
Reducing the Space Complexity of BDD-based

Attacks on Keystream Generators

Matthias Krause and Dirk Stegemann

Theoretical Computer Science
University of Mannheim, Germany

{krause,stegemann}@th.informatik.uni-mannheim.de

Abstract. The main application of stream ciphers is online-encryption
of arbitrarily long data, for example when transmitting speech data be-
tween a Bluetooth headset and a mobile GSM phone or between the
phone and a GSM base station. Many practically used and intensively
discussed stream ciphers such as the E0 generator used in Bluetooth and
the GSM cipher A5/1 consist of a small number of linear feedback shift
registers (LFSRs) that transform a secret key x ∈ {0, 1}n into an out-
put keystream of arbitrary length. In 2002, Krause proposed a Binary
Decision Diagram (BDD) based attack on this type of ciphers, which in
the case of E0 is the best short-keystream attack known so far. How-
ever, BDD-attacks generally require a large amount of memory. In this
paper, we show how to substantially reduce the memory consumption
by divide-and-conquer strategies and present the first comprehensive ex-
perimental results for the BDD-attack on reduced versions of E0, A5/1
and the self-shrinking generator.

Keywords: stream cipher, cryptanalysis, BDD, Bluetooth E0, GSM
A5/1, self-shrinking generator

1 Introduction

The main purpose of LFSR-based keystream generators is online encryption of
bitstreams p ∈ {0, 1}∗ that have to be sent over an insecure channel, e.g., for
encrypting speech data to be transmitted from and to a mobile phone over the air
interface. The output keystream y ∈ {0, 1}∗ of the generator is bitwise XORed
to the plaintext stream p in order to obtain the ciphertext stream c ∈ {0, 1}∗,
i.e., ci = pi ⊕ yi for all i. Based on a secret initial state x ∈ {0, 1}n, which has
to be exchanged between sender and legal receiver in advance, the receiver can
compute the keystream y from x in the same way as the sender computed it and
decrypt the message using the above rule.

We consider the special type of LFSR-based keystream generators that con-
sist of a linear bitstream generator with a small number of Linear Feedback Shift
Registers (LFSRs) and a non-linear compression function C : {0, 1}∗ → {0, 1}∗.
From the secret key x, the LFSRs produce an internal bitstream z ∈ {0, 1}∗,
which is then transformed into the output keystream y via y = C(z). Practical

examples for this design include the E0 generator, which is used as a build-
ing block for the cipher used in the Bluetooth standard for short-range wireless
communication [4], the A5/1 generator from the widely used GSM standard for
mobile telephones [5], and the self-shrinking generator [14].

Currently, the best attacks on E0 in terms of time and memory requirements
are algebraic attacks [1, 6] and correlation attacks [12, 11], but both types rely
on the rather unrealistic assumption that a large amount of output keystream
is available. The correlation attacks presented in [12, 11] additionally depend
on the linearity of the key-schedule and other specific properties of the Blue-
tooth encryption system that could easily be altered in future versions of the
cipher. Particularly, in [2] it was shown that small changes of the cipher design
could completely avert the correlation attack in [12] and significantly worsen the
efficiency of algebraic attacks on E0.

The attack by Krause [10], which we consider in this paper, is a generic
attack in the sense that it does not depend on specific design properties of the
respective cipher. It only relies on the assumptions that the generator’s output
behaves pseudorandomly and that the test whether a given internal bitstream
z produces a sample keystream can be represented in a Free Binary Decision
Diagram (FBDD) of size polynomial in the length of z. In the case of E0, the
BDD-attack can easily be extended to an attack on the whole Bluetooth cipher.
Another major advantage of the attack is that it reconstructs the secret key
from the shortest information-theoretically possible prefix of the keystream; in
the case of E0 and A5/1, the first keystream frame already suffices to obtain
all the information that is needed to compute the initial state, whereas both
algebraic attacks and correlation attacks depend on the unrealistic number of
at least 223 available keystream frames. In fact, the BDD-attack is the best
short-keystream attack on E0 that is known so far.

Unlike both algebraic and correlation attacks, BDD-attacks can also be ap-
plied to irregularly clocked keystream generators like the A5/1 generator, for
which the BDD-attack is one of the best generic attacks that do not depend on
special properties of the GSM encryption system.

However, one drawback of the BDD-attack is its high memory consumption.
We will approach this problem by presenting various efficiently parallelizable
divide-and-conquer strategies (DCS) for E0 and A5/1 that substantially reduce
the memory requirements and allow us to tackle much larger keylengths with
fixed computational resources. In the case of E0, our DCS lowers the attack’s
memory requirements by a factor of 225 and additionally yields a slight theoret-
ical improvement of the theoretical runtime. Hence, we obtain the best attack
on E0 under realistic assumptions.

In [10], the application of the basic BDD-based attack to E0, A5/1 and the
self-shrinking generator were already theoretically described, but with rather
pessimistic assumptions on the time and space requirements. We present the first
comprehensive experimental results for the BDD-attack on reduced versions of
these ciphers, showing that the performance in practice does not substantially
deviate from the theoretical figures.

This paper is organized as follows. In Sect. 2, we introduce some notations,
give an overview of Binary Decision Diagrams and their algorithmic properties,
and review the original BDD-based attack presented in [10]. The impact of the
BDD-attack on the keystream generators E0, A5/1 and the self-shrinking gen-
erator are described together with their basic definitions in Sect. 3. Section 4
introduces our divide-and-conquer strategies for the attacks on E0 and A5/1, and
Sect. 5 presents our experimental results. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 LFSR-based Keystream Generators

In order to establish a consistent notation, we restate the definitions of linear
feedback shift registers, linear bitstream generators and LFSR-based keystream
generators and their basic properties.

Definition 1. A Linear Feedback Shift Register (LFSR) of length n with a coef-
ficient vector c = (c1, . . . , cn) ∈ {0, 1}n takes an initial state x = (x0, . . . , xn−1) ∈
{0, 1}n as input and produces a bitstream l(x) = l0(x), l1(x), . . . , li(x), . . . accord-
ing to

li(x) :=

{

xi for 0 ≤ i ≤ n − 1
⊕n−1

k=0 ck+1 · li−n+k(x) for i > n − 1
.

Note that each output bit of an LFSR is a linear combination of the initial state
bits and that for each position i, there exists a subset D(i) ⊆ {0, . . . , n−1} such
that li(x) =

⊕

j∈D(i) xj . We call D(i) the domain of i.
In practice, an LFSR is implemented in hardware with n binary register cells

that are connected by a feedback channel.

Definition 2. A Linear Bitstream Generator L consists of k ≥ 1 parallel LFSRs
Lr of length nr, r ∈ {0, . . . , k−1}, and n0+. . .+nk−1 = n. L produces a bitstream
L(x) = L0(x), L1(x), . . . , Li(x), . . . where

Li(x) := l
r(i)
s(i)

(

xr(i)
)

where
r(i) = i mod k
s(i) = i div k

,

i.e., the i-th output bit of L corresponds to the s(i)-th output bit of LFSR Lr(i).
The initial states xp of the LFSRs Lp, p ∈ {0, . . . , k − 1}, form the initial state
x ∈ {0, 1}n of L. For i ≥ 1, we denote by L≤i(x) the i-extension of x, i.e., the
first i output bits L0(x), . . . , Li−1(x) that L produces from x.

Definition 3. An LFSR-based (k, l)-keystream generator (or (k, l)-combiner)
K = (L, C) consists of a linear bitstream generator L with k LFSRs and a non-
linear compression function C : {0, 1}∗ → {0, 1}∗ with l memory bits. From the
secret key x ∈ {0, 1}n that L is initialized with, K computes an internal bit-
stream z = L(x) and transforms z into the output keystream via y = C(z) =

y0, y1, . . . , yi, The compression function C computes the keystream in an on-
line manner, i.e., there exists a function δ : IN → IN with δ(i) < δ(j) for i < j,
such that yi = C(z0, . . . , zδ(i)−1), i.e., yi only depends on the first δ(i) bits of z.
Moreover, C reads the internal bits in the order in which they are produced by
the LFSRs, i.e., for s > 0 and all r ∈ {0, . . . , k−1}, Lk·s+r(x) is not read before
Lk·(s−1)+r(x).

We call a number i ≥ 1 a key position in L(x) if Li(x) corresponds to one
of the x-bits and a non-key position otherwise. Correspondingly, we denote by
KP (i) the set of key positions in {0, . . . , i−1} and by KB(z) ∈ {0, 1}|KP (i)| the
bits at the key positions in L(x). Let nmin denote the maximum i for which all
i′ ≤ i are key positions and nmax the minimum i for which all i′ > i are non-key
positions.

In the context of the previous definitions, we can characterize the well-known
regularly clocked combiners with memory (or shortly regular (k, l)-combiners),
which consist of k LFSRs and an l-bit memory unit, in the following way.

Definition 4. We call an LFSR-based (k, l)-keystream generator regular, if yi

only depends on the internal bits (zki, . . . , z(k+1)i−1), i.e., the (i + 1)-st output
bits of the LFSRs, and the state of the memory bits in iteration i.

Definition 5. Let γ denote the best-case compression ratio γ ∈ (0, 1], i.e., γm
is the maximum number of keybits that C produces from internal bitstreams of
length m. For a randomly chosen and uniformly distributed internal bitstream
Z(m) ∈ {0, 1}m and a random keystream Y , we define the average information
that Y reveals about Z(m) as α := 1

m
I

(

Z(m), Y
)

∈ (0, 1].1

For a randomly chosen and uniformly distributed internal bitstream z ∈ {0, 1}m,
the probability of the keybits C(z) being a prefix of a given keystream y ∈ {0, 1}∗

can be expressed as
Probz [C(z) is prefix of y] =

dγme
∑

i=0

Probz∈{0,1}m [|C(z)| = i] · Probz∈{0,1}m,|C(z)|=i[C(z) = (y0, . . . , yi−1)] .

Concerning this probability, we will make the following assumption.

Assumption 1 (Independence Assumption). For all m ≥ 1, a randomly
chosen, uniformly distributed internal bitstream z ∈ {0, 1}m, and all keystreams
y ∈ {0, 1}∗, we have Probz [C(z)is prefix of y] = pC(m), i.e., the probability of
C(z) being a prefix of y is the same for all y.

As shown in [10], Assumption 1 yields α = − 1
m

log2 pC(m).
From a straightforward calculation (c.f. [10] for details), we obtain

Observation 1. For a regular (k, l)-combiner, it is α = γ = 1
k
.

1 Recall that for two random variables A and B, the value I(A,B) = H(A)−H(A|B)
defines the information that B reveals about A.

Finally, we assume the keystream y to behave pseudorandomly.

Assumption 2 (Pseudorandomness Assumption). For all keystreams y
and all m ≤ dα−1ne it holds that Probz [C(z) is prefix of y] ≈ Probx[C(L≤m(x))
is prefix of y], where z and x denote randomly chosen, uniformly distributed el-
ements of {0, 1}m and {0, 1}|KP (m)|, respectively.

Note that a severe violation of Assumption 2 would imply a vulnerability of
K via a correlation attack.

2.2 Binary Decision Diagrams (BDDs)

We briefly review the definitions of Binary Decision Diagrams and those algo-
rithmic properties that are used in the BDD-based attack.

Definition 6. A Binary Decision Diagram (BDD) over a set of variables Xn =
{x1, . . . , xn} is a directed, acyclic graph G = (V, E) with E ⊆ V × V × {0, 1}.
Each inner node v has exactly two outgoing edges, a 0-edge (v, v0, 0) and a 1-edge
(v, v1, 1) leading to the 0-successor v0 and the 1-successor v1, respectively. A BDD
contains exactly two nodes with outdegree 0, the sinks s0 and s1. Each inner node
v is assigned a label v.label ∈ Xn, whereas the two sinks are labeled s0.label = 0
and s1.label = 1. There is exacly one node with indegree 0, the root of the BDD.
We define the size of a BDD to be the number of nodes in G, i.e., |G| := |V |. Each
node v ∈ V represents a Boolean Function fv ∈ Bn = {f |f : {0, 1}n → {0, 1}} in
the following manner: For an input a = (a1, . . . , an) ∈ {0, 1}n, the computation
of fv(a) starts in v. In a node with label xi, the outgoing edge with label ai is
chosen, until one of the sinks is reached. The value fv(a) is then given by the
label of this sink.

Definition 7. For a BDD G over Xn, let G−1(1) ⊆ {0, 1}n denote the set of
inputs accepted by G, i.e., all inputs a ∈ {0, 1}n such that froot(v) = 1.

Definition 8. An oracle graph G0 = (V, E) over a set of variables Xn =
{x1, . . . , xn} is a modified BDD that contains only one sink s, labeled ∗, and
for all xi ∈ Xn and all paths P from the root in G to the sink, there exists at
most one node in P that is labeled xi.

Definition 9. A Free Binary Decision Diagram with respect to an oracle graph
G0 (a G0-FBDD for short) over a set of variables Xn = {x1, . . . , xn} is a BDD
in which the following property holds for all inputs a ∈ {0, 1}n. Let the list G0(a)
contain the variables from Xn in the order in which they are tested on the path
defined by a in G0. Similarly, let the list G(a) contain the variables from Xn

in the order of testing in G. If xi and xj are both contained in G(a), then they
occur in G(a) in the same order as in G0(a). We call a BDD G an FBDD, if
there exists an oracle graph G0 such that G is a G0-FBDD.

Figure 1 shows examples for an oracle graph G0 and a G0-FBDD.

Fig. 1. An oracle graph G0 over {z0, . . . , z3} and a G0-FBDD

Definition 10. An FBDD G is called Ordered Binary Decision Diagram (OBDD)
if there exists an oracle graph G0 such that G is a G0-FBDD and G0 is degen-
erated into a linear list.

FBDDs possess several algorithmic properties that will prove useful in our
context. Let G0 denote an oracle graph over Xn = {x1, . . . , xn} and let the
G0-FBDDs Gf , Gg and Gh represent Boolean functions f, g, h : {0, 1}n →
{0, 1}. Then, there exists an algorithm MIN that computes in time O(|Gf |) the
(uniquely determined) minimal G0-FBDD G of size |G| ≤ n · |G−1

f (1)| that repre-
sents f . In time O(|G0|·|Gf |·|Gg |·|Gh|), we can compute a minimal G0-FBDD G
with |G| ≤ |G0| · |Gf | · |Gg | · |Gh| that represents the function f ∧g∧h. Addition-

ally, it is possible to enumerate all elementes in G−1
f (1) in time O

(

n · |G−1
f (1)|

)

.

We refer the reader to [18] for details on the corresponding algorithms.

2.3 BDD-based Attack

The original BDD-based attack in [10], which we are going to describe in this
section, assumes a known-plaintext scenario, i.e., the attacker manages to obtain
a few plaintext-ciphertext pairs (p1, c1), . . . , (pt, ct) ∈ {0, 1}2. Since the ci were
computed as ci = pi ⊕ yi based on the output y0, . . . , yt ∈ {0, 1} of an LFSR-
based keystream generator K = (L, C), he can compute the first t keybits as
yi = pi⊕ci. From this prefix of the keystream, he wants to reconstruct the secret
initial state x of L.

We observe that for any internal bitstream z ∈ {0, 1}m that yields a prefix
of the observed keystream-piece y, the following conditions must hold.

Condition 1. z is an m-extension of the key bits in z, i.e., L≤m(KB(z)) = z.

Condition 2. C(z) is a prefix of y.

We call any z of length m that satisfies these conditions an m-candidate. The idea
is now to start with m = nmin and to dynamically compute the m-candidates
for m > nmin, until only one m-candidate is left. The smallest m for which this
will be most likely the case follows directly from the following Lemma.

Lemma 1. Under Assumption 2, it holds for all keystreams y and all m ≤
dα−1ne that |{x ∈ {0, 1}n : C(L≤m(x)) is prefix of y}| ≈ 2n∗−αm ≤ 2n−αm,
where n∗ = |KP (m)|. Hence, there exist approximately 2n−αm m-candidates.

Lemma 1 implies that there will be only one m-candidate for m ≥ dα−1ne. The
key bits in this m-candidate form the secret initial state that the attacker is
looking for.

In order to compute and represent the intermediate m-candidates efficiently,
we use the following BDD-based approach. For m ≥ 1, let GC

m denote the
oracle graph over {z0, . . . , zm−1} that determines for each internal bitstream
z = (z′0, . . . , z

′
m−1) ∈ {0, 1}m the order in which the bits of z are read by the

compression function C. Bitstreams z fulfilling conditions 1 and 2 will be rep-
resented in the minimal GC

m-FBDDs Rm and Qy
m, respectively. Then, the GC

m-
FBDD P y

m = MIN(Qy
m ∧ Rm) accepts exactly the m-candidates.

The cost of this strategy essentially depends on the sizes of the intermediate
results P y

m, which can be determined as follows.

Assumption 3 (FBDD Assumption). For all m ≥ nmin, it holds that |GC
m| ∈

mO(1), |Qm| ∈ mO(1), and |Rm| ≤ |GC
m|2m−n∗

.

Lemma 2. If K fulfills Assumption 3, then

|P y
m| ≤ max

1≤m≤dα−1ne

{

min
{

p(m) · 2m−n∗

, m · 2n∗−αm
}}

≤ p(m) · 2r∗(m) ,

where p(m) = |GC
m|2 · |Qy

m| and r∗(m) = 1−α
1+α

n∗.

From this bound on |P y
m|, one can straightforwardly derive the time, space

and data requirements of the BDD-based attack.

Theorem 1. Let K = (L, C) be an LFSR-based keystream generator with initial
state x ∈ {0, 1}n, information ratio α and best-case compression ratio γ. If K
fulfills the Independence Assumption, the Pseudorandomness Assumption and
the FBDD Assumption, an initial state x̃ with C(L(x̃)) = y for a given keystream

y = C(L(x)) can be computed in time and with space nO(1)2
1−α

1+α
n from the first

dγα−1ne consecutive bits of y.

3 Applications

We now survey the impact of the basic BDD-attack on the self-shrinking gener-
ator, the E0 generator, and the A5/1 generator and compare it to other attacks
on these ciphers.

The self-shrinking generator was introduced by Meier and Staffelbach [14]. It
consists of only one LFSR and no memory. [10] showed that for the self-shrinking
Generator, we have α ≈ 0.2075 and γ = 0.5 as well as |Qm| ≤ m2 for m ≥ 1.

Corollary 1. From a prefix of length d2.41ne of a keystream y = C(L(x))
produced by a self-shrinking generator of keylength n, an initial state x̃ with
C(L(x̃)) = y can be computed in time and with space nO(1)20.6563n.

This is the best short-keystream attack on the self-shrinking generator known
so far. It slightly improves the bounds of 20.75n and 20.694n that were obtained
in [14] and [19], respectively. The long-keystream attack in [15] needs at least
20.3n keystream bits in order to compute the initial state in less than 20.6563n

polynomial-time operations.
The E0 keystream generator from the short-range wireless communication

standard Bluetooth [4] is a regular (4, 4)-combiner with key length 128; its LFSRs
have lengths 39, 33, 31, 25. Therefore, we have α = γ = 1

4 , and [10] showed that
|Qm| ≤ 32m. Hence, we obtain from Theorem 1:

Corollary 2. From a prefix of length n of a keystream y = C(L(x)) produced by
an E0 keystream generator of keylength n, an initial state x̃ with C(L(x̃)) = y
can be computed in time and with space nO(1)20.6n = nO(1)276.8 for n = 128.

The attack on E0 by Fluhrer and Lucks [8] trades off time and necessary
keystream bits. For the minimum number of 132 available keystream bits the
attack needs 284 polynomial time operations. The best currently known long-
keystream attacks against E0 are algebraic attacks [1] and correlation attacks
[12, 11]. These attacks all need a large amount of keystream (228 to 239 in the
case of correlation attacks), and even in terms of time and memory requirements,
[11] is the only feasible attack among them.

The A5/1 generator is used in the GSM standard for mobile telephones.
According to [5], who obtained its design by reverse engineering, the generator
consists of 3 LFSRs R0, R1, R2 of lengths n0, n1, n2, respectively, and a clock
control ensuring that the keybits do not linearly depend on the initial states of
the LFSRs. For each r ∈ {0, 1, 2}, a register cell qNr , Nr ∈ {dnr

2 e − 1, dnr

2 e}, is
selected in LFSR Rr as input for the clock control. The GSM standard uses the
parameters (n0, n1, n2) = (19, 22, 23) and (N0, N1, N2) = (11, 12, 13).

In order to write the generator in a K = (L, C) fashion, we simulate its
linear bitstream generator by six LFSRs L0, . . . , L5. L0, L1, and L2 are used
exclusively for producing the keybits and correspond to R0, R1 and R2 in the
original generator, and the control values are computed from the outputs of L3,
L4 and L5, which correspond to L0, L1 and L2 shifted by N0, N1 and N2.

In [10], it was shown that in the case of A5/1, α = 0.2193 and γ = 1
4 as well

as |GC
m| ∈ O(m3) and |Qm| ∈ O(m4). Plugging these values into the statement

of Theorem 1 yields

Corollary 3. From a prefix of length d1.14ne of a keystream y = C(L(x)) pro-
duced by an A5/1 keystream generator of keylength n, an initial state x̃ with
C(L(x̃)) = y can be computed in time and with space nO(1)20.6403n = nO(1)241

for n = 64.

We note that since d1.14ne = 73 and the framelength in GSM is 114 Bits for
each direction, we only need the first frame, i.e., the first around 4.6 milliseconds
of a conversation in order to reconstruct the initial state.

The first short-keystream attack on A5/1 was given by Golić in [9] and needs
242 polynomial time operations. Afterwards, several long-keystream attacks on
A5/1 were proposed. [3] presents an attack that breaks A5/1 from 215 known

keystream bits within minutes after a preprocessing step of 248 operations. Due
to exploits of the linearity of the initialization procedure, the attack described
in [7] and its refinement in [13] manage to break the cipher within minutes,
requiring only few seconds of conversation and little computational resources.

4 Divide-and-Conquer Strategies

One obvious disadvantage of BDD-based attacks is the high memory consump-
tion that is essentially determined by the size of the intermediate results P y

m.
For an LFSR-based keystream generator with keylength n, one possible ap-
proach to this problem is to divide the search space, more precisely the set
Bn = {0, 1}n of possible initial states of L, into segments and to apply BDD-
based attacks to the segments individually. We denote a segmentation of Bn by
the pair (f, T), where T is the finite set of segment labels and f : {0, 1}∗ → T a
partial function that assigns a segment to each possible internal bitstream. For
a given keystream y and each t ∈ T , we perform a BDD-based search on the set
Bt

n = {x ∈ Bn|f(L(x)) = t} in order to find an initial state x̃ ∈ Bt
n such that

C(L(x̃)) = y.

Similarly to the general attack described in the previous section, we denote
by Qy,t

m the minimal GC
0 -FBDD that decides whether C(z) = y and f(z) = t,

and by Rt
m the minimal GC

m-FBDD that accepts for f(z) = t exactly those
internal bitstreams z that are m-extensions of KB(z). Moreover, let St

m be the
minimal GC

m-FBDD that decides for f(z) = t whether zm−1 = Lm−1(KB(z))
and define P y,t

m := MIN(Qy,t
m ∧Rt

m). We can then apply the same algorithm for
dynamically computing P y,t

nmin
, P y,t

nmin+1, . . . as in the original case. Consequently,

we obtain nO(1)2w∗

as time and space requirements for the BDD-based search
on Bt

n, with w∗ computed analogously to r∗ in Lemma 2. For the overall attack,
i.e., performing the BDD-based search on Bt

n for all t ∈ T , we get a memory
consumption in the order of nO(1)2w∗

and a runtime of nO(1) · |T | · 2w∗

if the
attacks are executed sequentially. Since the Bt

n are disjoint, the overall attack is
efficiently parallelizable, and the |T | factor can be further reduced.

We note that in general, we will only gain from a divide-and-conquer strategy
(DCS) if |T | is not too large and w∗ ≤ r∗. For the latter to be the case, the |Qy,t

m |
have to be negligibly small and |Rt

m| must be significantly smaller than |Rm|.

We consider now DCS that define a subset V ⊆ KP (nmax) of the initial state
bits of L to be constant. We call a position m ≥ 1 a V -determined position if
m ∈ V or if its domain D(m) is a subset of V . For an internal bitstream z, let
t ∈ {0, 1}|V | denote the values of z at the positions in V . Then, the segmentation
of Bn is given by (fV , T (V)), where fV (z) = t and T (V) = {0, 1}|V |.

The FBDDs Qy,t
m can be obtained from Qy

m by setting constant the vari-
ables that correspond to the V -determined positions. Hence, |Qy,t

m | ≤ |Qy
m|.

Moreover, since the test whether zm−1 = Lm−1(KB(z)) can be omitted for the
V -determined positions, we have |Rt

m| ≤ |GC
m|2r(m,V), where r(m, V) denotes

the number of non-V -determined positions in {nmin + 1, . . . , m}. Note that the

original attack corresponds to the case V = � and therefore r(m, V) ≤ m − n∗,
hence |Rt

m| ≤ |Rm|.

4.1 DCS for Regular (k, l)-Combiners

We consider two examples that are applicable to regular (k, l)-combiners like the
E0 keystream generator.

First, we define V to contain exactly the positions of the first s output bits
of each LFSR. In the worst case, there are no V -determined positions besides
the positions in V . We only need to consider the assignments to the positions in
V that are consistent with y. By Lemma 1, we have |T (V)| ≈ |{0, 1}(1−α)ks| =
2(k−1)s. For t ∈ T (V), the effort of a BDD-based search of the corresponding seg-
ment is equivalent to the effort for the original BDD-attack on a (k, l)-combiner
of keylength (n− ks), i.e., w∗ = k−1

k+1 (n− ks). For the overall runtime, we obtain

nO(1) · 2(k−1)s+ k−1

k+1
(n−ks) ∈ nO(1)2

k−1

k+1
n+ k−1

k+1
s ,

which is by a factor of 2
k−1

k+1
s worse than the original attack . On the other hand,

the required memory is reduced by a factor of 2
k−1

k+1
ks.

As a second example, we choose as V the set of all key positions that belong
to the shortest LFSR in L, which we assume w.l.o.g. to be the LFSR L0. Let
n0 ≤ n

k
be the length of L0. Then, T (V) = {0, 1}n0 is the set of all possible

initial states of L0. Since every k-th position of an internal bitstream z is V -
determined, w∗ corresponds to the performance of the original BDD-attack on
a (k − 1, l) combiner of keylength n− n0, i.e., w∗ = k−2

k
(n− n0). For the overall

runtime, we obtain 2n0+
k−2

k
(n−n0). It is easy to see that for n0 ≤ n

k+1 , we have

n0 +
k − 2

k
(n − n0) ≤

k − 1

k + 1
n ,

i.e., for sufficiently small n0, we even obtain a runtime improvement in addition
to the significantly reduced space requirements. In the case of the original E0,
we have n0 = 25 ≤ 25.6 = 128

4+1 . Hence, we obtain

Lemma 3. For the E0 keystream generator with keylength n = 128, choosing V
to be the set of all key positions that belong to the shortest LFSR yields a runtime
of the BDD-based attack of nO(1)225+ 1

2
103 = 276.5 and a memory consumption

of 251.5.

Compared to the original BDD-attack, we have improved the memory consump-
tion by a factor of about 225 and the runtime by a factor of 20.3.

4.2 DCS for the A5/1 Generator

In the following, we compute the information rate of the A5/1 generator with
respect to a family of choices for the set V , particularly those defined by setting

one or several LFSRs or half-LFSRs to be constant. As stated in Sect. 3, in
the unmodified definition of the A5/1 generator, each of the three LFSRs is
divided into two, approximately equally long halfs, a value-half consisting of the
output cell and the cells between output and clock-control cell and a control
half consisting of the clock-control cell and the rest of the register. Since the
value-LFSRs and the control-LFSRs in the modified setting correspond to the
value-halfs and the control-halfs in the unmodified case, setting constant LFSRs
or half-LFSRs in the original definition is equivalent to fixing the corresponding
LFSRs in the modified case.

For all natural i ≥ 1, let us denote by Yi and Zi the random variables
corresponding to the i-th output bit and the number of internal bits processed
for the production of the i-th output bit, respectively, taken over the probability
space of all random internal bitstreams. In all cases, Yi and Zi will fulfill the
following conditions.

– For all i > 1, Zi is independent of Z1, . . . , Zi−1, and Yi is independent of
Y1, . . . , Yi−1.

– It holds that Pr[Yi = 0] = Pr[Yi = 1] = 1
2 .

– There are natural numbers a > b > c and probabilities p, q and r = 1−p−q
such that Pr[Zi = a] = p, Pr[Zi = b] = q, and Pr[Zi = c] = r.

Let us denote the situation that Yi and Zi fulfill the above conditions as case
[(p, a), (q, b), (r, c)]. It can be easily checked that the unrestricted A5/1 generator
corresponds to case [(1/4, 6), (3/4, 4), (0, 0)]. We will see below that all generators
derived from the A5/1 generator by setting constant one or more of the six
LFSRs correspond to [(p, a), (q, b), (r, c)] for some p, q, r, a, b, c. In these cases, we
can compute the information rate α with the help of the following Theorem.

Theorem 2. In the case [(p, a), (q, b), (r, c)], the information rate equals α, where
t = 2α is the unique positive real solution of pta + qtb + rtc − 2 = 0.

A proof for Theorem 2 can be found in Appendix A. Note that for the special
case [(1, k), 0, 0] the information rate is 1/k.

In the following, we compute the information rates for restrictions of type
(v1v2v3|c1c2c3) ∈ {0, 1}6, which means that those value-substreams i for which
vi = 1 and control-substreams j for which cj = 1 are set constant. Note that
the unrestricted case corresponds to (000|000). We do not consider the case of 5
constant internal substreams as computing the remaining unknown half-LFSR
from a given keystream can be done in linear time.

For symmerty reasons, the number of remaining cases resulting from setting
constant 1,2,3,4 substreams can be reduced. Firstly, it is easy to see that for all
permutations π of {1, 2, 3} it holds that restriction (v1v2v3|c1c2c3) is equivalent
to restiction (vπ(1), vπ(2)vπ(3)|cπ(1)cπ(2)cπ(3)). Furthermore, observe that with re-
spect to restriction (v|c), v, c ∈ {0, 1}3, the number of internal bits Z(u, V, C)
processed for the production of the next output bit assuming the current values
in the control-substreams are u ∈ {0, 1}3 equals

Z(u, v, c) =
∑

i,ci=0

fi(u) +
∑

i,vi=0

fi(u) , (1)

where for i ∈ {1, 2, 3} the Boolean function fi : {0, 1}3 → {0, 1} is defined to
output 1 on u iff the i-th LFSR will be clocked w.r.t. u, i.e.,

fi(u) = (ui ⊕ u
i+1 mod 3 ⊕ 1) ∨ (ui ⊕ u

i+2 mod 3 ⊕ 1) .

Relation (1) implies that for all v, c, u ∈ {0, 1}3 and i ∈ {1, 2, 3}, it holds that
Z(u, v, c) = Z(u, v′, c′), where v′, c′ are obtained from v, c by exchanging the
i-th component. Hence, restriction (v|c) is equivalent to restriction (v′|c′). It
follows that the relevant cases are the restrictions (000|100), (100|100), (100|010),
(100|110), (000|111), (100|111) and (110|110).

The information rates for these cases are summarized in Table 1. The com-
putation of the values can be found in Appendix B.

Table 1. Information rates α

log |T | restriction α w∗

2
3
n (100|111) 0.6430 0.2173n

(110|110) 0.6113 0.2412n
1
2
n (000|111) 0.4386 0.3902n

(100|110) 0.4261 0.4024n
1
3
n (000|110) 0.3271 0.507n

(100|100) 0.3215 0.5134n
1
6
n (000|100) 0.2622 0.584n

0 (000|000) 0.2193 0.6403n

5 Experimental Results

In order to provide a fast implementation of the FBDD algorithms, an FBDD-
library was developed based on the publicly available OBDD package CUDD
(see [17]). The experiments were conducted on a standard Linux PC with a 2.7
GHz Intel Xeon processor and 4 GB of RAM. All implementation was done in
C using the gcc-compiler version 3.3.5.

Since the runtime of the cryptanalysis fundamentally depends on the maxi-
mum size of the intermediate FBDDs P y

m, we investigate how much experimen-
tally obtained values of |P y

m| deviate from the theoretical figures.
We first consider the basic BDD-based attack. For the self-shrinking gener-

ator, the E0 generator and the A5/1 generator, we analyzed several thousands
of reduced instances with random primitive feedback polynomials and random
initial states for various keylengths. For each considered random generator, we
computed the actual maximum BDD-size of the intermediate results

Pmax(n) = max
1≤m≤dα−1ne

{|P y
m|} ,

the theoretical upper bound

P t
max(n) = max

1≤m≤dα−1ne

{

min
{

p(m) · 2m−n∗

, m · 2n∗−αm
}}

that was obtained in Lemma 2, as well as the quotient q(n) = log(Pmax(n))
log(P t

max(n)) .

Similarly, we tested for E0 and A5/1 the divide-and-conquer strategy of
setting constant the shortest LFSR (s1), and we considered fixing the first
s = n0

2 ≤ n
8 bits of each of the four LFSRs in E0 (s2), where n0 denotes

the length of the shortest LFSR. Since the q-values did not noticeably decrease
with increasing n in all our simulations, we estimate the attack’s performance in
dependence of n by multiplying the theoretical figures by 2q(n). Particularly, we
can obtain conjectures about the attack’s performance on real-life instances of
E0 and A5/1 by replacing n with the actual keylengths. Table 2 shows the results
of these computations along with details about the conducted experiments.

On average, the attack based on DCS s1 took 87 minutes for E0 with n = 37
and 54 minutes for A5/1 with n = 30. The longest keylengths that we were
able to tackle with the resources described at the beginning of this section were
n = 46 for E0 and n = 37 for A5/1. These attacks used up almost all of the
available memory and took 60.5 and 25.1 hours to complete on average.

Table 2. Performance of the BDD-based attack in practice

generator DCS keylength avg no. of estimated practical performance
interval q(n) samples Time Space

E0 − [19, 37] 0.85 2000 20.51n 265.28 20.51n 265.28

E0 s1 [19, 37] 0.95 2700 20.475(n+n0) 272.68 20.475(n−n0) 248.93

E0 s2 [19, 37] 0.9 2700 20.54n+0.27n0 275.87 20.54n−1.08n0 242.12

A5/1 − [15, 30] 0.9 3000 20.5763n 236.88 20.5763n 236.88

A5/1 s1 [19, 37] 0.77 2400 20.3953n+0.77n0 239.93 20.3953n 225.30

SSG − [10, 35] 0.8 3300 20.525n 20.525n

6 Conclusion

In this paper, we have presented the first comprehensive experimental results
for the BDD-based attack on the self-shrinking generator, the E0 and the A5/1.
Our analysis shows that the performance of the BDD-attack on these generators
in practice will not substantially drop below the theoretical upper bounds. We
introduced divide-and-conquer strategies based on setting constant several initial
state bits of the LFSRs and confirmed experimentally that in this way, the
memory consumption of the attack may be reduced at the expense of slightly
increasing the runtime. We have only applied a few examples of DCS to the E0

and the A5/1 generator. In [16], an additional DCS for E0 is reported which
lowers the memory requirements to about 223 while increasing the runtime to
O(283). It is an interesting open question if there exist more efficient strategies
that are able to simultaneously reduce the runtime by a significant amount.

7 Acknowledgement

We would like to thank Frederik Armknecht for valuable comments and discus-
sions.

References

1. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In
Proc. of CYPTO 2003, volume 2729 of LNCS, pages 162–176. Springer, 2003.

2. F. Armknecht, M. Krause, and D. Stegemann. Design principles for combiners with
memory. In Proc. of INDOCRYPT 2005, volume 3797 of LNCS, pages 104–117.
Springer, 2005.

3. A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis of A5/1 on a
PC. In Proc. of Fast Software Encryption 2000, volume 1978 of LNCS, pages 1–13.
Springer, 2000.

4. The Bluetooth SIG. Specification of the Bluetooth System, February 2001.
5. M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of A5/1,

May 1999. http://jya.com/a51-pi.htm.
6. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In

Proc. of CRYPTO 2003, LNCS, pages 177–194. Springer, 2003.
7. P. Ekdahl and T. Johansson. Another attack on A5/1. In Proc. of International

Symposium on Information Theory, page 160. IEEE, 2001.
8. S. R. Fluhrer and S. Lucks. Analysis of the E0 encryption system. In Proc. of SAC

2001, volume 2259 of LNCS, pages 38–48. Springer, 2001.
9. J. Golić. Cryptanalysis of alleged A5 stream cipher. In Proc. of EUROCRYPT

1997, volume 1233 of LNCS, pages 239–255. Springer, 1997.
10. M. Krause. BDD-based cryptanalysis of keystream generators. In Proc. of EURO-

CRYPT 2002, volume 2332 of LNCS, pages 222–237. Springer, 2002.
11. Y. Lu, W. Meier, and S. Vaudenay. The conditional correlation attack: A practical

attack on bluetooth encryption. In Proc. of CRYPTO 2005, volume 3621 of LNCS,
pages 97–117. Springer, 2005.

12. Y. Lu and S. Vaudenay. Cryptanalysis of the bluetooth keystream generator two-
level E0. In Proc. of ASIACRYPT 2004, volume 3329 of LNCS, pages 483–499.
Springer, 2004.

13. A. Maximov, T. Johansson, and S. Babbage. An improved correlation attack on
A5/1. In Proc. of SAC 2004, volume 3357 of LNCS, pages 1–18. Springer, 2004.

14. W. Meier and O. Staffelbach. The self-shrinking generator. In Proc. of EURO-
CRYPT 1994, volume 950 of LNCS, pages 205–214. Springer, 1994.

15. M. J. Mihaljević. A faster cryptanalysis of the self-shrinking generator. In Proc.
of ACISP 1996, volume 1172 of LNCS, pages 192–189. Springer, 1996.

16. Y. Shaked and A. Wool. Cryptanalysis of the bluetooth e0 cipher us-
ing obdds. Technical report, Cryptology ePrint Archive, Report 2006/072.
http://eprint.iacr.org/2006/072.

17. F. Somenzi. CUDD: CU decision diagram package. University of Colorado, Boul-
der, CO, USA, March 2001. http://vlsi.colorado.edu/∼fabio/.

18. I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. SIAM Monographs on Discrete Mathematics and Applications, 2000.

19. E. Zenner, M. Krause, and S. Lucks. Improved cryptanalysis of the self-shrinking
generator. In Proc. of ACISP 2001, volume 2119 of LNCS, pages 21–35. Springer,
2001.

A Proof of Theorem 2

In order to prove Theorem 2, we need the following technical result that was
proved in [10].

Lemma 4. For all natural N ≥ 1, probabilities p ∈ (0, 1) and real β > 0 it holds

that
∑N

i=0

(

N
i

)

pi(1 − p)N−i2βi =
(

1 − p + p2β
)N

.

Since we can obtain the information rate α from α = − 1
m

log2 pC(m), we
now compute the probability pC(m) = Probz [C(z) is prefix of y] for the cases
that parts of the LFSRs are set constant.

Case [(p, a), (q, b), (r, c)] implies that on all random internal bitstreams of
length m, m divisible by a, at least m/a output bits are produced. The number
of internal bits remaining from m internal bits after the production of m/a
output bits can be computed as

m − aU − bV − c
(m

a
− U − V

)

=
a − c

a
m − (a − c)U − (b − c)V ,

where U and V denote the number of output bits among the first m/a output bits
for which a, resp. b internal bits are processed. Note that U is (p, m/a)-binomially
distributed and that V , under the condition that U = i, is (q/(q + r), m/a − i)-
binomially distributed. We obtain the following relation for pC(m).

pC(m) = 2−
m

a

m

a
∑

i=0

m

a
−i

∑

j=0

Pr[U = i, V = j]p

(

a − c

a
m − (a − c)i − (b − c)j

)

,i.e.,

2−αm = 2−
m

a

m

a
∑

i=0

(

m
a

i

)

pi(1 − p)
m

a
−i

m

a
−i

∑

j=0

(

m
a
− i

j

) (

q

q + r

)j (

r

q + r

)
m

a
−i−j

· 2−α(a−c

a
m−(a−c)i−(b−c)j) ,i.e.,

2(1−aα+(a−c)α) m

a =

m

a
∑

i=0

(

m
a

i

)

pi(1 − p)
m

a
−i · 2(a−c)αi

m

a
−i

∑

j=0

(

m
a
− i

j

) (

q

1 − p

)j (

r

1 − p

)
m

a
−i−j

· 2(b−c)αj .

Now, we apply Lemma 4 to the inner sum and obtain

2(1−nα) m

a =

m

a
∑

i=0

(

m
a

i

)

pi(1 − p)
m

a
−i · 2(a−c)αi ·

(

r

1 − p
+

q

1 − p
2(b−c)α

)
m

a
−i

.

Setting s = r
1−p

+ q
1−p

2(b−c)α, we get

(

2

s2cα

)
m

a

=

m

a
∑

i=0

(

m
a

i

)

pi(1−p)
m

a
−i·2((a−c)α−log(s))i =

(

1 − p + p2(a−c)α−log(s)
)

m

a

.

Consequently, setting t = 2α, we obtain

2

stc
= 1 − p + p

ta−c

s
⇔ 2 = (1 − p)stc + pta.

s = r
1−p

+ q
1−p

tb−c implies 2 = rtc + qtb + pta, which yields the Theorem.

B Computation of α for the considered DCS for A5/1

In order to compute the remaining α values, we only need to compute the cor-
responding cases of the form [(p, a), (q, b), (r, c)] for the given restrictions on the
LFSRs.

We first consider the restriction (100|100). If the actual content of the output
cells of the two non-constant control substreams is 00 or 11, then 4 internal
bits will be processed, otherwise 2 internal bits will be processed. Hence, the
corresponding case is [(1/2, 4), (1/2, 2), 0] and therefore α ≈ 0.3215.

Under restriction (100|010), 4 internal bits will be processed if the actual
content of the output cell of the constant control substream is b ∈ {0, 1} and
the actual content of the two non-constant control substreams is bb. If it is bb̄
then 2, and in all remaining cases 3 internal bits will be processed. Therefore,
the corresponding case is [(1/4, 4), (1/2, 3), (1/4, 2)] and α ≈ 0.3271.

If we assume restriction (110|110), 2 internal bits will be processed if the
assignments to the output cells of the constant control substreams is 01 or 10 or
if all 3 output cells of the control-substreams coincide. If the assignment to the
output cells of the constant control substreams is bb for some b ∈ {0, 1} and the
random assignment to the remaining control is output cell is ¬b, then the next
output bit depends only on the constant assignments, and no internal bit will be
processed. This implies that, in contrast to the above cases, pC(m) and α are not
independent of the constant substreams and the given keystream. Therefore, we
compute only the average information rate over all possible assignments to the
constant control and output substreams. According to the above observation,
the probability that 2 internal bits are processed for the next output bit is 3/4,
and the probability that 0 internal bits are processed for the next ouput bit is
1/4. In total, we obtain [(3/4, 4), (1/4, 0), 0] and therefore α ≈ 0.6113.

We can handle the remaining cases with similar arguments.

