
Cryptanalysis of a Message Authentication Code

due to Cary and Venkatesan

Simon R. Blackburn and Kenneth G. Paterson?

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, U.K.

simon.blackburn@rhul.ac.uk, kenny.paterson@rhul.ac.uk

Abstract. A cryptanalysis is given of a MAC proposal presented at
CRYPTO 2003 by Cary and Venkatesan. A nice feature of the Cary-
Venkatesan MAC is that a lower bound on its security can be proved
when a certain block cipher is modelled as an ideal cipher. Our attacks
find collisions for the MAC and yield MAC forgeries, both faster than
a straightforward application of the birthday paradox would suggest.
For the suggested parameter sizes (where the MAC is 128 bits long)
we give a method to find collisions using about 248.5 MAC queries, and
to forge MACs using about 255 MAC queries. We emphasise that our
results do not contradict the lower bounds on security proved by Cary
and Venkatesan. Rather, they establish an upper bound on the MAC’s
security that is substantially lower than one would expect for a 128-bit
MAC.
Keywords: Message authentication, MAC, matrix groups, cryptanaly-
sis, birthday paradox.

1 Introduction

This paper is concerned with a proposal for a Message Authentication
Code (MAC) presented at CRYPTO 2003 by Cary and Venkatesan [1].
Their idea is to take a MAC construction of Jakubowski and Venkate-
san [3] based on linear operations over a finite field, and alter it by re-
placing finite field operations by operations in the ring of integers modulo
some power of 2 (as the latter operations are more efficient on the current
generation of processors). Cary and Venkatesan [1] have proved a lower
bound on the security of their MAC. This paper presents two attacks on
the MAC, and so establishes a corresponding upper bound on the MAC’s

? This author supported by the Nuffield Foundation NUF-NAL 02.

security. The first attack shows that an adversary with access to a MAC
oracle is able to find collisions of the MAC considerably faster than a
straightforward application of the birthday paradox would suggest. For
an introduction to MACs and birthday attacks on them, see [4]. The sec-
ond attack does more: it derives most of the secret key material for the
MAC (which enables MACs to be forged). This second attack works by
exploiting certain collisions in the MAC; these collisions are found al-
most as efficiently as in the first attack. Thus the proposal of Cary and
Venkatesan [1], while efficient and offering some interesting provable se-
curity properties, does not offer the level of security that a MAC of its
output length should aspire to.

The next section describes the Cary–Venkatesan MAC. Sections 3
and 4 describe our two attacks on this MAC. The concluding section
explains how our attacks impact on the practical level of security offered
by the MAC when the suggested parameter sizes are used.

2 The Cary–Venkatesan MAC

Let `, k and t be integers. The Cary–Venkatesan MAC operates on blocks
consisting of t words x1, x2, . . . , xt each word being of length ` bits. We
regard the words xi as `-bit integers. The MAC has a t(`−1)+k-bit secret
key. This key is made up of odd `-bit integers a1, a2, . . . , at together with
a k-bit string K.

The MAC consists of two parts, a compression function H and a block

cipher E. The compression function H takes as input the vector a =
(a1, a2, . . . , at) and a block x = x1x2 . . . xt where xi ∈ {0, 1, . . . , 2` − 1};
it returns a 4`-bit string h = Ha(x). The block cipher operates on 4`-bit
blocks. It takes as input the key K and the output h of the compression
function; the cipher returns the 4`-bit value EK(h) and this is the output
of the MAC.

Cary and Venkatesan allow the block cipher E to be any secure block
cipher acting on 4`-bit blocks with a k-bit key. They model E as an ideal
cipher and concentrate their efforts on designing an efficient compression
function H of the following form.

Let A1, A2, . . . , At−1 be fixed 2 × 2 matrices, and let z0 and σ0 be
fixed column vectors of length 2; suppose all the entries of these matrices
and vectors lie in the ring Z2` of integers modulo 2`. (These matrices and
vectors are public, and some suggested examples are given in [1].) Vectors
v1, v2, . . . , vt ∈ (Z2`)2 are calculated as follows. Let i ∈ {1, 2, . . . , t} be
fixed. Multiply the `-bit integers ai and xi, to produce a 2`-bit integer;

this product is then broken into two `-bit integers, and the result vi is
regarded as an element of (Z2`)2. The way in which the product aixi is
split to form vi is not specified in [1]; we assume that a natural choice of

vi =
[

aixi mod 2
`, aixi div 2

`
]T
is used. (Another natural choice would

be vi =
[

aixi div 2
`, aixi mod 2

`
]T
. Our results are unaffected if this

choice is used instead.)
The output h of H is defined to be the pair (z, σ), where

z = z0 + v1 +A1v2 +A1A2v3 + · · ·+A1A2 · · ·At−1vt

and where
σ = σ0 + v1 + v2 + · · ·+ vt.

Here all operations are over Z2` .
Cary and Venkatesan propose two variants of their MAC: a way of

chaining the compression function so that it can compress more than one
block into 4`-bits (by making the ‘initial values’ z0 and σ0 used in the next
block depend on z and σ above), and a method for doubling the length
of output of the compression function (by computing the compression
function above twice on the same block, using different keys, and then
concatenating their outputs). Our attacks below can be adapted to apply
to these variants as well, although we will not discuss the straightforward
modifications that are needed.

3 The first attack

For MACs such as the one considered here, which consist of a relatively
weak keyed compression function followed by a block cipher encryption,
it is generally assumed that it is computationally infeasible to invert the
block cipher E without knowledge of the secret keyK. (If the block cipher
can be inverted efficiently, the output of the compression function H is
available to the cryptanalyst. The keys used in the compression function
can then usually be derived from MACs of a few chosen messages. Once
these keys are known, MACs of a wide variety of messages may be forged.
This shows that, in practice, the security level offered by a MAC of this
type cannot be greater than the length of the block cipher key. This is
certainly the case with the proposal of [1].)
The final cipher E is often modelled as an ideal cipher, namely a set

of random permutations indexed by the key K. An adversary has access
to an oracle that adds MACs to messages; the adversary aims to gen-
erate a valid MAC for any message that has not been sent as a query

to the oracle. In this ideal cipher model it is intuitively clear (and in-
deed formally provable) that finding two messages that are compressed
by H to the same value h (finding a collision) is a prerequisite to break-
ing the MAC. Since the block length of the cipher E in the proposal of
[1] is 4` bits, the birthday paradox implies that a collision will be found
with reasonable probability after approximately 22` oracle queries on ran-
dom messages. A good scheme in this model should therefore have the
property that it is impossible for an adversary to produce collisions with
reasonable probability unless the number of oracle queries is close to this
upper bound. However, we show that when the MAC proposed in [1] is
used, an adversary can produce collisions using significantly fewer than
22` messages.

The basic idea of our collision finding attack is to construct a large
set of messages with the property that the compression function H maps
each message into a small subset of inputs to the block cipher (irrespective
of the key a1, a2, . . . , at used). Because the block cipher is a permutation,
there is a collision in the MAC output if and only if there is a collision
at the input to the block cipher, i.e. at the output of the compression
function H.

Let r be an integer that is as large as possible subject to the conditions
that 0 ≤ r < ` and that 2t(`−r) is at least n = d

√
24`−re. (For most choices

of parameters, r = `− 1 or r = `− 2 will suffice.)
There are 2t(`−r) messages x = x1x2 · · ·xt with the property that 2r

divides xi for all i ∈ {1, 2, . . . , t}. We denote this set of messages by X and
let Y be a subset of X consisting of n such messages: a subset of this size
exists, by our choice of r. We obtain the MACs of all the messages in Y
from the MAC oracle. Define B to be the set of all pairs (z, σ) ∈ ((Z2`)2)2

such that the first component of σ − σ0 is divisible by 2
r. Our condition

on the elements xi for messages in X implies that the first component of
each vector vi is divisible by 2

r, and so the same is true for the vector
σ − σ0. Hence the image of X under H lies in B, whatever the value of
the secret key a1, a2, . . . , at. Now,

|B| = 24`−r < n2.

Since we have requested the MACs of the n messages in the set Y ⊆ X,
the birthday paradox implies that we will find a collision with reasonable
probability (in fact, with probability about 0.63). Note that n is consid-
erably less than 22`. Indeed, when r = ` − 1 or r = ` − 2, we have that
n is approximately 23`/2. So we have found collisions for the function H,

and hence for the MAC, considerably faster than a straightforward use
of the birthday paradox would imply.
We have assumed in this analysis that the image of X under H is

uniformly distributed in B. A non-uniform distribution only enhances
the probability of collisions.

4 The second attack

Our first attack found collisions efficiently. However, it is not clear how
knowledge of these collisions could be used to forge MACs. We now
present a second method for finding collisions, almost as efficient as the
method above, with the extra feature that collisions may be used to find
the key words ai, and hence to forge MACs.
We begin by choosing two integer parameters d and s, which affect

the efficiency and probability of success of the attack. The value of d is
the number of collisions we need to find in the compression function, and
is chosen as follows. Let V be a Z2-vector space of dimension t− 1. Then
d is chosen so that the probability of a set of d randomly chosen vectors
from V forming a spanning set is large (say at least 0.5). A choice of d = t
or d = t + 1 will suffice in most situations. The parameter s relates to
the size of a set Y ′ which is analogous to the set Y in our first attack.
We choose s to be a positive integer such that 2ts is just greater than
w = d

√

2dt(23`+s)e. For most parameter sets, this means that s is small
(s = 2 or s = 3, say). Our choice of the values of d and s will become
clear in the description of the attack below.
The attack proceeds in 3 stages. In stage 1, we find many collisions in

the compression function H by requesting MACs of messages of a special
form. In stage 2, we use data gathered from these collisions to form a
system of linear equations in the unknown key words ai. Solving these
equations and performing a moderate amount of additional computation
allows us to find the key a for the compression function H. In stage 3, we
use knowledge of a to quickly find a collision in H without querying the
MAC. This immediately leads to a MAC forgery.

Stage 1: We ask for the MACs of a subset Y ′ taken from the set of
messages X ′ = {x1x2 · · ·xt | 0 ≤ xi < 2

s, ∀i ∈ {1, 2, . . . , t}}. There are
2ts ≥ w messages in X ′ and we take |Y ′| = w. Define B′ to be the set of
all pairs (z, σ) ∈ ((Z2`)2)2 such that the second component of σ − σ0 lies
between 0 and t2s. Our condition on the elements xi for messages in X

′

implies that xiai < 2
s+` for all i. So the second component of vi is less

than 2s and hence the second component of σ− σ0 is less than t2
s. Thus

the image of X ′ under H is contained in B′, whatever the value of the
secret key a1, a2, . . . , at.

Notice that B′ is of size u = t23`+s and Y ′ ⊂ X ′ is of size w =
d
√

2dt(23`+s)e. Our choice of parameters implies that, by the birthday
paradox, we will find collisions in the MAC function, and hence in the
compression function, for the set Y ′. In fact, we have chosen d, s and
w so that |Y ′| is a little larger than is needed for the birthday paradox
to apply. This is so that we are likely to find many collisions. Indeed,
applying results of [2], we have that for large w and u, the frequency
distribution Q(x) of the number of collisions x can be approximated by
a Poisson distribution Pλ(x) with parameter λ = w2/2u. The error in
approximating Q(x) by Pλ(x) can be bounded using results of [2]. We
have:

|Q(x)− Pλ(x)| ≤
5

w
x2 +

3w

u
x+

w2

3u2
. (1)

For our choice of parameters and for x ≤ d, the error term in eqn. (1) can
be bounded by 8d3/2/u1/2. In our situation, d will be much smaller than
u. Thus the approximation by a Poisson distribution will be excellent
when x ≤ d. For our choice of parameters, we have λ = d. So in the case
of interest to us (where d is approximately equal to t and so is reasonably
large), the Poisson distribution has mean d, and median approximately
d. Putting all of this together, we see that the probability that we find d
or more collisions in Y ′ is approximately equal to 0.5. The above analysis
can of course be refined, but suffices for our purposes.

Stage 2:We now assume that at least d collisions of the above type have
been found. We proceed by examining the first component of σ for each
of these collisions. Each gives an equation of the form

x
(j)
1 a1 + x

(j)
2 a2 + · · ·+ x

(j)
t at = x

′ (j)
1 a1 + x

′ (j)
2 a2 + · · ·+ x

′ (j)
t at mod 2`,

for j ∈ {1, 2, . . . , d}. Writing y(j)
i = x

(j)
i − x

′ (j)
i , we obtain a system of d

equations in t unknowns a1, . . . , at ∈ Z2` :

y
(j)
1 a1 + y

(j)
2 a2 + · · ·+ y

(j)
t at = 0 mod 2

`, 1 ≤ j ≤ d. (2)

Define vectors y(j) ∈ (Z2`)t by y(j) = (y
(j)
1 , y

(j)
2 , . . . , y

(j)
t). The number of

solutions to the system (2) depends on the linear independence properties
of the vectors y(j) considered modulo 2. Let z(j) denote y(j) mod 2 and let
V denote the dimension t−1 subspace of Zt

2 that consists of all vectors of
even parity. Because the ai are odd and the equations (2) hold, we have

that z(j) ∈ V for 1 ≤ j ≤ d. It is then elementary to show that the system
(2) has a unique solution up to a Z2` scalar multiple if and only if the d
vectors z(j) span the space V .

The probability that the d vectors z(j) span V is at least 1−1/2d−t+1,
assuming the vectors to be random. (To see this, notice that the vectors
fail to span V if and only if they all lie in some subspace U of co-dimension
1 in V . There are exactly 2t−1−1 such subspaces U . Assuming the vectors
z(j) to be randomly distributed in V , the probability that they all lie in
any given U is equal to 2−d. Hence the probability that the vectors do not
span V is at most (2t−1 − 1) · 2−d ≤ 1/2d−t+1.) This probability is close
to 1 as soon as d is slightly greater than t− 1. Given that the vectors z(j)

do span V , a standard Gaussian elimination procedure over Z2` can be
used to produce b1, b2, . . . , bt ∈ Z2` such that there exists an odd constant
c with the property that ai = cbi mod 2

` for all i ∈ {1, 2, . . . , t}.
Stage 1 of our attack has given us d pairs of messages that collide

under the compression function. To find c, we simply try each of the 2`−1

possibilities in turn and check whether the compression function with key
ai = cbi produces collisions for these pairs of messages. It is highly likely
that a single value of c will produce all the correct collisions; this value
will be the correct value of c. Thus we have recovered the value of the key
words ai.

Stage 3: Finally, we produce a MAC forgery as follows. We search for
collisions in the compression function as in Sect. 3; however, since we now
know the key to the compression function, we do not need to query the
MAC oracle to obtain these collisions. After about 23`/2 trials, we find a
collision in the compression function: H(x) = H(x′) for distinct messages
x and x′. We then query the MAC oracle on the message x. The resulting
MAC will be valid for the message x′, and so we have forged a MAC as
required.

To summarise, we have forged a MAC after making

w + 1 = d
√

2dt(23`+s)e+ 1

oracle queries, and a comparatively small amount of additional effort
(which mainly consists of storing the oracle outputs, together with com-
puting the compression function about 23`/2 times). The probability that
our attack works is approximately (1− 1/2d−t+1)/2.

The probability of success can be made arbitrarily close to 1, firstly by
increasing the value of d and secondly by taking a larger number of MAC

queries to increase the probability that d pairs of collisions will result. We
omit the routine details of these enhancements.

5 Consequences for suggested parameter sizes

In [1, Sect. 5], Cary and Venkatesan give details of an implementation of
their MAC for the parameters ` = 32 and t = 50. They are able to prove
that the resulting MAC offers 54 bits of security, which can be interpreted
as meaning that collisions for the MAC should not be found until after
at least 227 MAC queries have been made.

Our attack in Sect. 3 shows that, for these parameters, MAC collisions
can be found using about 248.5 MAC queries. (The attack will set r = 31;
then the space B will be of size 297 and 248.5 MAC queries will be needed
to obtain a collision with probability 0.63.). Taking d = t = 50, our attack
in Sect. 4 uses s = 2 and finds MAC forgeries with probability about 0.25
using approximately 255 MAC queries.

We have conducted experiments on cut down versions of the MAC.
Using t = 50 and 8 ≤ ` ≤ 14, collisions in the compression function
occurred as frequently as our analysis predicts. While we have not imple-
mented our attacks for ` = 32, we see no reason why our attack should
not scale as predicted.

For both of our attacks, the complexity is significantly less than the 264

queries implied by a standard application of the birthday paradox, though
a good deal greater than the level of security that has been established
for the MAC. It seems fair to say that the MAC proposal of [1] does not
offer the security levels that one would expect of a strong MAC algorithm
with a 128 bit output. We expect that more sophisticated attacks than the
ones presented here may reduce the complexity of finding and exploiting
collisions further.

In response to the attacks presented in this paper, the authors of [1]
have suggested a new scheme, namely that the output of their compression
function should first be passed through SHA-1 and then 54 bits of the
result be taken as output. The intention of this construction is to match
the proved security level of the original compression function with the
length of the MAC. (The security level of this construction can be no
greater than the 54 bits proved for the original MAC.) Note that the
attacks presented in this paper do not carry over to this new scheme,
since the overwhelming majority of collisions in the MAC will be caused
by collisions in the final stage rather than by collisions in the compression
function. Of course, a proof of security for this modified MAC can no

longer rely on modelling a block cipher as a random permutation. Instead,
this assumption would need to be replaced by an assumption concerning
the collision properties of SHA-1 (or perhaps by modelling SHA-1 as a
random function).

Acknowledgements

The authors would like to thank Sean Murphy for his help with back-
ground to the birthday paradox arguments in Sect. 4, Bart Preneel for
bringing reference [2] to our attention, and Chris Mitchell for his com-
ments on an earlier draft of this paper. The authors would also like to
thank the referees of the paper, for their constructive comments and sug-
gestions.

References

1. M. Cary and R. Venkatesan, “A message authentication code based on unimodular
matrix groups”, in D. Boneh, editor, Advances in Cryptology – Proc. CRYPTO

2003, Lecture Notes in Computer Science Volume 2729, (Springer, Berlin, 2003),
500-512.

2. M. Girault, R. Cohen and M. Campana, “A generalized birthday attack”, in C. G.
Gnther, editor, Advances in Cryptology – Proc. EUROCRYPT’88, Lecture Notes
in Computer Science Volume 330, (Springer, Berlin, 1988), 129-156.

3. M.H. Jakubowski and R. Venkatesan, “The chain and sum primitive and its appli-
cations to MACs and stream ciphers”, in K. Nyberg, editor, Advances in Cryptol-

ogy – Proc. EUROCRYPT ’98, Lecture Notes in Computer Science Volume 1403,
(Springer, Berlin, 1998), 281-293.

4. A. Menezes, P.C. van Oorschot and S. Vanstone, Handbook of Applied Cryptogra-

phy, CRC Press, Boca Raton, 1997.

