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Abstract. We study the time- and memory-complexities of the problem
of computing labels of (multiple) randomly selected challenge-nodes in
a directed acyclic graph. The w-bit label of a node is the hash of the la-
bels of its parents, and the hash function is modeled as a random oracle.
Specific instances of this problem underlie both proofs of space [Dziem-
bowski et al. CRYPTQ’15] as well as popular memory-hard functions like
scrypt. As our main tool, we introduce the new notion of a probabilistic
parallel entangled pebbling game, a new type of combinatorial pebbling
game on a graph, which is closely related to the labeling game on the
same graph.

As a first application of our framework, we prove that for scrypt, when
the underlying hash function is invoked n times, the cumulative mem-
ory complexity (CMC) (a notion recently introduced by Alwen and Ser-
binenko (STOC’15) to capture amortized memory-hardness for parallel
adversaries) is at least 2(w - (n/log(n))?). This bound holds for adver-
saries that can store many natural functions of the labels (e.g., linear
combinations), but still not arbitrary functions thereof.

We then introduce and study a combinatorial quantity, and show how a
sufficiently small upper bound on it (which we conjecture) extends our
CMC bound for scrypt to hold against arbitrary adversaries.

We also show that such an upper bound solves the main open problem for
proofs-of-space protocols: namely, establishing that the time complezity
of computing the label of a random node in a graph on n nodes (given
an initial kw-bit state) reduces tightly to the time complexity for black
pebbling on the same graph (given an initial k-node pebbling).

1 Introduction

The common denominator of password hashing (e.g., as in PKCS#5 [13]) and
proofs of work [7,12] is the requirement for a certain computation to be suffi-
ciently expensive, while still remaining feasible. In this context, “expensive” has
traditionally meant high time complexity, but recent hardware advances have
shown this requirement to be too weak, with fairly inexpensive tailored-made
ASIC devices for Bitcoin mining and password cracking gaining increasingly
widespread usage.
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In view of this, a much better requirement is memory-hardness, i.e., the
product of the memory (a.k.a. space) and the time required to solve the task at
hand (this is known as the space-time (ST) complexity) should be large. The
ST complexity is widely considered to be a good estimate of the product of the
area and the time (AT) complexity of a circuit solving the task [16,5,3], and
thus increasing ST complexity appears to incur a higher dollar cost for build-
ing custom circuits compared to simply increasing the required raw computing
power alone. Motivated by this observation, Percival [16] developed scrypt, a
candidate memory-hard function for password hashing and key derivation which
has been well received in practice (e.g., it underlies the Proof of Work proto-
cols of LiteCoin [14], one of the currently most prevalent cryptocurrencies in
terms of market capitalization [1]). This has made memory-hardness one of the
main desiderata in candidates for the recent password-hashing competition, in-
cluding its winner, Argon2 [4]. Dziembowski et al [9] introduce the concept of
proofs of space (PoSpace), where the worker (or miner) can either dedicate a
large amount of storage space, and then generate proofs extremely efficiently, or
otherwise must pay a large time cost for every proof generated. The PoSpace
protocol has also found its way into a recent proposal for digital currency [15].

Our contributions, in a nutshell. Cryptanalytic attacks [5,3,6,?] targeting can-
didate memory-hard functions [11,2,4,7] have motivated the need for developing
constructions with provable security guarantees. With the exception of [3], most
candidate memory-hard functions come without security proofs and those that
do (e.g. [16,11,?]) only consider a severely restricted class of algorithms and com-
plexity notions, as we discuss below. A primary goal of this paper is to advance
the foundations of memory-hardness, and we make progress along several fronts.

We develop a new class of probabilistic pebbling games on graphs — called en-
tangled pebbling games — which are used to prove results on the memory-hardness
of tasks such as computing scrypt for large non-trivial classes of adversaries.
Moreover, we show how to boost these results to hold against arbitrary adver-
saries in the parallel random oracle model (pROM) [3] under the conjecture that
a new combinatorial quantity which we introduce is (sufficiently) bounded.

A second application of the techniques introduced in this paper considers
Proofs of Space. We show that time lower bounds on the pebbling complexity of
a graph imply time lower bounds in the pROM model agains any adversary. The
quantitative bounds we get depend on the combinatorial value we introduce, and
assuming our conjecture, are basically tight. This solves, modulo the conjecture,
the main problem left open in the Proofs of Space paper [9].

Sequentially memory-hard functions. Recall that scrypt® uses a hash function
h:{0,1}* — {0,1}* (e.g., SHA-256), and proceeds in two phases, given an

3 In fact, what we describe here is only a subset of the whole scrypt function, called
ROMix. ROMix is the actual core of the scrypt function, and we will use the generic
name “scrypt” for in the following. ROMix (with some minor modification and ex-
tensions) also underlies one of the two variants of the winner Argon [4] of the recent
password hashing competition https://password-hashing.net/, namely the data-
dependent variant Argon2d.
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input X. It first computes X; = h’(X) for all i € [n], and with Sy = X,,, it then
computes Sy, ..., S, where

S =h(Si—1 & Xing(s,_1))

where int(S) reduces an w-bit string S to an integer in [n]. The final output is .S,,.
Note that is possible to evaluate scrypt on input X using n - w bits of memory
and in time linear in n, by keeping the values X1, ..., X,, stored in memory once
they are computed. However, the crucial point is that there is no apparent way
to save memory — for example, to compute S;, we need to know Xjn(g,_,), and
under the assumption that int(S;—1) is (roughly) uniformly random in [n], an
evaluator without memory needs to do linear work (in n) to recover this value
before continuing with the execution. This gives a constant-memory, O(n?) time
algorithm to evaluate scrypt. In fact, as stated by Percival [16], the actual
hope is that no matter how much time 7'(n) and how much memory S(n) an
adversarial evaluator invests, we always have S(n) - T'(n) > n?~¢ for all € > 0,
even if the evaluator can parallelize its computation arbitrarily.

Percival’s analysis of scrypt assumes that h is a random oracle. The anal-
ysis is limited in two ways: (1) It only considers adversaries which can only
store random oracle outputs in their memory. (2) The bound measures memory
complexity in terms of the maximum memory resources S(n). The latter is unde-
sirable, since the ultimate goal of an adversary performing a brute-force attack is
to evaluate scrypt on as many inputs as possible, and if the large memory usage
is limited to a small fraction of the computing time, a much higher amortized
complezity can be achieved.

Alwen and Serbinenko (AS) [3] recently addressed these shortcomings, and
delivered provably sequentially memory-hard functions in the so-called parallel
random oracle model (pPROM), developing new and better complexity metrics
tailored to capturing amortized hardness. While their work falls short of deliver-
ing guarantees for scrypt-like functions, it serves as an important starting point
for our work, and we give a brief overview.

From sequential memory-hardness to pebbling. AS consider adversaries attempt-

ing to evaluate a function H" (which makes calls to some underlying hash func-
tion h, modeled as a random oracle). These adversaries proceed in rounds: in
each round i, the adversary can make an unbounded number of parallel queries
to h, and then pass on a state o; to the next round. The complexity of the adver-
sary is captured by its cumulative memory complexity (CMC) given by >, |o4|.
One then denotes as cmcPP™M(H) the expected CMC of the best adversary where
the expectation is over the choice of RO h and coins of the adversary. We stress
that CMC exhibits some very important features: First, a lower bound appears
to yield a reasonable lower bound on the AT complexity metric. Second, In con-
trast to the ST complexity the CMC of a task also gives us a lower-bound on the
electricity consumption of performing the task. This is because storing data in
volatile memory for, say, the time it takes to evaluate h consumes a significant
amount of electricity. Thus CMC tells us something not only about the dollar
cost of building a custom circuit for computing a task but also about the dollar
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cost of actually running it. While the former can be amortized over the life of
the device, the later represents a recurring fee.

AS study sequentially memory-hard functions naturally defined by a single-
source and single-sink directed acyclic graph (DAG) G = (V, E).The label of a
vertex ¢ € V with parents {p1,...,pq} (ie., (pj,v) € Efori=1,...,d) is defined
as l; = h(i,4p,,...,¥Lp,). Note that the labels of all vertices can be recursively
computed starting with the sources. The function label(G,h) is now simply the
label £, of the sink v. There is a natural connection between cmcPi™(label(G, h))
for a randomly chosen h and the cumulative pebbling complexity (CC) of the
graph G.* CC is defined in a game where one can place pebbles on the vertices
of V', according to the following rules: In every step of the game, new pebbles
can be placed on any vertex for which all parents of v have pebbles on them (in
particular, pebbles can always be placed on sources), and pebbles can always be
removed. The game is won when a pebble has been placed on the sink. The CC
of a strategy for pebbling G is defined as ), |S;|, where S; is the set of vertices
on which a pebble is placed at the end of the i" step, and the CC of G — denoted
cc(G) — is the CC of the best strategy.

Indeed, cc(G) captures the CMC of restricted pROM adversaries computing
label(G, h) for which every state o; only consists of random oracle outputs, i.e., of
vertex labels. A pebble on v is equivalent to the fact that o; contains ¢,,. However,
a full-fledged pROM adversary has no reason to be restricted to such a strategy
— it could for example store as part of its state o; a particular encoding of the
information accumulated so far. Nonetheless, AS show that (up to a negligible
extent) such additional freedom does not help in computing label(G,h). They
complement this with an efficiently constructible class of constant-degree DAGs
G,, on n vertices such that cc(G,,) = 2(n?/polylog(n)).

Unfortunately however, the framework of [3] does not extend to functions
like scrypt, as they are data dependent, i.e., the values which need to be input
to h are determined at run-time. While this makes the design far more intuitive,
AS’s techniques crucially rely on the relationship between intermediate values
in the computation being laid out a priori in a data-independent fashion.

Qur contributions. This paper validates the security of scrypt-like functions
with two types of results — results for restricted adversaries, as well as results
for arbitrary adversaries under a combinatorial conjecture. Our results also have
direct implications on proofs of space, but we postpone this discussion to ease
presentation.

1) PROBABILISTIC PEBBLING GAMES. We introduce a generalization pebble of
pebbling games on a DAG G = (V, E) with dynamic challenges uniformly sam-
pled from a set C' C V. With the same pebbling rules as before, we now proceed
over n rounds, and at every round, a challenge ¢; is drawn uniformly at random

4 A similar connection, for a weaker pebbling game, was first exploited to construct
functions for which evaluation requires many cache memory in [8] and more recently
to build one-time computable functions [10] as well as in the security proofs the
memory-hard functions in [11,7].
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from C. The player’s goal is to place a pebble on ¢;, before moving to the next
round, and learning the next challenge ¢;;1. The game terminates when the last
challenge has been covered by a pebble. One can similarly associate with G a
labeling game computelLabel in the pROM, where the goal is instead to compute
the label 4., of c;, rather than placing a pebble on it. For instance, the computa-
tion of scrypt is tightly connected to the computelabel played on the line graph
L,, with vertices [n] = {1,2,...,n}, edges {(i,i+1) : i € [n—1]}, and challenges
C = [n] (as detailed in Section 2.5). The labels to be computed in this game
are those needed to advance the computation in the second half of the scrypt
computation, and the challenges (in the actual scrypt function) are computed
from hash-function outputs.

In fact, it is not hard to see that in computelLabel for some graph G a pROM
adversary that only stores random-oracle generated outputs can easily be turned
into a player for the pebble for graph G. This is particular true for G = L,,, and
thus lower bounding the CC of an adversary playing pebble on L, also yields a
lower bound on the CMC of computing (the second half of) scrypt. Our first
result provides such a lower bound.

Theorem 1. For any constant § > 0, the CC of an adversary playing
pebble on the line graph L,, with challenges [n] is £25(n?/log®(n)) with
probability 1 — § over the choice of all challenges.’

To appreciate this result, it should be noted that it inherently relies on the choice
of the challenges being independent of the adversary playing the game — indeed,
if the challenges are known a priori, techniques from [3] directly give a strategy
with CC O(n'%) for the above game. Also this result already improves on Per-
cival’s analysis (which, implicitly, places similar restrictions on class of pROM
algorithms considered), as Theorem 1 uses the CC of the (simple) pebbling of
a graph, and thus it actually generalized to a lower bound on the amortized
complexity of computing multiple scrypt instances in the pROM.®

2) ENTANGLED PEBBLING. The above result is an important first step — to the
best of our knowledge all known evaluation attacks against memory-hard func-
tions indeed only store hash labels directly or not at all and thus fit into this model
— but we ask the question whether the model can be strengthened. For example,
an adversary could store the XOR /; & ¢; of two labels (which only takes w bits)
and depending on possible futures of the game, recover both labels given any one
of them. As we will see, this can help. As a middle ground between capturing
pPROM security for arbitrary adversaries and the above pebbling adversaries, we
introduce a new class of pebbling games, called entanglement pebbling games,
which constitutes a combinatorial abstraction for such adversaries.

In such games, an adversary can place on a set J) C V an “entangled pebble”
(¥): for some integer 0 < ¢t < |Y|. The understanding here is that placing an

5 The subscript § in 25 denotes that the hidden constant depends on 4.
5 This follows from a special case of the Lemma in [3] showing that CC of a graph is
equal to the sum of the CCs the graphs disconnected components.
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individual pebble on any ¢ vertices v € ) — which we see as a special case of (v)g
entangled pebble — is equivalent to having individual pebbles on all vertices in
Y. The key point is that keeping an entangled pebble (), costs only |V|—t, and
depending on challenges, we may take different choices as to which ¢ pebbles we
use to “disentangle” (Y);. Also, note that in order to create such an entangled
pebble, on all elements of ) there must be either an individual pebble, or such
pebble can easily be obtained by disentangling existing entangled pebbles.

In the pROM labeling game, an entangled pebble ()); corresponds to an
encoding of length w - (|| — t) of the w-bit labels {¢; : i € Y} such that given
any t of those labels, we can recover all the remaining ones. Such an encoding
can be obtained as follows: Fix 2d — t elements x1,...,Z24_; in the finite field
Fow. Let Y = {y1,...,94}, and consider the (unique) degree d — 1 polynomial
p(.) over the finite field Fow (whose element are represented as w-bit strings)
such that

Vield : p(z;) =4y, .
The encoding now simply contains {p(z4+1),...,p(x24—¢)}, i.e., the evaluation
of this polynomial on d —t points. Note that given this encoding and any ¢ labels
£;,i € Y, we have the evaluation of p(.) on d points, and thus can reconstruct
p(.). Once we know p(.), we can compute all the labels ¢,, = p(i) in Y.

In general, we prove (in the full version) that entangled pebbling is strictly
more powerful (in terms of minimizing the expected CC) than regular pebbling.
Fortunately, we will also show that for the probabilistic pebbling game on the
line graph L,, entangled pebbling cannot outperform regular ones.

Theorem 2. For any constant § > 0, the CC of an entangled pebbling
adversary playing pebble on graph L,, is £25(n?/log?(n)) with probability
1 — 6 over the choice of all challenges.

Interestingly, the proof is a simple adaptation of the proof of for the non-
entangled case. This result can again be interpreted as providing a guarantee
in the label game in the pROM for L,, for the class of adversaries that can be
abstracted by entangled pebbling strategies.

3) ARBITRARY ADVERSARIES. So far we have only discussed (entangled) peb-
bling lower bounds, which then imply lower bounds for restricted adversaries
in the pROM model. In Section 4 we consider security against arbitrary adver-
saries. Our main results there show that there is a tight connection between the
complexity of playing computelLabel and a combinatorial quantity ~, that we
introduce. We show two results. The first lower-bounds the ¢ime complexity of
playing computelabel for any graph G while the second lower-bounds the CMC
of playing computelabel for L,, (and thus scrypt).

1. For any DAG G = (V,E) with |V| = n, with high probability over the
choice of the random hash function h, the pROM time complexity to play
computelabel for graph G, for any number of challenges, using h and when
starting with any state of size k - w is (roughly) at least the time complexity
needed to play pebble on G with the same number of challenges and starting
with an initial pebbling of size roughly -, - k.
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pebble(G, C,m, T, Pnit) : The m-round parallel pebbling game for DAG G =
(V, E), challenge set C' C V and initial pebbling configuration Pniz C V is played
between a challenger and a pebbler T.

Initialise cnt := 0, round := 0, Pt := Phit and cost := 0.

A challenge ¢ < C' is chosen uniformly from C' and passed to T.
cost := cost + |Pent.

T choses a new pebbling configuration Peyet+1 which must satisfy

L e

Vi € Pentt1 \ Pent : parent(i) € Pent (1)

5. cnt:=cnt+ 1.

If ¢ € Pt go to step 3. ¢ not yet pebbled

7. round := round + 1. If round < m go to step 2, otherwise if round = m the
experiment is over, the output is the final count cnt and the cumulative cost
cost.

o

Fig. 1: Description of the m-round, probabilistic parallel pebbling game

2. The pROM CMC for pebble for L,, is 2(n?/log*(n) - vn).

At this point, we do not have any non-trivial upper bound on =, but we conjec-
ture that ~, grows very small (if at all) as a function of n. The best lower bound
we have is 5 > 3/2. Note that v does not need to be constant in n — we would
get non-trivial statements even if ~,, were to grow moderately as a function of
n, i.e. v, = polylog(n) or v, = n for some small ¢ > 0.

Therefore, assuming our conjecture on 7, the first result in fact solves the
main open problem from the work of Dziembowski et al [9] on proofs of space.
The second result yields, in particular, a near-quadratic lower bound on the
CMC of evaluating scrypt for arbitrary pROM adversaries.

2 Pebbling, Entanglement, and the pROM

In this section, we first present both a notion of parallel pebbling of graphs with
probabilistic challenges, and then extend this to our new notion of entangled
pebbling games. Next, we discuss some generic relations between entangled and
regular pebbling, before finally turning to defining the parallel random-oracle
model (pROM), and associated complexity metrics.

Throughout, we use the following notation for common sets N := {0, 1,2, ...},
Nt :=N\ {0}, N<.:={0,1,...,¢} and [¢] := {1,2,...,c}. For a distribution D
we write € D to denote sampling = according to D in a random experiment.

2.1 Probabilistic Graph Pebbling

Throughout, let G = (V, E) denote a directed acyclic graph (DAG) with vertex
set V = [n]. For a vertex i € V, we denote by parent(i) = {j € V : (j,i) € E}
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the parents of ¢. The m-round, probabilistic parallel pebbling game between a
player T on a graph G = (V| E) with challenge nodes C C V is defined in
Figure 1. The cumulative black pebbling complexity is defined as

cc(G,C,m, T, Puir) = E [cost]
pebble(G,C,m,T, Pnit)

cc(G,Com, k) = minv{cc(G,C’, m, T, Puit) }
P <

Similarly, the time cost is defined as

time(G, C,m, T, Pnit) := E [ent]
pebble(G,C,m,T, Pnit)

time(G,C,m, k) := . zr:'nhév {time(G,C,m, T, Pnit)}
P <

The above notions consider the expected cost of a pebbling, thus even if, say
cc(G, Cym, k), is very large, this could be due to the fact that for a tiny fraction
of challenge sequences the complexity is very high, while for all other sequences
it is very low. To get more robust security notions, we will define a more fine-
grained notion which will guarantee that the complexity is high on all but some
e fraction on the runs.

cc.(G,C,m,T, Pyit) := inf {’y [cost > ~] >1— e}

P
pebble(G,C,m,T, Pit)
CCE(G7 C7 m, k) = T IIDHHC1V {Cce(Gv Ca m, T7 -Pinit}

k] init =
[ Pinit | <k

ti €c G707 7T7-Pini := inf CtZ 21—
med G Com o=in {7 pestle( Gz, P T 2 ] 6}

time.(G,C,m, k) := Iranirév{timee((}',ﬁm,T,Rnit}
T, Pinit ©
[ Pinie| <F

In general, we cannot upper bound cc in terms of cc, if € > 0 (same for time in
terms of time,), but in the other direction it is easy to show that

CC(G7 Ca m, Ta Rnit) 2 CcC, (G; Ca m, Ta -Pinit)(l - 6)

2.2 Entangled Graph Pebbling

In the above pebbling game, a node is always either pebbled or not and there is
only one type of pebble which we will hence forth refer to as a “black” pebble. We
will now introduce a more general game, where T can put “entangled” pebbles.

A t-entangled pebble, denoted (Y);, is defined by a subset of nodes J C
[n] together with an integer ¢ € Nc|y|. Having black pebble on all nodes Y
now corresponds to the special case ()g. Entangled pebbles ()); now have the
following behaviour. Once any subset of ) of size (at least) ¢ contains black
pebbles then all v € ) immediatly receive a black pebble (regardless of whether
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their parents already contained black pebbles or not). We define the weight of
an entangled pebble as:

[(Whily o= V[ =t

More generally, an (entangled) pebbling configuration is defined as a set P =
{1ty -5 (Ve)e,} of entangled pebbles and its weight is

Ply =Y 1V,

1€[s]

I.

The rule governing how a pebbling configuration P, can be updated to config-
uration Pey+1 — which previously was the simple property eq.(1) — are now a bit
more involved. To describe them formally we need the following definition.

Definition 1 (Closure). The closure of an entangled pebbling configuration
P={{Vi)t,,---,(Vs)t.} — denoted closure(S) - is defined recursively as follows:
initialise A = () and then

while 35 € [s] : (V; L A)ANANY; >t;) set A:=AUY;
once A cannot be further extended using the rule above we define closure(S) = A.

Note that closure(S) is non-empty iff there’s at least one set of t-entangled peb-
bles ()¢ in P with ¢t = 0. Equipped with this notion we can now specify how a
given pebbling configuration can be updated.

Definition 2 (Valid Update). Let P = {{(J1)t,,-- -, {Vm)e. } be an entangled
pebbling configuration. Further,

— Let V; := closure(P).
— Let Vo := {i : parent(i) C Vi}. These are the nodes that can be pebbled
using the black pebbling rules (eq.1).
Now P" = {(¥)s,---, (Ver)e,} is a valid update of P if for every (YVj,)y, one

/

of the two conditions is satisfied

1. y]// C (V1 UVsy).

2. i with yj’., =Y; and t;- > t;. That is, <yj’.,>t;, is an entangled pebble (V;)¢,
that is already in P, but where we potentially have increased the threshold
from t; to t),.

The entangled pebbling game pebb|e$(G, C,m,T) is now defined like the game
pebble(G, C, m, T) above, except that T is allowed to choose entangled pebblings.
We give it in Figure 2. The cumulative entangled pebbling complerity and the
entangled time complexity of this game are defined analogously to those of the
simple pebbling game — we just replace cc with cct and time with time! in
our notation to account for entanglement being considered. In the full version,
we show that entanglement can indeed improve the cumulative complexity with
respect to unentangled pebbling. However, in the next section, we will show that
this is not true with respect to time complexity.
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pebble? (G, C, m, T, Pnit) : The m-round parallel, entangled pebbling game for DAG
G = (V, E), challenge set C' C V and initial entagled pebbling configuration P

1. Initialise cnt := 0, round := 0, Pt := Phit and cost := 0.

2. A challenge ¢ < C' is chosen uniformly from C and passed to T.

3. cost := cost + | Pently-

4. T choses a new pebbling configuration Pety1 which must be a valid update
of Pent.

5. cnt:=cnt+ 1.

6. If ¢ & closure(Pcnt) go to step 3. ¢ not yet pebbled

7. round := round + 1. If round < m go to step 2. Otherwise if round = m end
the experiment and output the final count cnt and cumulative cost cost.

Fig.2: The entangled pebbling game pebble! (G, C,m,T).

2.3 Entanglement Does not Improve Time Complexity

We show that in terms of time complexity, entangled pebbling are no more
efficient than normal pebbles.

Lemma 3 (Entangled Time = Simple Time). For any G,C,m,T¢, Pt
and € > 0 there exist a T, Pyix such that |Ppi| < |Pin;t$|$ and
time(G, C,m, T, Poir) < time* (G, C,m, T*, Ppict) (2)
timee(Ga C7 m, T7 Pinit) S tlmeg(G7 07 m, Ti7 -Piniti) (3)

in particular

timei(G, C,m, k) =time(G,C,m, k) timeg(G, C,m, k) =time(G,C, m, k)

(4)

Proof. The > directions in eq.(4) follows directly from the fact that a black

pebbling is a special case of an entangled pebbling. The < direction follows from

eq.(2) and eq.(3). Below we prove eq.(2), the proof for eq.(3) is almost analogous.

We say that a player Agreedy for a normal or entangled pebbling is “greedy”,

if its strategy is simply to pebble everything possible in every round and never
remove pebbles. Clearly, Agreedy is optimal for time complexity, i.e.,

VGa C7 m7 ]Dinit : m_[in tlme(G7 C) m; T7 Pinit) = tlme(G7 Ca m7 Agreedyy Pinit) (5)

VG, C,m, Poie : mintime (G, C,m, T, Pui*) = time (G, C, m, Agreeay, Prit*)(6)

We next describe how to derive an initial black pebbling Pi;;™ from an entangled
pebbling Pt of cost | Pit | < |P;nit$|$ such that

time(G, 07 m, Agreedya ]Dinit*) < timei(G, C, m, Agreedy7 Rniti) (7)
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Note that this then proves eq.(2) (with Agreedy, Pinit~ being T, Pini¢ in the statement
of the lemma) as

tlmei(Ga C7 m, Tia Piniti) > tlmei(G7 C7 m, Agreedya Pinit$) (8)
> til”l'IE(G7 C, m, Agreedy7 Pinit*) (9)

It remains to prove eq.(7). For every share ()); € Piniti we observe which
|V| — t pebbles are the last ones to become available” in the random experi-
ment pebblei(G, C,m,Tt, Pin;ti), and we add these pebbles to P, if they’re not
already in there.

Note that then |Pi| < |Pin;t$|¢ as required. Moreover eq.(7) holds as at any
timestep, the nodes available in pebb|e$(G, C,m, Agreedy, Piniti) are nodes already
pebbled in pebble(G, C, m, Agreedy, Pinit ) at the same timestep. m|

2.4 The Parallel Random Oracle Model (pROM)

We turn to an analogue of the above pebbling games n the parallel random oracle
model (pROM) [3]. In particular, let G = (V, E) be a DAG with a dedicated
set C' C V of challenge edges, we identify the vertices with V' = [n]. A labelling
ly,..., ¢, of G’s verticies using a hash functiotn h : {0,1}* — {0,1}" is defined
as follows. Let parent(i) = {j € V : (j,4) € E} denote the parents of i, then

;i =h(i,4p,,...,0p,) where (p1,...,pq) = parent() (10)

Note that if ¢ is a source, then its label is simply ¢; = h(7).

We consider a game computelLabel(G,C, m, A, ginit, h) where an algorithm A
must m times consecutively compute the label of a node chosen at random from
C. A gets an initial state o9 = ojnit. The cumulative memory complexity is defined
as follows.

cmc®™(G, C,m, A, Oinit, h) = E [cost]
computelabel(G,C,m,A,0init,h)

CmCPROM(G7 Ca m, Uinit) = mAin h}_EHcmCPROM(G? 07 m, A7 Tinit h)

The time complexity of a given adversary is

time®*™ (G, C,m, A, ojnit, h) = E [cnt]
computelabel(G,C,m,A,init,h)

We will also consider this notion against the best adversaries from some restricted
class of adversaries, in this case we put the class as subscript, like

PROM . ROM
cmc 4 (G7cvm70-init) - Eélil h}_E,Hcme (G,C,m,A, Tinit, h)

" A pebble is available if it’s in the closure of the current entangled pebbling con-
figuration, also note that Agreedy’s strategy is deterministic and independent of the
challenges it gets, so the ”last nodes to become available” is well defined.
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computelabel(G, C,m, A, ginit, h : {0,1}* — {0,1}*) :

1. Initialise cnt := 0, round := 0, Tcnt := oinit and cost := 0.

. A challenge ¢ < C' is chosen uniformly from C.

. (q1y...,qs,£) < A(c,0ent) A choses parallel h queries and (optionally) a guess
for 4.

. cost := cost + |ocnt| + § - w.

. (Oent+1) ¢ A(c,0cnt, h(q1), ..., h(gs)) A outputs next state

cnt:=cnt+1

If £= 1 (no guess in this round) go to step 3.

. If £ # £, (wrong guess) set cost = oo and abort.

. round := round + 1. If round = m end the experiment. Otherwise go to step 2.

. round := round 4+ 1. If round < m go to step 2. Otherwise if round = m end
the experiment and output the final count cnt and cumulative cost cost.

w N

O © 0D U

—_

Fig. 3: The labeling game computelLabel(G, C, m, A, Ginit, h).

As for pebbling, also here we will consider the more meaningful e variants of
these notions

CmCERDM(G’ C7m7A7Uinit, h) = inf {'7 [COSt Z ’y] Z 1-— 6}

computelabel(G,C,m,A,Tinit,h)

ROM . ROM
cmceg (G,C,m,a;nit):mAthHcmcE (G,C,m, A, Ginit, h)

timeP*™(G, C, m, A, oinie, h) = inf cnt>v]>1—¢
€ v Y

computelLabel(G,C,m,A,0init,h)

2.5 scrypt and the computeLabel Game

We informally discuss the relation between evaluating scrypt in the pROM and
the computelLabel game for the line graph (described below) and, and explain
why we will focus on the latter. A similar discussion can be made for Argon2d.

First, recall that scrypt uses a hash function h : {0,1}* — {0,1}*, and
proceeds in two phases, given an input X. In the first phase it computes X; =
hi(X) for all i € [n],® and in the second phase, setting Sy = X,,, it computes
S1,...,Sy, defined recursively to be

S; = h(Si71 S5 Xint(Si—l))

where int(S) reduces a w-bit string S to an integer in [n] such that if S is
uniform random then int(S) is (close to) uniform over [n]. The final output of
scrypt”(X) = S,. To show that scrypt is memory-hard, we need to lower-
bound the CMC required to compute it in the pROM.

We argue that to obtain this bound it suffices to restrict our attention to
the minimal final value of cost in cmcP*™(L,,, [n],n) where L,, = (V,E) is the

8 Here h*(X) denotes iteratively applying h 4 times to the input X.
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line graph where V' = [n] and £ = {(i,i+ 1) : i € [n — 1]}. Intuitively this is
rather easy to see. Clearly any algorithm which hopes to evaluate scrypt with
more than negligble probability must, at some point, compute all X; values and
all S; values since guessing them is almost impossible. Moreover until S;_; has
been computed the value of int(S;—1) — i.e. the challenge label needed to com-
pute S; — is uniform random and independent, just like the distribution of ™
challenge c<—C in the computelLabel game. In other words once an algorithm has
computed the values X, ..., X, computing the values of 51, ...,S, corresponds
exactly to playing the computeLabel game on graph L,, with challenge set [n] for
n rounds. The initial state is exactly the state given to the algorithm as input
in the step where it first computes X,,. It is immediate that, when restricted
to strategies which don’t simply guess relevant outputs of h, then any strat-
egy for computing the values Si,...,S, corresponds to a strategy for playing
computelabel(L,, [n],n).

In summary, once A has finished the first phase of evaluating scrypt, the sec-
ond phase essentially corresponds to playing the computelLabel game on the graph
L,, with challenge set [n] for n rounds. The initial state oj: in computelabel
is the state given to A as input in the first step of round 1 (i.e. in the step
when A first computes X,,). It is now immediate that (when restricted to strate-
gies which don’t simply guess relevant outputs of h) then any strategy A for
computing the second phase of scrypt is essentially a strategy for playing
computelabel(L,, [n],n). Clearly the total CMC of A when computing both
phases of scrypt is at least the CMC of computing just the second. Thus our
lowerbound on ecmc®*™(L,, [n],n) in Theorem 15 also gives us a lower bound
on the CMC of scrypt,,. (The proof is rather tedious, and omitted from this
version of the paper.)

Simple Algorithms. Theorem 15 below will make no restrictions on the algorithm
playing computelabel, at the cost of relying on +,,, for which we only conjecture
an upper bound. We do not need such conjectures if we restrict our attention to
simple algorithms from the class Ag4: A simple algorithms A € Ag 4 is one which
either stores a value X; directly in its intermediary states® or stores nothing
about the value of X; at all. (They are however permitted to store arbitrary
other information in their states.) For example a simple algorithm may not
store, say, X; @ X; or just the first 20 bits of X;. We note that, to the best
of our knowledge, all algorithms in the literature for computing scrypt (or
any memory-hard function for that matter) are indeed of this form. For simple
algorithms, then we obtain an unconditional lower-bound on the CMC of scrypt
by using Theorem 4 below, which only consider pebbling games.

Much as in the more general case above, for the set of algorithms Ag4 we
can now draw a parallel between computing phase two of scrypt in the pROM
and playing the game pebble on the graph L,, with challenge set [n] for n rounds.
Therefore Theorem 4 immediatly gives us a lower-bound on the CMC of scrypt,,
for all algorithms in Ag4.

9 or at least an equivalent encoding of X;
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Entangled Adversaries. In fact we can even relax our restrictions on algorithms
computing scrypt to the class Ag4 of entangled algorithms while still obtaining
an unconditional lower-bound on the CMC of scrypt. In addition to what is
permitted for simple algorithms we also allow storing “entangled” information
about the values of X1, ..., X, of the following form. For any subset L C [n] and
integer t € [|L|] an algorithm can store an encoding of X, = {X,};cr, such that
if it obtains any ¢ values in L then it can immediatly output all remaining |L| —¢
values in L with no further information or queries to h. One such encoding uses
polynomial interpolation as described in the introduction. Indeed, this motivates
our definition of entangled pebbles above.

As shown in the full version, the class Aga is (in general) strictly more
powerful Ag 4 when it comes to minimizing CMC. Thus we obtain a more general
unconditional lower-bound on the CMC of scrypt using Theorem 9 which lower-
bounds cct(L,, [n],n,n), the entangled cumulative pebbling complexity of L,,.

3 Pebbling Lower Bounds for the Line Graph

In this section, we prove lower bounds for the cumulative complexity of the n-
round probabilistic pebbling game on the line graph L,, with challenges from [n].
We will start with the case without entanglement (i.e., dealing only with black
pebbles) which captures the essence of our proof, and then below, extend our
proof approach to the entangled case.

Theorem 4 (Pebbling Complexity of the Line Graph). For all0 < k < n,
and constant § > 0

ccs(Lp, C = [n],n, k) = 025 (long(n)) .

We note in passing that the above theorem can be extended to handle a
different number of challenges t # n, as it will be clear in the proof. We dispense
with the more general theorem, and stick with the simpler statement for the
common case t = n motivated by scrypt. The notation {25 indicates that the
constant hidden in the {2 depends on .

In fact, we also note that our proof allows for more concrete statements as
a function of §, which may be constant. However, not surprisingly, the bound
becomes weaker the smaller § is, but note that if we are only interested in the
expectation cc(L,,C = [n],n, k), then applying the result with § = O(1) (e.g.,

%) is sufficient to obtain a lower bound of {2 (1”72)
ogn

Proof intuition — the expectation game. Before we turn to the formal proof,
we give some high-level intuition. It turns out that most of the proof is going
to in fact lower bound the cc of a much simpler game, where the goal is far
simpler than covering challenges from [n] with a pebble. In fact, the game will
be completely deterministic.
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The key observation is that every time a new challenge ¢; is drawn, and the
player has reached a certain pebbling configuration P, then there is a well-defined
expected number @(P) of steps the adversary needs to take at least in order to
cover the random challenge. We refer to &(P) as the potential of P. In particular,
the best strategy is the greedy one, which looks at the largest j = j(¢;) < ¢; on
which a pebble is placed, i.e., j € P, and then needs to output a valid sequence
of at least c; — j further pebbling configurations, such that the last configuration
contains ¢;. Note if j = ¢;, we still need to perform one step to output a valid
configuration. Therefore, ¢(P) is the expected value of max(1,¢; — j(¢;)). We
will consider a new game — called the expectation game — which has the property
that at the beginning of every stage, the challenger just computes &(P), and
expects the player T to take @(P) legal steps until T can move to the next stage.

Note that these steps can be totally arbitrary — there is no actual challenge
any more to cover. Still, we will be interested in lower bounding the cumulative
complexity of such a strategy for the expectation game, and it is not obvious
how T can keep the cc low. Indeed:

— If the potential is high, say #(P) = §2(n), then this means that linearly many
steps must be taken to move to the next stage, and since every configuration
contains at least one pebble, we pay a cumulative cost of 2(n) for the present
stage.

— Conversely, if the potential &(P) is low (e.g., O(1)), then we can expect to be
faster. However we will show that this implies that there are many pebbles
in P (at least £2(n/®(P))), and thus one can expect high cumulative cost
again, i.e,, linear 2(n).

However, there is a catch — the above statements refer to the initial configu-
rations. The fact that we have many pebbles at the beginning of a stage and
at its end, does not mean we have many pebbles throughout the whole stage.
Even though the strategy T is forced to pay ®(P) steps, the strategy may try
to drop as many pebbles as possible for a while, and then adding them back
again. Ezcluding that this can happen is the crux of our proof. We will indeed
show that for the expectation game, any strategy incurs cumulative complex-
ity £2(n?/log?(n)) roughly. The core of the analysis will be understanding the
behavior of the potential function throughout a stage.

Now, we can expect that a low-cc strategy T for the original parallel pebbling
game on L, gives us one for the expectation game too — after all, for every
challenge, the strategy T needs to perform roughly @(P) steps from the initial
pebbling configuration when learning the challenge. This is almost correct, but
again, there is a small catch. The issue is that ¢(P) is only an expectation, yet
we want to have the guarantee that we go for @(P) steps with sufficiently high
probability (this is particularly crucial if we want to prove a statement which
is parameterized by ). However, this is fairly simple (if somewhat tedious) to
overcome — the idea is that we partition the n challenges into n/A groups of A
challenges. For every such group, we look at the initial configuration P when
learning the first of the next A challenges, and note that with sufficiently high
probability (roughly e~ 200 by a Chernoff bound) there will be one challenge
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(among these A ones) which is at least (say) @(P)/2 away from the closest pebble.
This allows us to reduce a strategy for the n-challenge pebbling game on L,, to
a strategy for the (n/\)-round expectation game. The value of A can be chosen
small enough not to affect the overall analysis.

Proof (Theorem /). As the first step in the proof, we are going to reduce playing
the game pebble(L,,C = [n],n,T, Pnt), for an arbitrary player T and initial
pebbling configuration Py (|Pnit| < k), to a simpler (and somewhat different)
pebbling game, which we refer to as the expectation game.

To this end, we introduce first the concept of a potential function ® : 2"} — N,
The potential of a pebbling configuration P = {1, 0s, ..., ¢y} C [n] is

3=

BP) =2+ 13 (14 + (g1 — 1 —1)
=0
= B LN iy = ) (ligr — 6= 1) = 5 Y (ligr — ;)% — =2
i=0 =0

Here m = |P| and we let ¢p = 0 and #,,11 = n + 1 as notational placeholders.
Indeed, &(P) is the expected number of moves required (by an optimal strategy)
to pebble a random challenge starting from the pebbling configuration P, where
the expectation is over the choice of the random challenge. (Note in particular it
is required to pay at least one move even if a pebble is already on the challenge
node.) In other words, ¢(P) is exactly time(L,,[n],1,T*, P) for the optimal
strategy T™.

Now we are ready to introduce the expectation game which has no challenge.
At the beginnning of every stage, the challenger only computes @(P), and expects
the player T to take &(P) steps until he can move to the next stage. The game
expect(n, t, T, Pnit) is played by a pebbler T as depicted in Figure 4.

In the following, for a (randomized) pebbler T and initial configuration P,
we write expect,, ,(T, Pinit) for the output of the expectation game; note the
output only depends on the randomness of pebbler T and configuration Pi.
We similarly define the cumulative complexity of the expectation game

ccs(expect,, (T, Piit)) := inf {fy [cost >~] >1-— e}

P
expect(n,t,T, Pit)

ccs(expect,, ;1) = : 11)1_1'12‘/ {ccs(expect,, (T, Prit)) }
s Linit =
| Pinig | <k

The expectation game expect,, ; , has an important feature: because the random-
ness is only over the pebbler’s coins, these coins can be fixed to their optimal
choice without making the overall cc worse. This implies that ccs(expect,, ; ) =
cco(expect,, ; ;) for all § > 0. In particular, we use the shorthand cc(expect,, ; ;)
for the latter.

The remainder of the proof consists of the following two lemmas. Below, we
combine these two lemmas in the final statement, before turning to their proofs.
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expect(n, t, T, Pnit): The t-round expectation game of parameter n and an initial
pebbling configuration Pnir C V' is played by challenger and player T as follows.

1. Initialize cnt := 0, round := 0, Peyt := Phnit and cost := | Piit|.

2. Player T submits a sequence of non-empty pebbling configurations
(Pround,17 ey Pround,tmund) C [n] Xtro”"d,

3. Let Pround,0 := Pent- Check if tround > P(Pent) and Vi € [tround]

Yv € Pround,i \ Round,ifl : Parent(v) S R’ound,ifl .

If check fails, output cnt = cost = oo and halt.
cnt := cnt + tround-

cost := cost + Z;f":“{‘d | Pround, j
Pen := Round,t,ound~

round := round + 1. If round < ¢ go to step 2, otherwise if round = t the
experiment is over, the output is the final count cnt and the cumulative cost
cost.

N oot

Fig.4: The Expectation Game

(The proof of Lemma 5 is deferred to the full version for lack of space, and relies
on the intuition given above.)

Lemma 5 (Reduction to the Expectation Game). For all n,t,k,\, and
any 6 > 3u(t, ), we have

cc(expect,, ;1) = CCs_g,,1,n) (€xPect, ;1) < 2-ccs(Ln,C = [n],t- Ak,

where p(t,\) =1t - e~ /8,

To give some intuition about the bound, note that in general, for every ¢’ <
d, we have ccy, (expect,, ;) < ccs(expect, , ;). This is because if a ¢ is such
that for all T and Py we have IP(expect,, ;(T, Bnit) > ¢) > 1 — d’, then also
IP(expect,, (T, Pnit) > ¢) > 1 — 4. Thus the set from which we are taking the

supremum only grows bigger as d increases. In the specific case of Lemma 5, the
3u(t, A) offset captures the loss of our reduction.

Lemma 6 (CC Complexity of the Expectation Game). For allt,0 < k <
n and € > 0, we have

et| ni=c
cc(expect,, ; ) > 2 6

To conclude the proof before turning to the proofs of the2 above two lemmas,
we choose t,\ such that t- A = n, and u(t,\) = t-e /8 < §/3. We also
set ¢ = 0.5loglog(n)/log(n), and note that in this case n'=¢ = n/y/log(n). In
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particular, we can set A = O(y/logt), and can choose e.g. t = n/+/logn. Then,

by Lemma 6,
et nl—e n?
cc(expect > | =1 - =2 — .

This concludes the proof of Theorem 4.

Proof (Proof of Lemma 6). First we observe if a pebbling configuration P has
potential @, the size | P| of the pebbling Conﬁguration (i.e., the number of vertices
on which a pebble is placed) will be at least g. We give a formal proof for
completeness. .

Lemma 7. For every non-empty pebbling configuration P C [n], we have

®(P)-|P| > % .

Proof. Let m = |P| > 1, by definition of potential:

1 & 2 n+1-2m
272:0 i+1 = - mn )

where ¢y = 0 and £,,,11 = n+ 1 are notational placeholders. Since #(P) > 1 and
m > 1, we have W < % < % - @(P). Therefore

2 1 &
P(P) > 3 9, Zg i1 — ;)
since m > ™H multiply the left side by m and the right side by "L, we have
2 (1 & m+1 1 [& )
BP)-m> = =S (a1 — 1) = (S =02 ) 1
o= 3 (3= 0] P (S )

Therefore (P) - m > § follows, since by Cauchy-Schwarz Inequality we have

<Z<£i+1 — fi)2> . (m + 1) > <Z(f,+1 — Kﬂ) > n? .0

=0 =0

Also, the following claim provides an important property of the potential
function.

Lemma 8. In one iteration, the potential can decrease by at most one.

10 Note that the contra-positive is not necessarily true. A simple counter-example is
when pebbles are placed on vertices [0,n/2] of C,, (that is, |P| = O(n)). The expected
number of moves in this case is still 2 (n).
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Proof. Consider an arbitrary configuration P = {¢1,/s,..., ¢y} C [n]. The best
that a pebbling algorithm can do to decrease the potential is to place new pebbles
next to all the current pebbles — let’s call the new configuration P’. That is,

P = {gl,fl —|—1,€2,€2—|—1,...,€m,£m—|—1} - [’FL}

The potential of the new configuration is

/_i 2 S (). 2 _n+1_2|P/‘
P(P') = on G+ ; 14 (i1 — (4 + 1)) on (11)
1 “ n+1—2|P|
= % (m + ; ((£i+1 — 41)2 — 2(£¢+1 — &) + 1)) — T (12)
1 < n+1—2m
> % (m + ;0 ((EiJrl — Zl>2 — 2(&#1 — fz) + 1)) — T (13)
>¢(P)+T—li(£- ) >e(P) 1 (14)
sl n n s i+1 1) —
where the first inequality holds because |P’| > m. O

Assume without loss of generality the pebbler T is legal and deterministic.
Consider a particular round ¢ € [¢] of the expectation game. Let P and P’ denote
the initial and final pebbling configurations in the i-th round, and let us denote
by ¢; = @(P) the potential of the initial configuration in round i. Depending on
the value of @(P’), we classify the pebbling sequence from P to P’ into three
different categories:

Type 1: $(P') > ¢; - n/?; or
Type 2: $(P') < ¢; - n/? — we have two sub-cases:
Type 2a: the potential was always less than ¢; - n€ for all the intermediate
pebbling configurations from P to P’; or
Type 2b: the potential went above ¢; - n¢ for some intermediate configura-
tion.

With each type, we associate a cost that the pebbling algorithm has to pay, which
lower bounds the contribution to the cumulative complexity of the pebbling
configurations generated during this stage. The pebbling algorithm can carry
out pebbling of Type 1 for free'! — however, the latter two have accompanying
costs.

— For pebbling sequences of Type 2a, the corresponding cumulative cost is
at least ¢; - Mﬁ = %nl_e since by Lemma 7, the size of the pebbling
configuration is never less than %% during all intermediate iterations and

in stage ¢ valid pebbler must produce at least ¢; configurations.

11 The cost might be greater than zero, but setting it to zero doesn’t affect the lower
bound.
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— For sequences of Type 2b, by Lemma 8, it follows that in a Type 2b sequence
it takes at least ¢;(n° — n/?) steps to decrease the potential from ¢ - n¢ to
é; -n/?, and the size of the pebbling configuration is at least 6¢Ln in every
intermediate step by Lemma 7. Therefore, the cumulative cost is at least

1—e/2
(€ /2y, S
e N

> !¢,

| =

where the last inequality follows for sufficiently large n.

To conclude the proof, we partition the ¢ > [2/€] rounds into groups of
consecutive [2/¢] phases. We observe that any group must contain at least one
pebbling sequence of Type 2: otherwise, with ¢ being the potential at the begin-
ning of the first of theses 2/e phases, the potential at the end would be strictly
larger than )

pnz e >¢-n>n/2

which cannot be, as the potential can be at most . By the above, however, the

cumulative complexity of each group of phases is at least %, and thus we get

t 1—e
cc(expect,, ; ) > {(;J . n6 , (15)

which concludes the proof of Lemma 6. a

As the second result, we show that the above theorem also holds for the
entangled case.

Theorem 9 (Entangled Pebbling Complexity of the Line Graph). For
all 0 < k < n and constant § > 0,

2

n
cct (L, C = [n],n, k) = 02 (10g2n> .

Luckily, it will not be necessary to repeat the whole proof. We will give now a
proof sketch showing that in essence, the proof follows by repeating the same
format and arguments as the one for Theorem 4, using Lemma 3 as a tool.

Proof (Sketch). One can prove the theorem following exactly the same frame-
work of Theorem 4, with a few differences. First off, we define a natural entangled
version of the expectation game where, in addition to allowing entanglement in
a pebbling configuration, we define the potential as

&t (P) = timet(L,,,C = [n],1,T5%, P) ,

i.e., the expected time complexity for one challenge of an optimal entangled
strategy T*¥ starting from the (entangled) pebbling configuration P.

First off, a proof similar to the one of Lemma 5, based on a Chernoff bound,
can be used to show that if we separate challenges in ¢ chunks of A challenges



On the Complexity of Scrypt and Proofs of Space in the pROM 21

each, and we look at the configuration P at the beginning of each of the ¢ chunks,
then there exists at least one challenge (out of A) which requires spending time
&¥(P) to be covered, except with small probability.

A lower bound on the cumulative complexity of the (entangled) expectaton
game follows exactly the same lines as the proof as Lemma 6. This is because
the following two facts (which correspond to the two lemmas in the proof of
Lemma 6) are true also in the setting with entanglement:

— First off, for every P and T*¥ such that ¢(P) = timei(Ln, C =[n],1,T"%, P),
Lemma 3 guarantees that there exist a (regular) pebbling strategy T and a
(regular) pebbling configuration P’ such that |P[y > [P’| and

&t (P) = time* (L, C = [n],1, T, P)
> time(L,,,C = [n],1,T, P') > &(P') .

Therefore, by Lemma 7,
n
|Ply - @HP) > [P']- 9(P') > . (16)

— Second, the potential can decrease by at most one when making an arbitrary
step from one configuration P to one configuration P’. This is by definition
— assume it were not the case, and #*(P’) < #*(P) — 1. Then, there exists
a strategy to cover a random challenge starting from P which first moves
to P’ in one step, and then applies the optimal strategy achieving expected
time @i(P’ ). The expected number of steps taken by this strategy is smaller
than &%(P), contradicting the fact that $*(P) is the optimal number of steps
required by any strategy. a

4 From Pebbling to pROM

4.1 Trancscipts and Traces

Below we define the notion of a trace and transcript, which will allow us to relate
the computeLabel and pebble? experiments. For any possible sequence of chal-
lenges ¢ € C™, let cnt. denote the number of steps (i.e., the variable cnt) made in
the computeLabel(G, C, m, A, oinit, h) experiment conditioned on the m challenges
being ¢ (note that once ¢ is fixed, the entire experiment is deterministic, so cnte
is well defined). Let 7 = q1|ga|. . -|¢ent. be the trace of the computation: here
¢1 C [n] means that the first batch of parallel queries are the queries required to
output the labels {¢;,i € ¢1}, etc..

For example, for the Graph in Figure 5, 77 = 2|4,5|7 corresponds to a first
query ¢5 = h(2), then two parallel queries £4 = h(4,¢1),¢5 = h(5,¢3), and then
the final query computing the label of the challenge £7 = h(7, 44,5, {g).
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A trace as a pebbling. We can think of a trace as a parallel pebbling, e.g.,
77 = 2|4, 5|7 means we pebble node 2 in the first step, nodes 4,5 in the second,
and 7 in the last step. We say that an initial (entangled) pebbling configuration
P, is consistent with a trace 7, if starting from P, 7 is a valid pebbling
sequence. E.g., consider again the traces 77 = 2|4, 5|7, 7 = 3|68 for the graph in
Figure 5, then Py = {1,5,6} is consistent with 77 and 75, and it’s the smallest
initial pebbling having this property. In the entangled case, Pt = {{1)o, (5,6)1}
is consistent with 77, 75. Note that in the entangled case we only need a pebbling
configuration of weight 2, whereas the smallest pebbling configuration for the
standard pebbling game has weight 3. In fact, there are traces where the gap
between the smallest normal and entangled pebbling configuration consistent
with all the traces can differ by a factor ©(n).

Turning a trace into a transcript. We define the implications T, of a trace 7. =
q1]q2] - - - |gent, as follows. For i = 1,..., cnte, we add the implication (v;) — (f;),
where v; C [n] denotes all the vertices whose labels have appeared either as
inputs or outputs in the experiment so far, and f; denotes the labels contained
in the inputs from this round which have never appeared before (if the guess for
the challenge label in this round is non-empty, i.e., £ # 1, then we include £ in

£2).
O—@ o
O—E—x<,
OO 2

Fig.5

Ezxample 10. Consider the graph from Figure 5 with m = 1 and challenge set
C = {7,8}, and traces

7 =2[4,5|7 and 75 = 3|6/8
‘We have
T, ={(2) —1,(1,2,4,5) - 6} T3 =1{(3,6) — 5} (17)

Where e.g. (2) — 1 is in there as the first query is f2 = h(2), and the second
query is ¢4 = h(4,¢1) and in parallel £5 = h(5,¢3). At this point we so far only
observed the label v, = {{5}, so the label fo = {{;} used as input in this query
is fresh, which means we add the implication (2) — 1.

Above we formalised how to extract a transcript T, from (G, C,m,A, oiit, h),
with
T(Ga Ca m, A, Tinit; h) = UCECmTC

we denote the union of all T,’s.
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4.2 Extractability, Coverability and a Conjecture

In this section we introduce the notion of extractability and coverability of a
transcript. Below we first give some intuition what these notions have to do
with the computeLabel and pebble? experiments.

Eztractability intuition. Consider the experiment computeLabel(G, C,m, A, oinit, h).
We can invoke A on some particular challenge sequence ¢ € C™, and if at some
point A makes a query whose input contains a label ¢; which has not appeared
before, we can “extract” this value from (A, ojni:) without actually querying h
for it. More generally, we can run A on several challenge sequences scheduling
queries in a way that will maximise the number of labels that can be extracted
from (A, ginit). To compute this number, we don’t need to know the entire in-
put/output behaviour of A for all possible challenge sequences, but the tran-
script T = T(G, C,m, A, oinit, h) is sufficient. Recall that T' contains implication
like (1,5,6) — 3, which means that for some challenge sequence, there’s some
point in the experiment where A has already seen the labels ¢4, {5, £g, and at this
point makes a query whose input contains a label ¢3 (that has not been observed
before). Thus, given oiiy and £1, £5, fg we can learn /3.

We denote with ez(T") the maximum number of labels that can be extracted
from T'. If the labels are uniformly random values in {0, 1}*, then it follows that
Tinit Will almost certainly not be much smaller than ex(T) - w, as otherwise we
could compress w - ex(T) uniformly random bits (i.e., the extracted labels) to a
string which is shorter than their length, but uniformly random values are not
compressible.

Coverability intuition. In the following, we say that an entangled pebbling ex-
periment pebble? (G, C,m, P,Piniti) mimics the computelLabel(G, C,m, A, oinit, h)
experiment if for every challenge sequence the following is true: whenever A
makes a query to compute some label ¢; = h(i,£p,,...,%p,), P puts a (normal)
pebble on i. For this P;niti must contain (entangled) pebbles that allow to cover
every implication in T' (as defined above), e.g., if (1,5,6) — 3 € T, then from
the initial pebbling Pyt together with the pebbles (1)g, (5)0, (6)¢ seen so far
it must be possible derive (3)q, i.c., (3)o € closure(Pyir* U (1)0, (5)0, (6)0}). We
say that such an initial state Pinit$ covers T. We're interested in the maximum
possible ratio of maxr over [n) MiNp_ + p.t covers T |P;nit$|¢/ex(T), which we’ll de-
note with ~,, thus, if any T is k extractable, it can be covered by an initial
pebbling P;niti of weight =, - k. The best current lower bound we have on =, is
1.5, we conjecture that v, is small, polylog(n) or even constant. We will prove
in § 4.3 that pebbling time complexity implies pROM time complexity for any
graph, and in § 4.4 that CC complexity implies cumulative complexity in the
pROM model for the scrypt graph. The loss in our reductions will depend on
Y. Assuming v, = ©(1) we get the best bounds one can hope for, but already
~Yn € o(n) would give the first non-trivial bounds on pROM complexity.
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Definitions. Let n € N. An “implication” (X') — z given by a value z € [n] and
a subset X' C [n] \ z means that “knowing X gives z for free”. We use (X) — Z
as a shortcut for the set of implications {(X) — z : z € Z}.

A transcript is a set of of implications. Consider a transcript T' = {ay, ..., ap},
each «; being an implication. We say that a transcript T is k& (0 < k < n) ex-
tractable if there exists an extractor F that makes at most n — k& queries in the
following game:

— At any time E can query for a value in [n].

— Assume E has values £ C [n] and there exists an implication (X) — z € T
where X' C L, then E gets the value z “for free”.

— The game is over when E has received all of [n].

Every (even an empty) transcript 7' is 0 extractable as E can always simply
ignore 1" and query for 1,2,...,n. Let

ex(T) = m?X(T is k-extractable)

FEzxzample 11. Let n = 5 and consider the transcript
T={1,2)—3(23)—~13,4) —2,(1) -4} (18)

This transcript is 2 but not 3 extractable. To see 2 extractability consider the
E which first asks for 1, then gets 4 for free (due to (1) — 4), next E asks for 2
and gets 3 for free (due to (1,2) — 3).

A set S of entangled pebbles covers an implication (X) — z if z € closure(SU
(X)0), with closure as defined in Definition 1.

Definition 12 (k-coverable). We say that a transcript T is k-coverable if there
exists a set of entangled pebbles S of total weight k such that every implication in
T is covered by S. With cw(T) we denote the minimum weight of an S covering
T:
T) = i S
Cw( ) S th(z{nclorll)ers T| ‘i

Note that every transcript is trivially n coverable by using the pebble (1,...,n)q
of weight n which covers every possible implication. For the 2 extractable tran-
script from Example 11, a set of pebbles of total weight 2 covering it is

S: {<1a2a3>2a<1?4>1} (19)

For example (3,4) — 2 is covered as 2 € closure((1,2,3)s,(1,4)1,(3,4)) =
{1,2,3,4}: we first can set I' = {3,4} (using (3,4)9), then I' = {1, 3,4} using
(1,4)1, and then I = {1,2,3,4} using (1,2, 3)s.

We will be interested in the size of the smallest cover for a transcript 7'
One could conjecture that every k-extractable transcript is k-coverable. Unfor-
tunately this is not true, consider the transcript

T ={(2,5) = 1,(1,3) = 2,(2,4) — 3,(3,5) = 4,(1,4) — 5} (20)
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We have ex(T*) = 2 (e.g. via query 2,4,5 and extract 1,3 using (2,5) —
1,(2,4) — 3), but it’s not 2-coverable (a cover of weight 3 ise.g. {(5,1)1},(2,3,4)1}).
With ~,, we denote the highest coverability vs extractability ration that a tran-
script over [n] can have:

Conjecture 13. Let

|51y cw(T)

Yn = max min = max
T over [n] S that covers T' €$(T) T over [n] ex(T)

then (weak conjecture) v, € polylog(n), or even (strong conjecture) 7, € O(1).

By the example eq.(20) above, v, is at least v, > 75 > 3/2. We will update
the full version of this paper as we get aware on progress on (dis)proving this
conjecture. In the full version we also introduce another parameter shannon(w),
which can give better lower bounds on the size of a state required to realize a
given transcript in terms of Shannon entropy.

4.3 Bounding pROM Time Using Pebbling Time

We are ultimately interested in proving lower bounds on time and cumulative
complexity in the parallel ROM model. We first show that pebbling time com-
plexity implies time complexity in the pROM model, the reduction is optimal
up to a factor 7,. Under conjecture 13, this basically answers the main open
problem left in the Proofs of Space paper [9]. In the theorem below we need the
label length w to in the order of mlog(n) to get a lower bound on |oinit|. For the
proofs of space application, where m = 1, this is a very weak requirement, but
for scrypt, where m = n, this means we require rather long labels (the number
of queries ¢ will be < n?, so the log(g) term can be ignored).

Theorem 14. Consider any G = (V,E),C C V,m € N,e > 0 and algorithm
A. Let n = |V| and ~y, be as in Congecture 13. Let H contain all functions
{0,1}* — {0,1}*, then with probability 1 — 2= over the choice of h < H the
following holds for every oinx € {0,1}*. Let q be an upper bound on the total
number of h queries made by A and let

|Tinit] + A

"=~ mlog(n) — log(2))

(so |oimit] = k- w for sufficiently large w), then
time? (G, C,m, A, Oinit, h) > time(G, C,m, [k - v,])
and for every 1 >¢ >0

time?® (G, C,m, A, Oinir, h) > time (G, C,m, [k - v, ])
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In other words, if the initial state is roughly k- w bits large (i.e., it’s sufficient to
store k labels), then the pROM time complexity is as large as the pebbling time
complexity of pebble(G,C,m) for any initial pebbling of size k - v,,. Note that
the above theorem is basically tight up to the factor -, : consider an experiment
time(G, C, m, P, Pit), then we can come up with a state ojn; of size k- w, namely
Tinit = {li,1 € Pnit}, and define A to mimic P, which then implies

timeERDM(G, C,m, A, oinit, h) = time (G, C,m, P, Ppit) with |oinie| = k- w

in particular, if we let P, Py be the strategy and initial pebbling of size k
minimising time complexity we get

timeP*™ (G, C,m, A, Ginit, h) > time (G, C,m, k) with |ojie| = k - w

Wlog. we will assume that A is deterministic (if A is probabilistic we can always
fix some “optimal” coins). Below we prove two claims which imply Theorem 14.

Claim. With probability 1 — 2=4 over the choice of h < #; If the transcript
T(G,C,m,A, Oinit, h) is k-extractable, then

|oinit| > k- (w —mlog(n) —log(q)) — A (21)
where ¢ is an upper bound on the total number of h queries made by A.

Proof. Let L be an upper bound on the length of queries made by A, so we can
assume that the input domain of h is finite, i.e., h : {0,1}5F — {0,1}*. Let
|h| = 2% - w denote the size of h’s function table.

Let 4;,,...,¢;, be the indices of the k labels (these must not be unique) that
can be “extracted”, and let h™ denote the function table of h, but where the
rows are in a different order (to be defined), and the rows corresponding to the
queries that output the labels to be extracted are missing, so |h| — |h~| =k - w.

Given the state ojnit, the function table of h™ and some extra information «
discussed below, we can reconstruct the entire function table of h. As this table
is uniform, and a uniform string of length s cannot be compressed below s — A
bits except with probability 274, we get that with probability 1 — 274 eq.(21)
must hold, i.e.,

|oinit| + [h7 [+ |af = |h[ — A

as [h| = |h7| =k - w we get
|0init| Zk”UJ*‘OA*A

It remains to define a and the order in which the values in h™ are stored. For
every label to be extracted, we specify on what challenge sequence to run the
adversary A, and where exactly in this execution the label we want to extract
appears (as part of a query made by A). This requires up to mlog(n) + log(q)
bits for every label to be extracted, so

o] <k - (m-log(n) +log(q))
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The first part of h™ now contains the outputs of h in the order in which they are
requested by the extraction procedure just outlined (if a query is made twice,
then we have to remember it and not simply use the next entry in h™). Let us
stress thaw we only store the w bit long outputs, not the inputs, this is not a
problem as we learn the corresponding inputs during the extraction procedure.
The entries of h which are not used in this process and are not extracted labels,
make up the 2nd part of the h™ table. As we know for which inputs we're still
missing the outputs, also here we just have to store the w bit long outputs such
that the inputs are the still missing inputs in lexicographic order.

Let us mention that if A behaved nice in the sense that all its queries are
on inputs which are actually required to compute the corresponding labels, then
we would only need log(n) bits extra information per label, namely the indices
i1,...,5. But as A can behave arbitrarily, we can’t tell when A actually uses
real labels as inputs or some junk, and thus must exactly specify where the real
labels to be extracted show up.

Claim. If the transcript T = T(G, C,m, A, oinit, h) is k-extractable (i.e., ex(T) =
k), then
time®*™ (G, C,m, A, Oinir, h) > time(G, C,m, [k - y,]) (22)

and for any 1 > ¢ >0
timeP*™ (G, C,m, A, oinit, h) > time (G, C,m, [k - v,]) (23)

Proof. We will only prove the first statement eq.(22). As T is k-extractable,
there exist (P, P*) where P is of weight < [k -, ] such that

time! (G, C,m, P, P*) = time®™™ (@, C, m, A, Ginit, h)
The claim now follows as
time* (G, C,m, P, PY) > time" (G, C,m, [k - 7,,]) = time(G, C,m, [k - 7,])

where the first inequality follows by definition (recall that |P$|$ < [k-v])
and the second by Lemma 3 which states that for time complexity, entangled
pebblings are not better than normal ones.

Theorem 14 follow directly from the two claims above.

4.4 The CMC of the Line Graph

Throughout this section L, = (V,E),V = [n],E = {(i,i+ 1) : i € [n—1]}
denotes the path of length n, and the set of challenge nodes C' = [n] contains all
verticies. In Section 3 we showed that — with overwhelming probability over the
choice of a function h : {0,1}* — {0,1}* — the cumulative parallel entangled
pebbling complexity for pebbling n challenges on a path of length n is

ccH(Ly, C = [n],n,n) = 2 (n?/log®(n))
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this then implies a lower bound on the cumulative memory complexity in the
pROM against the class A? of adversaries which are only allowed to store “en-
coding” of labels.

emc® (L, C = [n],n,n) = 2 (w - n?/log®(n))

This strengthens previous lower bounds which only proved lower bounds for CC
complexity, which then implied security against pROM adversaries that could
only store plain labels. In the full version, we show that cct can be strictly lower
than cc, thus, at least for some graphs, the ability to store encodings, not just
plain labels, can decrease the complexity.

In this section we show a lower bound on cmc®*™(G,C,m), i.e., without
making any restrictions on the algorithm. Our bound will again depend on the
parameter -y, from Conjecture 13. We only sketch the proof as it basically follows
the proof of Theorem 4.

Theorem 15. For anyn € N, let L, = (V = [n],E = {(i,i+1) : i € [n—1]})
be the line of length n and v, be as in Conjecture 13, and the label length w =
2(nlogn), then

emcP (L, C = [n],n, oinie) = 2 (w - n?/log*(n) - v,)
and for every € > 0
emc?*M(L,,, C = [n], n, oinit) = 2 (w - n?/log*(n) “Vn)

Proof (sketch). We consider the experiment computeLabel(L,,, C,n, A, ginit, h) for
the A achieving the minimal cmcP*™ complexity if h is chosen at random (we can
assume A is deterministic). Let (P, Pyit) be such that pebblei(Ln,C,n7 P, Pit)
mimics (as defined above) this experiment. By Theorem 9, cct(L,,, C' = [n],n,n) =
2 (n? /log? (n)), unfortunately — unlike for time complexity — we don’t see how
this would directly imply a lower bound on cmcP?™,

Fortunately, although Theorems 4 and 9 are about CC complexity, the proof
is based on time complexity: At any timepoint the “potential” of the current
state lower bounds the time required to pebble a random challenge, and if the
potential is small, then the state has to be large (cf. eq.(16)).

For any 0 < i < n and ¢ € C? let 0. denote the state in the experiment
computelabel(L,,, C,n, A, oinie = 0, h) right after the 7’th label has been computed
by A and conditioned on the first i challenges being ¢ (as A is deterministic and
we fixed the first ¢ challenges, o, is well defined).

At this point, the remaining experiment is computelLabel(L,,, C,n—i, A, o¢, h).
Similarly, we let P. denote the pebbling in the “mimicing” pebblet(L,,,C,n —
i, P, P.) experiment after P has pebbled the challenge nodes ¢. Let P. be the
entangled pebbling of the smallest possible weight such that there exists a P’
such that pebble?(L,,,C,n —i,P, P,) and pebble*(L,,C,n — i, P’, P.) make the
same queries on all possible challenges.

The expected time complexity to pebble the i+1’th challenge in pebblei(Ln7 C,n—
i,P’, P.) — and thus also in computelabel(L,,C,n — i,A,00,h) — is at least



On the Complexity of Scrypt and Proofs of Space in the pROM 29

n/6|P|3 by eq.(16). And by Theorem 14, we can lower bound the size of the
state o, as (assuming w is sufficiently large)

|oel = 2w - [Pely/vn)

The CC cost of computing the next (i + 1)th label in computelabel(L,,,C,n —
i, A, 0¢,h) —if we assume that the state remains roughly around its initial size |o¢|
until the challenge is pebbled — is roughly (cf. the intuition for the expectation
game given in Section 3)

n n w-|Pé|¢> (nw)
_ " e =0 el _ (M
g 1o =2 (i, o

As there are n challenges, this would give an 2(w - n?/v,) bound on the overall
CC complexity. Of course the above assumption that the state size never de-
creases is not true in general, an adversary case always chose to drop most of
the pebbles once the challenge is known.

Note that in the above argument we don’t actually use the size |o,| of the
current state, but only argue using the potential of the lightest pebbling P
necessary to mimic the remaining experiment. Following the same argument as
in Theorem 4 (in particular, using Lemma 8) one can show that for a 1/log(n)
fraction of the challenges, the potential says within a log(n) factor of its initial
sizes. This argument will lose us a 1/ log2 (n) factor in the CC complexity, giving
the claimed 2 (w - n? /log?(n) - Y») bound.
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