can only call the oracles which perform the algebraic operations.

The Generic Group Model can also be used for proving the security of cryp-
tographic constructions, such as signature schemes and algebraic MACs, against
algebraic attacks. In this context, the adversary has access to oracles for per-
forming signatures, verification, etc. The Generic Group Analyzer also provides
support for such problems, but is inherently limited to oracles which do not
take handles to group elements as inputs. This support can be used for analyz-
ing simple interactive assumptions. Subsequent extensions of the Generic Group
Analyzer overcome this limitation by providing support for oracles that take
handles as inputs, and by allowing adversaries to make a bounded number of
oracle queries [12]. Using this extension, Barthe et al. [12] synthesize (in the
Type II-setting) structure-preserving signatures that are secure against adver-
saries that can make a bounded number of signing queries. Their approach is
based on an algebraic characterization of security, using a vector space whose
dimension increases by one for each query. Therefore, their approach is limited to
a small number of queries, and an alternative approach must be used for proving
security notions which do not impose a bound on the number of queries.

The first main contribution of this paper is to extend the Master Theorem to
a general setting where adversaries can make arbitrarily many queries to oracles
with group inputs, and where the winning conditions can be described using
a rich language. As for simpler Master Theorems, our Master Theorem yields
a sufficient condition for the security of cryptographic constructions. However,
this simpler condition cannot be expressed in finite-dimensional linear algebra:
informally, each adversarial query to an oracle taking group elements as inputs
increases the dimension of the system to be analyzed, and therefore allowing
arbitrarily many queries leads to a system that is not finite-dimensional. As a
consequence, the algebraic approach of the Generic Group Analyzer cannot be
used to analyze automatically sufficient conditions given by the Master Theorem.

The second main contribution of this paper is an automated method for
proving the validity of these conditions, using a combination of methods from
constraint solving, computer algebra, and symbolic cryptography. Building on
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these two contributions, we implement an analyzer which subsumes the Generic
Group Analyzer for interactive assumptions and is able to analyze many cryp-
tographic constructions, including signatures and message authentication codes.

Technical overview

In more detail, our contributions are as follows.
First, we define a language to express security experiments in the Generic

Group Model where the adversary can make an unbounded number of queries
to oracles; moreover, our model allows oracles to take group values as inputs.
In addition, we define a rich language of winning conditions. We then establish
a Master Theorem, which states that a generic algorithm is secure with respect
to a security goal expressed using our language of winning conditions, if the
constraint system extracted from the security experiment, given by the algo-
rithm and the winning condition, has no computable solution. Informally, the
notion of computable solution provides an algebraic counterpart to the notion of
deducibility used in the symbolic (a.k.a. Dolev-Yao) approach to cryptography;
more technically, this notion is based on an inductive definition of the adversary’s
knowledge throughout execution of the algorithm. From a broader perspective,
our Master Theorem provides a novel light on the relationship between different
cryptographic models, by showing a general relationship between the Generic
Group Model and the symbolic model. Note that, for the sake of simplicity, we
focus on group settings with bilinear pairings; however, we believe that our model
and Master Theorem can naturally extend to the case of multilinear maps.

Second, we define an automated method for proving the absence of com-
putable solutions of constraint systems. Our language of constraints supports
algebraic expressions that are generally not considered by prior work on the
symbolic model. Therefore, we cannot use previous constraint-solving methods
developed for reasoning about cryptographic protocols in the symbolic model.
Rather, we define a specialized method which combines general purpose algebraic
computations and specialized steps. The algebraic computations are performed
using Gröbner bases, whereas the specialized steps include simplifications re-
lated to big operators and case distinctions. The latter can be used to add new
equations to constraint systems and thus to trigger new simplifications. Case
distinctions are an essential ingredient for the success of our method: they yield
compact proofs that follow the structure of pen-and-paper arguments found in
the literature. Of course, the use of case distinctions is not new in automated
deduction; it is at the core of Staalmarck’s method, an empirically successful
method for propositional logic. However, its use in our setting appears to be
new.

Third, we implement our method and evaluate its effectiveness on a sizable
set of case studies. Our tool uses off-the-shelf computer algebra systems to per-
form Gröbner bases computations. However, it draws its efficiency from a finely
tuned heuristics for carrying case distinctions. We evaluate our tool on structure-
preserving signatures, in all settings (Type I, Type II and Type III). Our tool is
able to prove unbounded security of many structure-preserving signatures from
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the literature, as well as of the algebraic MACs from Chase, Meiklejohn and
Zaverucha [18], and of the short randomizable signatures from Pointcheval and
Sanders [34]. Furthermore, it also proves unbounded security for most of the
examples proved 2-time secure in [12] (these examples were generated automat-
ically using synthesis techniques). Moreover, we also adapt the synthesis tool
from [12] to generate structure-preserving signatures in the Type III setting and
use our tool to prove security for more than a 100 such schemes.

Related work

The Generic Group Model was introduced by Nechaev [33], Shoup [38] and Mau-
rer [32], following distinct but equivalent approaches [29]. The original approach
by Nechaev and Shoup lets the adversary access a randomly selected representa-
tion of group elements; in contrast, Maurer’s approach requires the adversary to
perform all algebraic operations via oracles, and uses handles as symbolic rep-
resentations of group elements known to the adversary. We opt for the second
approach, for its distinctively symbolic flavour. These works establish lower com-
plexity bounds for the generic discrete logarithms and the generic hardness of
Diffie-Hellman like assumptions. As for us, they use the Schwartz-Zippel Lemma
for transforming their original problem into an algebraic one. This approach was
extended by Boneh, Boyen and Goh [17]. First, their Generic Group Model fo-
cuses on bilinear groups. Second, they consider a general class of assumptions,
and provide the first Master Theorem, which provides a systematic method for
extracting algebraic conditions of security from assumptions. Their Master The-
orem was subsequently extended in many directions. The most relevant works
are those that involve the use of computer tools for verifying algebraic conditions.
Notably, Freeman [23] verifies the hardness of two assumptions using Magma.

Shoup [38] and Schnorr and Jakobsson [37, 36] were among the first to use
the Generic Group Model for proving the security of crytographic constructions.
Specifically, Shoup proves (generic) security of an identification scheme, whereas
Schnorr and Jakobsson consider signed ElGamal encryption and blind discrete
log signatures. More recently, the Generic Group Model has also become an im-
portant tool for analyzing the security of pairing-based cryptographic construc-
tions. Chase, Meiklejohn and Zaverucha [18] propose a class of algebraic MACs
and prove their generic security. Several authors use the Generic Group Model
for proving the generic security of structure-preserving signatures [1]. Groth [26]
proposes new fully-structure-preserving signatures [6] and proves their generic
security. Similarly, Fuchsbauer, Hanser and Slamanig [25] define a structure-
preserving signature on equivalence classes and prove its generic security. Fur-
thermore, the Generic Group Model gives a convenient setting for establishing
lower bounds on the complexity of structure-preserving signatures [2, 5, 4, 12].
In a similar spirit, the Generic Group Model has been used for proving the
correctness of translations of signature schemes from Type I to Type III [5, 3, 7].

It is also worth pointing to a recent examination of the efficiency of pairing-
based implementations. Based on a practical evaluation of the efficiency of state-
of-the-art implementations of pairings, Chatterjee and Menezes [19] argue that
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Type III pairings are more efficient than their Type II counterparts, and should
be favoured in implementations. Their observation justifies the need to transpose
existing results and tools for the Type II setting to the Type III setting, and has
motivated the application of our methods to the latter.

Several works have developed or used tools for reasoning about the Generic
Group Model. As already mentioned, the Generic Group Analyzer [11] imple-
ments an automated method for analyzing assumptions. Moreover, a subsequent
extension of the analyzer [12] supports the automated analysis of security of
structure-preserving security against adversaries that make a bounded number
of queries. In practice, the tool only terminates for small bounds on the number
of queries. While these works are the most closely related to ours, there have been
previous works that apply computer tools to the Generic Group Model. Barthe,
Cederquist and Tarento [9, 15] were the first to use formal verification tools for
analyzing the security of hardness assumptions and cryptographic constructions
in the Generic Group Model. Their work uses the Coq proof assistant, and pro-
vides no support for automation. Freeman [23] reports on using computer algebra
systems to prove the validity of new hardness assumptions in the Generic Group
Model. Beyond the Generic Group Model, there exist several tools for synthesiz-
ing constructions, such as encryption schemes, modes of operations, tweakable
blockciphers, and structure-preserving signatures in the Type II setting [10, 31,
12, 27], automated transformation of existing constructions, including signature
schemes [8, 3, 7], and verification of security proofs [13, 16, 14]. In particular,
[14] introduce AutoG&P, a highly automated framework for proving the secu-
rity of pairing-based cryptographic primitives; the focus of [14] is on encryption
schemes, but their methods are also applicable to signatures and MACs. Au-
toG&P and gga∞ are complementary in two different ways. First, gga∞ focuses
on full automation in the Generic Group Model while AutoGP provides partial
automation in the Standard model. Second, and more interestingly, some of our
techniques for equational reasoning could be used to achieve more automation
in AutoG&P, whereas it could be possible to use techniques from AutoG&P as
a fallback solution when full automation fails in gga∞.

2 Preliminaries

In this section, we give some background on bilinear groups and define the no-
tation used throughout the paper.

2.1 Bilinear Groups

We consider bilinear groups G = (G1,G2,Gt, e : G1 × G2 → Gt). For Type I,
G1 = G2 and for Type II, there is an additional isomorphism Ψ : G2 → G1.
We use additive notation for all three groups and use P1, P2, Pt to denote their
generators. For a ∈ Fp, we use JaKi to denote the implicit representation aPi of
a in Gi following [21].
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2.2 Notation

We define aS = {as | s ∈ S} and SS′ = {ss′ | s ∈ S ∧ s′ ∈ S′}. For a set S, we
write S∗ to denote vectors of elements in S. We define [n] as the range {1, . . . , n}
for an arbitrary n ∈ N. We use v to denote a vector and v(i) to denote the i-
th element. We assume given a set of uniform variables UVar, a set of handle
variables HVar = HVar1 ]HVar2 ]HVart, a set of parameter variables PVar, and
a set of index variables IVar. We use ty(h) ∈ {1, 2, t} to denote the type of a
handle variable, i.e., ty(h) = i iff h ∈ HVari.

We use R[X±1] to denote the set of Laurent polynomials over the ring R
with variables in X. We also use the shorthand R[Y ,X±1] for (R[Y ])[X±1]
to denote nested polynomial rings. We use a similar notation Mon[X±1,Y ] for
Laurent monomials. We write degV (M) to denote the degree of V in the Lau-
rent monomial M . We write coeff M (F ) to denote the coefficient of the Laurent
monomial M in the Laurent polynomial F .

For a term t possibly containing variables, we write t[x 7→ t′] to denote the
result of substituting all occurrences of the variable x in t with t′. A context C
is a term with a distinguished variable � which denotes a hole that can be filled
in by an arbitrary term. We assume the hole occurs exactly once in a context.
We use C[t] to denote the term obtained by plugging t into C ′s hole.

3 Translating Security Experiments into Constraints

In this section, we first present a language to define security experiments in
the Generic Group Model. Next, we define the language of winning constraints.
Winning constraints are formulas that characterize if an adversary can win a
security experiment. Finally, we present a translation procedure from security
experiments to winning constraints.

3.1 Security Experiment Definition

We first present the language that we use to define security experiments. After-
wards, we define the corresponding games in the Generic Group Model and the
symbolic group model (see [11]). We will exploit that the generic and symbolic
games are indistinguishable and use the symbolic game to perform our analysis.

Definition 1. (Security experiment) A security experiment is defined by a tuple
SE = (t, ainp, odef ,wcond) where

– the group type is defined by t ∈ {I, II, III},
– the adversary input is defined by ainp = (X, (F1,F2,Ft)) for
• global uniform variables X ∈ UVar∗ and
• input polynomials Fi ∈ Z[X±1]∗,

– the oracle is defined by odef = (a,h,R, (H1,H2,Ht)) for

• arguments a ∈ PVar∗ and oracle handles h ∈ HVar∗,1

1 handle variables are typed, i.e., for all j ∈ [|h|], it holds that ty(h(j)) ∈ {1, 2, t}.
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• oracle uniform variables R ∈ UVar∗, and
• oracle polynomials Hi ∈ Z[X±1,R±1,a,h]∗, and

– the winning condition is defined by wcond = (â, ĥ,W=,W 6=) for

• winning arguments â ∈ PVar∗ and winning handles ĥ ∈ HVar∗, and
• winning (in)equalities W=,W 6= ∈ Z[X±1,R±1,a,h, â, ĥ]∗.

Intuitively, the adversary input represents the values given initially to the ad-
versary. This usually includes the public parameters and the public keys. The
oracle is defined by arguments and oracle handles that represent the oracle in-
put; uniform variables that denote randomness sampled by the oracle; and oracle
polynomials that denote the oracle response. Finally, the winning condition is
defined by winning arguments that represent the forgery that the adversary must
produce; and winning (in)equalities that characterize valid forgeries.

We define the corresponding generic group game Ggen(SE ) as follows:

1. Sample the vector x ∈ (F×p )|X|, compute the adversary inputs JFi(x)Ki ∈
G|Fi|
i (for i ∈ {1, 2, t}), and call the adversary A with the corresponding

handles.
2. The adversary A can perform qg queries to perform group operations (for

group type t), an unbounded number of equality queries, and q queries to

an oracle that implements odef . The oracle for odef takes scalars v ∈ F|a|p
for a and a vector of handles to group elements U for h. We use u to
denote the discrete logarithms of U , i.e., for all j ∈ [|h|],

q
u(j)

y
i

= U (j)

where i = ty(h(j)). Then it samples r ∈ (F×p )|R| and returns handles to

JHi(x,v,u, r)Ki ∈ G|Hi|
i . We use v(j), u(j), r(j) to denote the corresponding

values used in the j-th query.

3. The adversary A returns scalars v̂ ∈ F|â|p for â and handles to group ele-
ments Û for ĥ. Again, we denote the discrete logarithms of Û with û. The
adversary wins if for ./ ∈ {=, 6=}, w ∈ W ./, and j ∈ [q], it holds that
w(x, r(j),v(j),u(j), v̂, û) ./ 0.

Note that additional care must be taken to ensure that the oracles and win-
ning conditions are efficiently computable using scalar multiplication, addition,
application of isomorphisms, and application of bilinear maps. For example, it
is possible to specify an oracle that takes a handle to an element JvKt ∈ Gt and
returns JvK1 ∈ G1, which cannot be efficiently computed in most bilinear groups
of interest.

The symbolic game Gsym(SE ) is defined similarly, but internally uses Laurent
polynomials f(X) instead of group elements Jf(x)Ki. It is completely determin-
istic since it uses formal variables X to represent the initially sampled values
and indexed formal variables R(j) to represent the values sampled in the oracle.

Formally, we define Gsym(SE ) as follows:

1. Store the polynomials Fi(X) ∈ Z[X±1]|Fi| in the list for the group Gi (for
i ∈ {1, 2, t}) and call the adversary A with the corresponding handles.
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Setup P(1λ): Return PP = (p,G1,G2,Gt, e)← G(1λ) where G is a polynomial time
algorithm that on input 1λ returns a description of a bilinear map in the Type III
setting with groups of order p for a λ-bit prime p.

Key generation K(PP):
Choose v, w ← F×p and compute VK = (PP , V,W ) and SK = (PP , v, w) as

V ← JvK1 and W ← JwK1 .

Signing SSK (M):
For M = JmK2 ∈ G2 choose r ← F×p and compute the signature (T1, T2, S) as

T1 ← JrK1 , T2 = JrK2 , and S ←
q
mv + w + r2

y
2
.

Verification VVK (M,S):
Accept if and only if T1 ∈ G1, M,T2, S ∈ G2,

e(J1K1 , S) = e(V,M) + e(W, J1K2) + e(T1, T2), and e(T1, J1K2) = e(J1K1 , T2).

Fig. 1. SPS-scheme from [19] in Type III setting.

2. The oracles for group operations and equality checks provide the same in-
terface as in the generic model, but perform all computations in the ring of
Laurent polynomials. The oracle for odef takes (in the j-th query) scalars

v ∈ F|a|p for a and handles to polynomials

u ∈ Z[X±1, (R(1))±1, . . . , (R(j−1))±1]|hi|

for h. It returns handles to polynomials

Hi(X,v,u,R(j)) ∈ Z[X±1, (R(1))±1, . . . , (R(j))±1]|Hi|.

3. The adversary A returns scalars v̂ ∈ F|â|p for â and handles to polynomials

û ∈ Z[X±1, (R(1))±1, . . . , (R(q))±1]|ĥi|

for ĥ. He wins if for ./ ∈ {=, 6=}, w ∈ W ./, and j ∈ [q], it holds that
w(X,R(j),v(j),u(j), v̂, û) ./ 0.

Example 1. We can formalize the EUF-CMA security of the scheme in Figure 1
using the security experiment SE = (t, ainp, odef ,wcond) defined as follows:

– the group type is t = III
– the adversary input is ainp = (X, (F1,F2,Ft)) where
• X = (v, w) (for v, w ∈ UVar), F1 = (1, v, w), F2 = (1), Ft = (1)

– the oracle is odef = (a,h,R, (H1,H2,Ht)) where
• a = (), h = (m) (for m ∈ HVar2),
• R = (r) (for r ∈ UVar)
• H1 = (r), H2 = (r, mv + w + r2), Ht = ()

– the winning condition is wcond = (â, ĥ,W=,W 6=) where
• â = (), ĥ = (m̂, t̂1, t̂2, ŝ) and (for t̂1 ∈ HVar1 m̂, t̂2, ŝ ∈ HVar2),
• W= = (ŝ− m̂v − w − t̂1t̂2, t̂1 − t̂2), W 6= = (m̂−m(j)) �
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C ::= ∃i /∈ K. C | C constraint

C′ ::= C′ ∧ C′ | ∀ k /∈ K. C′ | E = 0 | E 6= 0 non-existential constraint

E ::= E + E | E ∗ E | −E | CoeffM(E) expression

|
∑
k/∈K

E | R | R−1 | P | V | 1 | 0

M ::=M∗M | R | R−1 | 1 monomial over uniform variables

R ::= R[k] | R (indexed) uniform variable (R ∈ UVar)

P ::= ρ[k] | ρ (indexed) parameter (ρ ∈ PVar)

V ::= Y[k] indexed handle variable (Y ∈ HVar)

Fig. 2. Grammar for winning constraints (for k ∈ IVar,K ⊂ IVar). For every Coeff(E),
E does not contain the symbol Coeff.

3.2 Winning Constraints

We first define the language of winning constraints, a class of formulas that can
be used to characterize if an adversary can win the symbolic game Gsym(SE ).
Then we define the set of solutions of a winning constraint and present a set of
simplication rules that preserve the set of solutions.

Definition 2. (Winning constraints) The language of winning constraints is
defined by the grammar given in Figure 2. We distinguish between bound index
variables and free index variables depending on whether they are bound by ∀/Σ.
We write ivars(C) to denote the free index variables in the constraint C.

Intuitively, atomic constraints E = 0 represent polynomial equalities. In the
quantifications ∀k /∈ K and

∑
k/∈K , the index variable k ranges over all elements

in [q] except for the valuations of the index variables in K. Uniform variables
R/R[k] are treated like formal variables, parameters ρ/ρ[k] can be instantiated
with integers, handle variables Y[k] can be instantiated with Laurent polynomials
over uniform variables, and the arithmetic operations are interpreted in the ring
of Laurent polynomials over Fp for a prime p. An expression CoeffM(E) repre-
sents the coefficient of the monomialM in the expression E after the parameters
and handle variables in E are instantiated. The resulting Laurent polynomial af-
ter instantiation contains only (indexed) uniform variables. Formally, the set of
solutions of a winning constraint is defined as follows.

Definition 3. (Solutions of winning constraints) A structure s = (p, q, σ, δ, χ, ξ)
for a prime number p, a natural number q, a valuation σ : IVar → [q] for (free)
index variables, valuations δ : PVar → Fp and χ : PVar × [q] → Fp for the
parameters, and a valuation ξ : HVar×[q]→ Fp[UVar±1,UVar±1[1] , . . . ,UVar±1[q] ] for
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evals(c) =



evalsk,K,1(c′) ∨ . . . ∨ evalsk,K,q−|K|(c
′) for c = ∃k /∈ K. c′

evalsk,K,1(c′) ∧ . . . ∧ evalsk,K,q−|K|(c
′) for c = ∀k /∈ K. c′

evals(c1)⊗ evals(c2) for c = c1 ⊗ c2
evalsk,K,1(c′) + . . .+ evalsk,K,q−|K|(c

′) for c =
∑
k/∈K c′

δ(ρ) for c = ρ
χ(ρ, σ(i)) for c = ρ[i]
ξ(Y, σ(i)) for c = Y[i]

Re for c = Re, e ∈ {+1,−1}
Re[σ(i)] for c = Re[i], e ∈ {+1,−1}
coeff σ(M)(evals(E)) for c = CoeffM(E)

c for c ∈ {0, 1}

Fig. 3. Definition of the evaluation function evals for s = (p, q, σ, δ, χ, ξ), where
R ∈ UVar, ⊗ ∈ {=, 6=,∧, ∗,+} are interpreted as the corresponding boolean oper-
ations/arithmetic operations in the ring of Laurent polynomials over Fp and sk,K,i
defined as follows. Let {v1, . . . vq−|K|} = [q] \ σ(K), then sk,K,i = (p, q, σ′, δ, χ, ξ)
where σ′ = σ[k 7→ vi] for i ∈ {1, . . . , q − |K|}.

the handle variables is a solution for a winning constraint C if evals(C) = true
for the function eval defined in Figure 3.

3.3 Translation from Security Experiments to Winning Constraints

We define the translation function to convert a security experiment definition
into winning constraints. The translation is sound and complete with respect
to a certain class of solutions. Roughly, this means that there is an efficient
attacker2 on the security experiment in the Generic Group Model with non-
negligible winning probability iff there is a solution for the translated winning
constraints where handle variables are instantiated with “computable” Laurent
polynomials.

To simplify the presentation, we assume that for all security experiments in
Type II, it holds that F2 ⊆ F1 and H2 ⊆ H1 which allows us to ignore the
isomorphism Ψ . Similarly, we assume for Type I that F1 = F2 and H1 = H2

which allows us to ignore that G1 = G2.

First, note that W ./ ⊂ Z[X±1,R±1,a,h, â, ĥ] where X,R ∈ UVar∗, a, â ∈
PVar∗, and h, ĥ ∈ HVar∗. For an index variable j ∈ IVar, we write R[j] to denote
the vector (R(1)[j], . . . ,R(|R|)[j]) of indexed uniform variables. Similarly, we write
a[j] and h[j]. For our translation, we instantiante each winning handle variable

ĥ(u) ∈ HVar1 ∪HVar2 with a linear combination of polynomials in the adversary
input and in the oracle output. Formally, we define the vector E of expressions

2 more precisely, an attacker that performs a polynomial number of queries qg and q.
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as follows. For u ∈ [|ĥ|] such that ĥ(u) ∈ HVar1 and l = |H1|, we define

E(u) = ρ(1,u,1)F1(1)(X) + . . .+ ρ(1,u,|F1|)F1(|F1|)(X) +∑
k

τ
(1,u,1)
[k] H1(1)(X,R[k],a[k],h[k]) + . . .+∑

k

τ
(1,u,l)
[k] H1(l)(X,R[k],a[k],h[k])

where ρ(1,u,n) and τ (1,u,n) are distinct fresh parameter variables. For u ∈ [|ĥ|]
such that ĥ(u) ∈ HVar2, we define E(u) analogously. For u ∈ [|ĥ|] such that ĥ(u) ∈
HVart, we define E(u) analogously additionally taking products of polynomials
from G1 and G2 into account. We define the winning constraint derived from SE
as

toConstr(SE ) =
∧

w∈W ./

∀j.
(
w(X,R[j],a[j],h[j], â,E) ./ 0

)
.

A priori, the notion of solution for winning constraints does not restrict the
set of Laurent polynomials that can be used to instantiate the handle variables
in h[j]. Since we are only interested in solutions where the instantiations of handle
variables are computable, we now define the notion of constrained solution.

Definition 4. (Constrained solutions of winning constraints) A solution is con-

strained by sequences of sets {K(i)
j }j∈N of Laurent polynomials (for i ∈ {1, 2, t})

if for all i ∈ {1, 2, t}, Y ∈ HVari, and j ∈ [q], it holds that ξ(Y, j) ∈ K(i)
j .

Since we are interested in solutions constrained by computable Laurent poly-
nomials, we next define the sequences of computable polynomials. We use 〈S〉
to denote the vector space over Fp generated by S.

Definition 5. (Computable polynomials) The sequences of computable polyno-
mials for a security experiment

SE = (t,X, (F1,F2,Ft)), (a,h,R, (H1,H2,Ht)),wcond)

are defined as follows:

KSE ,(i)
0 = 〈toSet(Fi)〉 for i ∈ {1, 2}

KSE ,(t)
0 = 〈toSet(Ft) ∪ (KSE ,(1)

0 ∗ KSE ,(2)
0 )〉

KSE ,(i)
j+1 = 〈KSE ,(i)

j ∪ for j ≥ 0, i ∈ {1, 2}

{H(X,v,E,R(j+1)) | H ∈Hi ∧

v ∈ F|a|p ∧ |E| = |h| ∧E(u) ∈ K
SE ,(ty(h(u)))

j }〉

KSE ,(t)
j+1 = 〈KSE ,(t)

j ∪ (KSE ,(1)
j+1 ∗ KSE ,(2)

j+1 ) ∪ for j ≥ 0

{H(X,v,E,R(j+1)) | H ∈H t ∧

v ∈ F|a|p ∧ |E| = |h| ∧E(u) ∈ K
SE ,(ty(h(u)))

j }〉



12

The definition is always valid for Type III. For Types I and II, it is valid under
the previously stated assumptions on Fi and Hi. We say a solution s is an

SE -computable solution if it is constrained by (KSE ,(i)
j )j,i.

Theorem 1 (Soundness and Completeness of Translation). Let p ≈ 2λ

and qg, q polynomial in λ. Then the winning probability in the generic group
game Ggen(SE ) with a group of order p is negligible in λ for all adversaries that
perform at most qg (resp. q) queries iff there is no SE-computable solution for
toConstr(SE).

Proof (Sketch). For all concrete values of qg, q, and SE we can use the master
theorem for interactive assumptions from [11] (more precisely, the extended ver-
sion for handles from [22]) to obtain an algebraic criterion that is equivalent to
the security of the construction. By unfolding the definitions of toConstr and
eval , we can verify that the criterion is true for all bounds on the number of
oracle-queries iff there is no SE -computable solution for toConstr(SE). �

Example 2. The translation of the security experiment for the example in Fig-
ure 1 to winning constraints is

Ŝ − M̂ ∗ V −W − T̂1 ∗ T̂2 = 0 ∧ T̂1 − T̂2 = 0 ∧ ∀k. M̂ −M[k] 6= 0

where V,W,R ∈ UVar and M ∈ HVar2, µ, µ′, µ′′, ρ, ρ′, ρ′′, ρ′′′, τ, τ ′, τ ′′, γ, γ′, γ′′ ∈
PVar, and M̂, Ŝ1, Ŝ2, Ŝ3 are defined as

M̂ = µ+
∑
k

µ′[k] ∗R[k] +
∑
k

µ′′[k] ∗ (M[k] ∗ V +W +R2
[k]),

T̂1 = ρ+
∑
k

ρ′[k] ∗R[k] + ρ′′ ∗ V + ρ′′′ ∗W,

T̂2 = τ +
∑
k

τ ′[k] ∗R[k] +
∑
k

τ ′′[k] ∗ (M[k] ∗ V +W +R2
[k]), and

Ŝ = γ +
∑
k

γ′[k] ∗R[k] +
∑
k

γ′′[k] ∗ (M[k] ∗ V +W +R2
[k]).

We first outline the sequence of computable monomials for G1:

KSE ,(2)
0 = 〈1, V,W 〉

KSE ,(2)
1 = 〈KSE ,(2)

0 ∪ {R[1]}〉

KSE ,(2)
2 = 〈KSE ,(2)

1 ∪ {R[2]}〉
. . .

For G2, the sequence looks as follows:

KSE ,(2)
0 = 〈1〉

KSE ,(2)
1 = 〈KSE ,(2)

0 ∪ {1, R[1],

:=f1︷ ︸︸ ︷
V +W +R2

[1]}〉

KSE ,(2)
2 = 〈KSE ,(2)

1 ∪ {R[2], R[1] ∗ V +W +R2
[2], f1 ∗ V +W +R2

[2]}〉
. . .
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For Gt, only the first line of the definition (computable earlier or product of
computable in G1 and computable in G2) is non-empty. �

4 Constraint Solving

In this section, we define an algorithm that takes a winning constraint and
tries to derive a contradiction thereby showing that the winning constraint has
no solution. Our algorithm uses constraint solving rules to perform a complete
search for solutions using simplification rules and case distinctions. We first give
the rules and then describe a strategy to apply the rules in Section 5. We begin
by describing a set of simplification rules for constraints that exploit logical
equivalences to bring a constraint into a simplified form. Next, we describe a
set of rules for introducing and simplifying Coeff constraints. Then, we describe
our rules for performing case distinctions followed by describing a procedure for
equational simplification based on Gröbner Basis techniques. We conclude by
giving a worked out example.

4.1 Constraint solving rules and soundness

We use the notation C  SE C1 ∨ . . . ∨ Ck to denote the constraint solving rule
that “simplifies” the constraint C into the disjunction of constraints C1, . . . , Ck.
The constraint solving rule might depend on the security experiment SE . Our
rules are sound in the following sense: If there exists an SE -solution s for C,
then there is an i ∈ {1, . . . , k} such that there exists an SE -solution s′ for Ci.
The solution s′ is usually very similar to s, but might, for example, perform an
additional query with trivial parameters. We use C  SE ⊥ to denote that C can
be simplified to the empty disjunction, which is equivalent to false.

We say a constraint C is contradictory if there is either a rule C  SE ⊥ or
there is a rule C  SE C1 ∨ . . .∨Ck such that for all i ∈ {1, . . . , k}, the constraint
Ci is contradictory. Since all rules are sound, we obtain that if C is contradictory,
then C has no solution.

4.2 Simplification rules

To exploit the equivalence e = e′ given in Figure 5, we define a corresponding
constraint solving rule C[e]  SE C[e′] for each of them. The rules up to and
including the equivalences for Coeff can be used to bring every winning constraint
into simplified form (see Figure 4). Additionally, we assume given rules for the
axioms of commutative rings with respect to 0, 1, ∗ and +.

The remaining rules are useful to enable the application of other rules. The
first remaining set of rules allows to swap binders, which might be required
before applying rules that expect a certain binder to be in outermost position.
To preserve the well-formedness of constraints, we adapt the index exception sets
K as shown below. The second remaining set of rules allows us to add exceptions
to binders. This might also benefit the applicability of other rules.
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Csimp ::= ∃k /∈ K. Csimp | C∧ existential quantification

C∧ ::= C∀ ∧ . . . ∧ C∀ conjunction

C∀ ::= ∀ k /∈ K. C∀ | Ceq universal quantification

Ceq ::= E+ = 0 | E+ 6= 0 (in)equality

E+ ::= E
∑

+ . . .+ E
∑
| 0 sum

E
∑

::=
∑
k/∈K

E
∑
| −E∗ | E∗ | CoeffM(E∗) symbolic sum

M ::=M∗M | R±1 | R±1
[k] | 1 monomial over uniform variables

E∗ ::= Epv ∗ . . . ∗ Epv | 1 monomials

Epv ::= ρ[k] | ρ | R±1 | R±1
[k] | Y[k] parameter/variable

Fig. 4. Grammar for simplified winning constraints where ρ ∈ PVar, R ∈ UVar, Y ∈
HVar, k ∈ IVar. Conjunctions, sums, and products cannot by empty, but they can
have a single argument. All bound variables must occur in the body. A monomial
never contains a uniform variable and its inverse and never contains 1 unless it is
equal to 1.

4.3 Introducing and simplifying Coeff constraints

In this section, we describe how to introduce and simplify constraints that involve
Coeff expressions. To define our constraint solving rules, we define three functions
that filter variables in monomials.

The functions

– umon : Mon[UVar±1,HVar,PVar]→ Mon[UVar±1],

– hmon : Mon[UVar±1,HVar,PVar]→ Mon[HVar], and

– pmon : Mon[UVar±1,HVar,PVar]→ Mon[PVar].

keep the exponents for the desired type of variables and set the exponents of all
other variables to zero.

The constraint solving rules are given in Figure 6. The first rule exploits that
if a polynomial is equal to zero, then when interpreting the polynomial as a poly-
nomial over uniform variables, the coefficients for all monomials must be zero.
The remaining two rules allow to simplify Coeff expressions. The first rule deals
with the case where E does not contain any handle variables and M is equal to
the monomial over uniform variables contained in E . The second rule deals with
the case where it is possible to prove that there is no (SE -computable) instan-
tiation of the handle variables in E such that the resulting Laurent polynomial
contains the monomialM. The rule makes uses the contMon constraint. We will
present the rules for showing that such a constraint is contradictory in the next
section.
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(∀k /∈ K. C1 ∧ C2) = (∀k /∈ K. C1) ∧ (∀k /∈ K. C2) (equiv-1)

(∀k /∈ K. C1) = C1 if k /∈ ivars(C1) (equiv-2)

E1 ∗ E2 = E2 ∗ E1 (equiv-3)

−(E1 + E2) = (−E1) + (−E2) (equiv-4)∑
k/∈K

(E1 + E2) = (
∑
k/∈K

E1) + (
∑
k/∈K

E2) (equiv-5)

(
∑
k/∈K

E1) ∗ E2 = (
∑
k/∈K

E1 ∗ E2) (equiv-6)

−(
∑
k/∈K

E) = (
∑
k/∈K

−E) (equiv-7)

((−E1) ∗ E2) = −(E1 ∗ E2) (equiv-8)

−(−E) = E (equiv-9)

R ∗R−1 = 1 (equiv-10)

CoeffM(E1 + E2) = CoeffM(E1) + CoeffM(E2) (equiv-11)

CoeffM(
∑
k/∈K

E) =
∑
k/∈K

CoeffM(E) if ivars(M) ⊆ K (equiv-12)

CoeffM(−E) = −CoeffM(E) (equiv-13)

∃k1 /∈ K1. ∃k2 /∈ K2. C = ∃k2 /∈ K′2. ∃k1 /∈ K′1. C (swap-1)

∀k1 /∈ K1. ∀k2 /∈ K2. C = ∀k2 /∈ K′2. ∀k1 /∈ K′1. C (swap-2)∑
k1 /∈K1

∑
k2 /∈K2

E =
∑

k2 /∈K′2.

∑
k1 /∈K′1

E (swap-3)

∀k /∈ K. C = (∀k /∈ K ∪ {k∗}. C) ∧ C[k 7→ k∗] if k∗ /∈ K (split-1)

C[
∑
k/∈K

E ] = C[(
∑

k/∈K∪{k∗}

E) + E [k 7→ k∗]] where C (split-2)
defines k∗ 6= k′

forall k′ ∈ K

Fig. 5. Equivalences for simplifying constraints where K′2 is defined as K2 \{k1} and
K′1 is defined as K1 ∪ {k2} if k1 ∈ K2 and K1 otherwise.



16

C[E = 0] SE C[E = 0 ∧ (∀i1 /∈ K1, . . . , il /∈ Kl.CoeffM(E) = 0)] (coeff-1)

if {i1, . . . , il} ∩ ivars(E) = ∅ and E does not contain Coeff

C[CoeffM(E)] SE C[pmon(E)] if hmon(E) = 1 and M = umon(E) (coeff-2)

C[CoeffM(E)] SE C[0] if contMonM/umon(E)(hmon(E)) SE ⊥ (coeff-3)

and C assures ivars(M) ∩ ivars(E) = ∅

Fig. 6. Rules for introducing and simplifying Coeff expressions

Example 3. Consider the constraint Γ such that

Γ = (
∑
j

ρ[j]R[j] = 0) ∧ Γ ′

We can simplify the constraint as follows:

Γ  SE Γ ∧ ∀i.CoeffR[i]
(
∑
j

ρ[j]R[j]) = 0 [coeff-1]

 SE Γ ∧ ∀i.CoeffR[i]
((
∑
j /∈{i}

ρ[j]R[j]) + ρ[i]R[i]) = 0 [split-2]

 SE Γ ∧ ∀i.CoeffR[i]
(
∑
j /∈{i}

ρ[j]R[j]) + CoeffR[i]
(ρ[i]R[i]) = 0 [equiv-11]

 SE Γ ∧ ∀i.CoeffR[i]
(
∑
j /∈{i}

ρ[j]R[j]) + ρ[i] = 0 [coeff-2]

 SE Γ ∧ ∀i. (
∑
j /∈{i}

CoeffR[i]
(ρ[j]R[j])) + ρ[i] = 0 [equiv-12]

 SE Γ ∧ ∀i. (
∑
j /∈{i}

0) + ρ[i] = 0 [coeff-3]

 SE Γ ∧ ∀i. ρ[i] = 0 [equiv-ring]

For the step using [coeff-3], we exploit that contMonR[i]/R[j]
(1) SE ⊥ and that

j /∈ {i} ensures that these index variables will never be instantiated with the
same value in the given context. We will give the required rules in the next
section. Then, our Gröbner-Basis based simplification algorithm will replace ρ[j]
by 0 in Γ for arbitrary index variables j. �

Proving Coeff to be zero for all SE solutions. In this section, we describe a
method to check if CoeffM(E) can be simplified to 0, i.e., for all SE-computable
solutions s = (p, q, σ, δ, χ, ξ), it holds that coeff σ(M)(evals(E)) = 0. As in pre-
vious sections, we describe our approach for Type III, but stress that it can be
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adapted to Type I and Type II, e.g., by transforming the security experiment
to make the isomorphisms redundant. We assume that the oracle definitions are
efficiently computable and only return handles to elements of G1 and G2. Fur-
thermore, we assume that the winning condition only uses handles to elements
of G1 and G2. This covers most cryptographic constructions of interest (includ-
ing all SPS schemes). In this case, we never have to deal with handle variables
from HVart and for i ∈ {1, 2}, the polynomials Hi defining the oracle return
values contain only handle variables from HVari. We distinguish three cases for
contMonM(E): (i) deg(E) = 0, (ii) deg(E) = 1, and (iii) deg(E) > 1.

Case (i): We use the rule

contMonM(1) SE ⊥ if M 6= 1.

Here, we require that distinct index variables must be instantiated with distinct
values, which is ensured by the side condition of the Coeff-(3) rule.

Case (ii): We have E = Y[j] for Y ∈ HVari, j ∈ IVar, and i ∈ {1, 2}.
We must prove that the monomial M is not computable in i before query j,
i.e., it is impossible (in the symbolic group model) to obtain a handle h for
Gi that points to a polynomial F with m ∈ mons(F ) before the j-th oracle
query. We perform a proof by contradiction that covers all cases on how a given
monomialM can be computed. We write canMulti,{j1,...,jn}(m) if it is possible to
perform the multiplication of a given monomial with m using oracle queries with
query-indices distinct from {j1, . . . , jn}. For example, if we have an oracle that
returns a handle to Y ∗ R[j] + W in G1 (where Y ∈ HVar1, R,W ∈ UVar), then
canMult1,{j1}(R[j2]∗R[j3]) is true since we can call the oracle for indices j2 and j3
to perform a multiplication with R[j2] and R[j3]. In contrast, canMult1,{j1}(R[j1]∗
R[j2] ∗R[j3]) is false because we cannot multiply with R[j1] if using the oracle for
query index j1 is forbidden. To formalize this reasoning, we define a set of rules to
reduce a constraint contMonm(Y[j]) to a disjunction of constraints canMulti,J(m)
such that ivars(m) = ∅.

We define the set SMSE
i of start monomials for a security experiment SE

and group index i as mons(F i)∪ (mons(Hi)∩Mon[UVar±1]) where the Hi are
considered as polynomials over handle and uniform variables. We define the set
TMSE

i of transformation monomials for a security experiment SE and a group
index i as {m | Y ∗m ∈ mons(Hi)∧Y ∈ HVari} ⊆ Mon[UVar±1]. For both sets,
we partition the previously defined sets into SMSE

i = SMSE
i,glob ] SM

SE
i,orcl and

TMSE
i = TMSE

i,glob ] TM
SE
i,orcl where the glob-sets contain all monomials that

contain only global uniform variables and the orcl-sets contain all monomials
that contain at least one oracle uniform variable. For monomials m, we write m[j]
to denote the monomial where all oracle uniform variables Y are replaced with
their indexed versions Y[j]. We also use the same notation for sets of monomials.

We can now define the rules given in Figure 7. The first rule captures that to
compute the monomial m̃ in i before query j, the adversary must start with a
monomial m′ (in m1, . . . ,ml, m̂1[j1], . . .) and then use oracle queries to achieve
an indirect multiplication of m′ by m̃/m′. Here, the monomials mi are either
monomials included in the adversary input or monomials included in the oracle
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contMonm̃(Y[j]) SE [contMon-1]

canMulti,{j}(m̃/m1) ∨ . . . ∨ canMulti,{j}(m̃/ml) ∨
canMulti,{j,j1}(m̃/m̂1[j1]) ∨ . . . ∨ canMulti,{j,j1}(m̃/m̂l̂[j1]) ∨
. . .∨
canMulti,{j,jn}(m̃/m̂1[jn]) ∨ . . . ∨ canMulti,{j,jn}(m̃/m̂l̂[jn])

if Y ∈ HVari, {m1, . . . ,ml} = SMSE
i,glob,

{m̂1, . . . , m̂l̂} = SMSE
i,orcl, and {j1, . . . , jn} = ivars(m̃) \ {j}.

canMulti,J(m̃) SE [contMon-2]

canMulti,J∪{j}(m̃/m1[j]) ∨ . . . ∨ canMulti,J∪{j}(m̃/ml[j])

if {m1, . . . ,ml} = TMSE
i,orcl and j ∈ ivars(m̃) \ J .

canMulti,J(m̃) SE ⊥ [contMon-3]

if J ∩ ivars(m̃) 6= ∅

Fig. 7. Rules for dealing with contMon. We use m/m′ to denote the corresponding
reduced Laurent monomial

return values that do not depend on handles and do not contain oracle uniform
variables. The monomials m̂i[ju] are monomials included in the oracle return
values that do not depend on handles and that contain oracle uniform variables.
The set of forbidden query indices for the indirect multiplication takes into
account that j can never be used and that ju cannot be used if a monomial with
index ju is used as the start monomial.

The second rule is applicable whenever m̃ contains an indexed uniform vari-
able R[j] such that j /∈ J . In this case, the j-th query must be used to perform
an indirect multiplication that cancels out R[j] and we perform a case distinction
on all monomial multiplications containing oracle uniform variables that can be
performed by the oracle. For all cases where this step does not cancel out all
variables indexed with j, we can use the third rule that formalizes the follow-
ing fact: If the j-th query is forbidden, there is no way to cancel out a uniform
variable with index j.

It is not hard to see that we can reduce all constraints to canMulti,J(m̃) such
that ivars(m̃) = ∅: If ivars(m̃) non-empty, then either there is a j ∈ ivars(m̃)∩J
and we can conclude with the last rule or we can apply the second rule and
add an index j ∈ ivars(m̃) to J . To check if a constraint canMulti,J(m̃) with
ivars(m̃) = ∅ is unsatisfiable, we translate the constraint into a system of linear
equations that formalizes the following idea. Let {m1, . . . ,ml} = TMSE

i,glob, then
all indirect multiplications that do not introduce indexed uniform variables are
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of the form
mδ1

1 ∗ . . . ∗m
δl
l

for δi ∈ N. This corresponds to using the i-th transformation δi times to achieve
a multiplication with mδi

i . To check if there exist δ1, . . . , δl ∈ N such that

m̃ = mδ1
1 ∗ . . . ∗m

δl
l

we check if the linear system of equations

degV1
(m̃) = degV1

(m1) ∗ δ1 + . . .+ degV1
(ml) ∗ δl

. . .

degVn
(m̃) = degVn

(m1) ∗ δ1 + . . .+ degVn
(ml) ∗ δl

has a solution over N where {V1, . . . , Vn} is the set of uniform variables that
occur in m̃,m1, . . . ,ml.

Case (iii): The last case can be handled by generalizing the previous case.
We sketch how to achieve this, the full description will be included in the full
version of this paper. We have E = (Y1)[j1] ∗ . . . ∗ (Yn)[jn] for Yu ∈ HVariu ,
ju ∈ IVar, and iu ∈ {1, 2}. To extend the method from Case (ii), we use adapted
set of start monomials and transformation monomials that take cancellations
between these values for the different handles into account. For example, the set
of transformation monomials is the product of transformation monomial sets for
j1, . . . , jn also allowing any set to be replaced by {1}.

Example 4. We will show that contMonR[i]/V (M[k]) is contradictory for the se-
curity experiment SE defined in Example 1. Note that M[k] ∈ HVar2 and the
monomial sets for this group are:

SMSE
2,glob = {1,W} SMSE

2,orcl = {R,R2}
TMSE

2,glob = {V } TMSE
2,orcl = ∅

By applying the first rule in Figure 7 we have:

contMonR[i]/V (M[k]) SE

canMult2,{k}(R[i]V
−1) ∨ canMult2,{k}(R[i]V

−1W−1)∨ (div. by 1 and W )

canMult2,{k,i}(V
−1) ∨ canMult2,{k,i}(V

−1R−1[i] ) (div. by R[i] and R2
[i])

Now, since TMSE
2,orcl = ∅, the second rule in Figure 7 gives us:

canMult2,{k}(R[i]V
−1) SE ⊥

canMult2,{k}(R[i]V
−1W−1) SE ⊥

Additionally,
canMult2,{k,i}(V

−1R−1[i] ) SE ⊥
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C[E1 ∗ E2 = 0] SE C[E1 = 0] ∨ C[E2 = 0] [dist-1]

C[∃i /∈ K. C′] SE
C[∃i /∈ K ∪ {j}. C′]
∨ C[C′[i 7→ j]]

if j /∈ K [dist-2]

C[C′] SE
C[C′ ∧ E = 0]
∨ C[C′ ∧ E 6= 0]

where E arbitrary [dist-3]

∃∆. C′  SE
∃∆. (∀i /∈ K. ρ[i] = 0) ∧ C′
∨ ∃∆, j /∈ K. ρ[j] 6= 0 ∧ C′

where K arbitrary
and j /∈ ivars(∆)
∪ivars(C′)

[dist-4]

C[c = 0] SE ⊥ if c ∈ Z \ {0} [false-1]

C[0 6= 0] SE ⊥ [false-2]

Fig. 8. Rules for performing case distinctions and contradictions.

because {k, i}∩ ivars(V −1R−1[i] ) 6= ∅. Our problem has been reduced to compute

canMult2,{k,i}(V
−1)

so we define the system of equations:

degV (V −1) = degV (V ) ∗ δ1

where δ1 ∈ N. The equation is −1 = 1 ∗ δ1 and it reduces to ⊥. This analysis
proves that contMonR[i]/V (M[k])  SE ⊥, i.e., the handle variable M[k] cannot
contain the monomial R[i]/V .

4.4 Case distinctions and contradictions

The rules for case distinctions and contradictions are given in Figure 8. The
first rule is applicable whenever we can express the left-hand-side of an equality
with 0 as a product of the two factors E1 and E2. Since we reason about elements
of an integral domain, we can conclude that at least one of the factors must be
equal to 0. The second rule formalizes that if C′ is true for some i, then it it is
either true for some i 6= j or it is true for i = j. The third rule formalizes that for
all expressions E , the expression is either equal to 0 or not. We only apply this
rule with an E that already occurs as a subterm of C. In most cases E = ρ for
ρ ∈ PVar. The final case distinction rule deals with indexed parameter variables
ρ[i]. Either ρ[i] is equal to zero for all indices not in K or there is an index j not
in K such that ρ[j] is not zero. The rule uses ∆ to denote all existential bindings
in the constraint.
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The two contradiction rules are straightforward. The first rule states that a
non-zero constant c is not equal to zero. We keep track of applications of this
rule to obtain a lower bound on the the prime p for which our proof is valid.
The second rule just formalizes that zero is always equal to itself.

4.5 Gröbner Basis simplification

Before applying the Gröbner Basis simplification, we ensure that all ∀-quantifiers
use the same binders ∆ and that all index exception sets are maximal for ∆.
This might require renaming of variables, extending the index exception sets,
and introducing unused variables. For the

∑
-binders ∆̂u, we assume for all u, v

that (i) ∆̂u = ∆̂v, (ii) ∆̂u is a prefix of ∆̂v, or (iii) vice versa.
The resulting constraint system can be rearranged to have the following form

∃∇. (∀∆. E1 = 0) ∧ . . . ∧ (∀∆. El = 0) ∧
(∀∆. Ê1 ./1 0) ∧ . . . ∧ (∀∆. Êl̂ ./l̂ 0)

where the Eu are expressions that do not contain handle variables, uniform vari-
ables, or Coeff expressions, which we call parameter equality polynomials. The
Êu denote the remaining expressions. We want to move all the Eu under a single
quantifier for simplification. To take renamings of the bound variables into ac-
count, we ensure beforehand that for all Eu and all permutations of the ∀-bound
variables, the resulting expression is already included. For example, given

∀j1, j2 /∈ {j1}. ρ[j1] ∗ ρ
′
[j2]

= 0 ∧ ∀j1, j2 /∈ {j1}. ρ[j2] ∗ ρ
′
[j1]
− α = 0

it is usually useful to add at least the permutation

∀j1, j2 /∈ {j1}. ρ[j1] ∗ ρ
′
[j2]
− α = 0

before moving moving everything under a common quantifier since this yields the
shared monomial ρ[j1] ∗ ρ′[j2]. After moving the parameter equality polynomials
under the same quantifier, we get:

∃∇. (∀∆. E1 = 0 ∧ . . . ∧ El = 0) ∧
(∀∆. Ê1 ./1 0) ∧ . . . ∧ (∀∆. Êl̂ ./l̂ 0)

Now, we move non-indexed parameters in monomials out of the
∑

-binder and
consistently replace non-bound parameters and

∑
-expressions with variablesXv.

We call the corresponding mapping σ and use gu to denote polynomial resulting
from Eu. We can revert this abstraction process by applying σ, i.e., σ(gu) = Eu.
Next, we compute the Gröbner Basis (over Z) of the ideal 〈g1, . . . , gl〉 which we
denote with I = 〈g′1, . . . , g′l′〉. By the properties of the Gröbner Basis, we know
that

(g1 = 0 ∧ . . . ∧ gl = 0)⇔ (g′1 = 0 ∧ . . . ∧ g′l′ = 0)

and hence
(E1 = 0 ∧ . . . ∧ El = 0)⇔ (E ′1 = 0 ∧ . . . ∧ E ′l′ = 0)
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for E ′u = σ(gu) which we exploit to simplify the parameter equality polynomials.
For computing the Gröbner Basis, we use a monomial order that prefers to
eliminate abstracted

∑
expressions. Next, we use the Gröbner Basis to simplify

the expressions ∀∆. Êu ./u 0. If Êu uses all variables in ∆, we use an extension σ′

of σ to abstract Êu to the polynomial f and define f ′ as the result of reducing
f modulo the Gröbner Basis I. As before, we define the simplified Ê ′u as σ′(f ′).
Often, it is very useful to also simplify below

∑
-binders. We use an example to

illustrate how this works.

Example 5. Assume ∇ = j1, ∆ = j2 /∈ {j1}, I = 〈X1 ∗ X2〉, σ = {X1 7→
ρ[j1], X1 7→ ρ′[j2]}, and

E1 = (
∑

j3 /∈{j1}

ρ[j1] ∗ ρ
′
[j3]

= 0).

Then we use ∀j2 /∈ {j1}. ρ[j1] ∗ρ′[j2] = 0 to rewrite ρ[j1] ∗ρ′[j3] to 0 below
∑
j3 /∈{j1}

by instantiating j2 with j3 (both have the same exception j1). �

4.6 Example: Proof of EUF-CMA for SPS

In this section show how our constraint solving rules can be used to prove (un-
bounded) EUF-CMA security of the signature scheme in Figure 1. The winning
constraints for the associated security experiment SE are already given in Ex-
ample 2. To prove EUF-CMA security in the Generic Group Model, we must
show that the following constraint has no SE -computable solution

γ +
∑
k

γ′[k] ∗R[k] +
∑
k

γ′′[k] ∗ (M[k] ∗ V +W +R2
[k])

− ((τ +
∑
k

τ ′[k] ∗R[k] +
∑
k

τ ′′[k] ∗ (M[k] ∗ V +W +R2
[k]))

∗ (ρ+
∑
k

ρ′[k] ∗R[k] + ρ′′ ∗ V + ρ′′′ ∗W ) + M̂ ∗ V +W ) = 0 (1)

∧ ρ+
∑
k

ρ′[k] ∗R[k] + ρ′′ ∗ V + ρ′′′ ∗W

− (τ +
∑
k

τ ′[k] ∗R[k] +
∑
k

τ ′′[k] ∗ (M[k] ∗ V +W +R2
[k])) = 0 (2)

∧ ∀k. M̂ −M[k] 6= 0 (3)

where M̂ is defined as

M̂ = µ+
∑
k

µ′[k] ∗R[k] +
∑
k

µ′′[k] ∗ (M[k] ∗ V +W +R2
[k]).

Instead of immediately simplifying everything using the equivalences in Figure 5,
we first apply the rule [coeff-1] where M = R2

[i] and E is the equation (2).
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After simplifying the resulting Coeff expressions (see Example 4), we get the
new equation ∀i. − τ ′′[i] = 0. Our Gröbner Basis simplification replaces every

occurrence of τ ′′i by 0. This results in the following new constraint:

γ +
∑
k

γ′[k] ∗R[k] +
∑
k

γ′′[k] ∗ (M[k] ∗ V +W +R2
[k])

− ((τ +
∑
k

τ ′[k] ∗R[k]) ∗ (ρ+
∑
k

ρ′[k] ∗R[k] + ρ′′ ∗ V + ρ′′′ ∗W )

+ M̂ ∗ V +W ) = 0 (1)

∧ ρ+
∑
k

ρ′[k] ∗R[k] + ρ′′ ∗ V + ρ′′′ ∗W − (τ +
∑
k

τ ′[k] ∗R[k]) = 0 (2)

∧ ∀k. M̂ −M[k] 6= 0 (3)

Now, we can apply the rule [coeff-1] where E is the left hand side of equation (2)
and for different monomials M, we obtain the following new equations:

ρ− τ = 0 for M = 1

∀k. ρ′[k] − τ
′
[k] = 0 for M = R[k]

ρ′′ = 0 for M = V

ρ′′′ = 0 for M = W

After this, we basically got rid of equation (2) and our Gröbner Basis simplifi-
cation yields:

γ +
∑
k

γ′[k] ∗R[k] +
∑
k

γ′′[k] ∗ (M[k] ∗ V +R2
[k] +W )

− (τ2 + (2
∑
k

τ ∗ τ ′[k] ∗R[k]) +
∑

k,k′ /∈{k}

τ ′[k] ∗ τ
′
[k′] ∗R[k] ∗R[k′]

+
∑
k

τ ′2[k] ∗R
2
[k] + M̂ ∗ V +W ) = 0 (1)

∧ ∀k. M̂ −M[k] 6= 0 (2)

We now apply the rule [coeff-1] where E is expression in equation (1) obtaining
the following new equations:

∧
∑
k

γ′′[k] − 1 = 0 for M = W (3)

∧ ∀k. γ′′[k] − τ
′2
[k] = 0 for M = R2

[k] (4)

∧ ∀k.∀k′ /∈ {k}. 2 ∗ τ ′[k] ∗ τ
′
[k′] = 0 for M = R[k]R[k′] (5)
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Then, we apply the rule [dist-4] with K = ∅ to perform a case distinction on the
parameter τ ′:

∀k. τ ′[k] = 0 ∧ Γ (case 1)

∨ ∃k∗. τ ′[k∗] 6= 0 ∧ Γ (case 2)

Here, Γ represents the conjunction of our previous five equations. In case 1, the
Gröbner Basis simplification results in the system

γ +
∑
k

γ′[k] ∗R[k] − τ2 − M̂ ∗ V −W = 0 (1)

∧ ∀k. M̂ −M[k] 6= 0 (2)

∧ − 1 = 0 (3)

which simplifies to ⊥ after applying rule [false-1] to equation (3).
In case 2, Gröbner Basis simplification yields:

∃k∗.

γ +
∑
k

γ′[k] ∗R[k] +M[k∗] ∗ V − τ2 − 2τR[k∗] − M̂ ∗ V (1)

∧ ∀k. M̂ −M[k] 6= 0 (2)

We apply the rule [coeff-1] where E is the left hand side of equation (1) for
different monomials as M, obtaining:

γ − τ2 = 0 for M = 1

∀k 6∈ {k∗}. γ′[k] = 0 for M = R[k]

γ′[k∗] − 2τ = 0 for M = R[k∗]

After simplifying the system, we obtain:

M[k∗] ∗ V − M̂ ∗ V = 0 (1)

∧ ∀k. M̂ −M[k] 6= 0 (2)

Applying the rule [dist-1] to equation (1) we obtain two cases:

∃k∗.
V = 0

∧ ∀k. M̂ −M[k] 6= 0

∨ ∃k∗.
M[k∗] − M̂ = 0

∧ ∀k. M̂ −M[k] 6= 0

(case 2.1) (case 2.2)

In case 2.1, after applying [coeff-1] for M = V to the first equation and simpli-
fying, we obtain the equation 1 = 0 that reduces to ⊥ according to rule [false-1].
Finally, in case 2.2 we apply the rule [split-2] and we get the system:

M[k∗] − M̂ = 0

∧ ∀k 6∈ {k∗}. M̂ −M[k] 6= 0

∧ M̂ −M[k∗] 6= 0
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group_setting 3.

sample V,W.

input [V,W] in G1.

oracle o1(M:G2) =

sample R;

return [ R ] in G1,

[ R, M*V + R^2 + W] in G2.

win (wM:G2, wT1:G1, wT2:G2, wS:G2) =

( (forall i: wM <> M_i) /\ wT1 = wT2 /\ wS = V*wM + wT1*wT2 + W ).

Fig. 9. Input file for the Type III re-randomizable SPS scheme from Figure 1

Our Gröbner Basis simplification will reduce it to,

0 6= 0 ∧ (∀k 6∈ {k∗}. M̂ −M[k] 6= 0)

which reduces to ⊥ according to rule [false-2].

5 Implementation and Case Studies

We have implemented the described algorithm in the gga∞ tool3 and have eval-
uated its effectiveness and performance on cryptographic constructions from the
literature (presented in Table 1) and automatically synthesized schemes (pre-
sented in Table 2). The source code is written in OCaml and uses the computer
algebra system SAGE [40] for Gröbner Basis computations and the SMT solver
Z3 [20] for checking the satisfiability of linear equations over the natural num-
bers. Although the code reproduces the algorithm as it is described in this paper,
it also implements some optimizations and additional rules to derive contradic-
tions, that will be further explained in the full version of this paper.
The tool takes an input file such as the one shown in Figure 9 and performs
a proof search using our constraint solving rules guided by a heuristic. If the
search is successful, the tool returns a representation of the proof tree. To en-
sure termination, we establish a timeout of 1000 seconds.

5.1 Case studies

We analyze the security of cryptographic constructions from the literature and
collect the results in Table 1. The first five entries do not require support for
oracles that take handles and are therefore also in the scope of the tool pre-
sented in [11]. For the first four entries, both the tool from [11] and gga∞ prove

3 source code and case studies at http://generic-group-analyzer.github.io/
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Reference Scheme Property Time

Lysyanskaya et al. ’99 [30] LRSW assumption Valid 2 s
Abe et al. ’11 [5] One-time SPS in Type I OT-EUF-CMA 1 s
Pointcheval et al. ’15 [34] Assumption 1 Valid 1 s

” Assumption 2 Valid 1 s
” Multi-message sign. scheme (r = 3) EUF-CMA 1 s

Chase et al. ’13 [18] MACGGM (messages length ≤ 3) UF-CMVA 1 s
” MACDDH (messages length ≤ 3) UF-CMVA 3 s

Abe et al. ’11 [2] SPS scheme, messages in G1 ×G2 sEUF-CMA 22 s
Abe et al. ’14 [4] Re-random. SPS for msg. in G2 EUF-CMA 6 s
Abe et al. ’14 [5] Unified SPS scheme sEUF-CMA 5 s

” Unified SPS scheme (with tokens) EUF-CMA 11 s
Chatterjee et al. ’15 [19] Type III randomizable SPS EUF-CMA 3 s
Barthe et al. ’15 [12] Re-randomizable SPS in Type III EUF-CMA 6 s

Groth ’15 [26] Fully comb. SPSb=0 (m,n = 1) EUF-CMA 8 s
” Fully comb. SPSb=1 (m,n = 1) sEUF-CMA 8 s

Table 1. Case studies (last column denotes time for fully automated proof).

unbounded security. For the fifth example, gga∞ succeeds, whereas the tool
from [11] fails to find a proof.

The remaining examples are all outside the scope of the tool from [11]. First,
we analyze the Message Authentication Codes proposed in [18]. They propose
two MACs (instead of public key signatures) as the basis for their anonymous
credential system. One of them is proven secure in the Generic Group Model
and the other under the decisional Diffie-Hellman (DDH) assumption. Our tool
confirms the first proof and finds a proof in the Generic Group Model for the
second construction4.

We also prove security for a number of structure-preserving signature schemes.
First, we analyze the scheme proposed in [2] for bilinear groups of Type III.

Then, we analyze the re-randomizable scheme from [4] for Type II and Type
III. Next, we prove sEUF-CMA security of the unified SPS signature scheme pro-
posed in [5], which is secure in all three settings. We also prove EUF-CMA security
of its re-randomizable version (randomization tokens are given to the adversary).
Later, we analyze the translation of the scheme for Type III proposed in [19]. We
also consider the Type II scheme from [12].

Finally, we analyze two instances of fully structure-preserving signature schemes
proposed in [26].

To evaluate our tool on a wider range of examples, we also make use of
the synthesis tool for structure-preserving signature schemes presented in [12].
We take the existing results for Type II from [12] and use our tool to analyze
(unbounded) EUF-CMA -security for all schemes where the the tool from [12]
succeeds to prove 2-EUF-CMA security. We also extend the synthesis tool to

4 This is of course implied by the pen-and-paper proof under the DDH assumption.
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Search Space Results

Verification equations First signature elements 2-secure ∞-secure

II

s3 = f(r, v, w,m) S2 = JrK2, 1 1
s3s2 = f(r, v, w,m) S2 = JrK2, 12 9

s3(s2 − w) = f(r, v, w,m) S2 = Jr + wK2, 14 8

III
s1 = s2 ∧ s3 = f(r, v, w,m) S1 = JrK1, S2 = JrK2 2 2
s1 = s2 ∧ s1s3 = f(r, v, w,m) S1 = JrK1, S2 = JrK2 117 75

s1s2 = 1 ∧ s1s3 = f(r, v, w,m) S1 = JrK1, S2 =
q
r−1

y
2

39 22

185 117

Table 2. Synthesis results for SPS schemes in Type II and Type III with r, v, w
$← Zp,

verification keys V = gv1 ,W = gw1 ∈ G1, message M = gm2 ∈ G2 and signatures
S1 = gs11 ∈ G1, S2 = gs22 , S3 = gs32 ∈ G2.

generate new schemes in Type III and apply our tool to those schemes that can
be proven 2-EUF-CMA secure with the tool from [12]. The results for both Type
II and Type III are summarized in Table 2. We classify the schemes in different
groups, depending on the shape of the verification equations (first column). The
column 2-secure represents the number of schemes of each group that are proven
2-EUF-CMA secure using the tool from [12], while the column ∞-secure repre-
sents the number of schemes of each group that are proven EUF-CMA secure
using our tool (for all bounds that are polynomial in the security parameter).
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