New Blockcipher Modes of Operation with
Beyond the Birthday Bound Security

Tetsu Iwata

Dept. of Computer and Information Sciences,
Ibaraki University
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
iwata@cis.ibaraki.ac.jp
http://crypt.cis.ibaraki.ac.jp/

Abstract. In this paper, we define and analyze a new blockcipher mode
of operation for encryption, CENC, which stands for Cipher-based EN-
Cryption. CENC has the following advantages: (1) beyond the birth-
day bound security, (2) security proofs with the standard PRP assump-
tion, (3) highly efficient, (4) single blockcipher key, (5) fully paralleliz-
able, (6) allows precomputation of keystream, and (7) allows random
access. CENC is based on the new construction of “from PRPs to PRF
conversion,” which is of independent interest. Based on CENC and a
universal hash-based MAC (Wegman-Carter MAC), we also define a
new authenticated-encryption with associated-data scheme, CHM, which
stands for CENC with Hash-based MAC. The security of CHM is also
beyond the birthday bound.

1 Introduction

A blockcipher mode of operation, or a mode for short, is an algorithm that pro-
vides security goals, such as privacy and/or authenticity, based on blockciphers.
The mode for privacy is called an encryption mode.

Of many encryption modes, counter (CTR) mode has a number of desirable
advantages, and it works as follows. Let E be a blockcipher whose block length
is n bits, and let ctr be an n-bit counter. For a plaintext M = (Mo, ..., M;_1)
broken into n-bit blocks, let

C; MIEBS“ where S; < E}((Ctr—{—i) for 0 <) Sl— 1,
ctr + ctr + 1.

The ciphertext is C = (Cy,...,C;_1), and S = (Sp,...,S;—1) is the keystream.

Starting from [3], provable security (or reduction-based security) is the stan-
dard security goal for modes. For encryption modes, we consider the strong secu-
rity notion of privacy called “indistinguishability from random strings” from [23],
which provably implies the more standard notions given in [1]. In this strong no-
tion, the adversary is in the adaptive chosen plaintext attack scenario, and the
goal is to distinguish the ciphertext from the random string of the same length
(where ctr is not considered part of the ciphertext).

For CTR mode, Bellare, Desai, Jokipii and Rogaway were the first who pre-
sented the proof of security [1]. The nonce-based treatment of CTR mode was
presented by Rogaway [21]. It was proved that, for any adversary against CTR
mode, the success probability is at most 0.50(0 — 1)/2™ under the assumption
that the blockcipher is a secure pseudorandom permutation (PRP), where o de-
notes the total ciphertext length in blocks that the adversary obtains. This is
the well-known birthday bound.

The above analysis is tight. There is an adversary that meets the security
bound within a constant factor. The adversary simply searches for a collision
in the keystream of o blocks, and guesses the data is the true ciphertext iff
there is no collision. It is easy to show that the success probability is at least
0.30(0 —1)/2™. This implies that, as long as Ex(-) is a permutation, there is no
hope that CTR mode achieves beyond the birthday bound security.

In this paper, we design a new blockcipher mode of operation for encryption.
The goals are: (1) beyond the birthday bound security, (2) security proofs with
the standard PRP assumption, (3) highly efficient, (4) single blockcipher key,
(5) fully parallelizable, (6) allows precomputation of keystream, and (7) allows
random access. The original CTR mode achieves all the above goals except for
the first one, while we improve the security of CTR mode without breaking its
important advantages. As for the security assumption, we do not use the ideal
blockcipher model. For efficiency, the number of blockcipher calls is close to CTR
mode, and we avoid using any heavy operations, e.g., re-keying.

Now in CTR mode, it is known that if Ex(-) is a secure pseudorandom
function (PRF), then for any adversary the success probability 0, well beyond
the birthday bound. Thus the natural approach to achieve beyond the birthday
bound security is to construct a secure PRF from PRPs and use the PRF in CTR
mode, where the security of PRF must be beyond the birthday bound. There
are several such constructions [4, 10, 16, 2]. The first construction, due to Bellare,
Krovetz, and Rogaway is called data-dependent re-keying [4]. It was proved that
the construction achieves beyond the birthday bound security in the ideal block-
cipher model. The truncation construction was analyzed by Hall et. al., and they
also considered the order construction [10]. Lucks [16] and Bellare and Impagri-
azzo [2] independently analyzed the construction Gk (z) = Ex(z]|0)® Ek (z||1),
where € {0,1}"~!. Lucks also considered a more generalized construction
where d blockciphers are xor’ed to output an n-bit block, and a multiple key
version, Gg, i, (v) = Ex, (¢) ® Exk,(z), where x € {0, 1}" [16].

By using these constructions in CTR mode, it is possible to construct en-
cryption modes with beyond the birthday bound. However, there is a significant
restriction in efficiency, and/or it breaks several important advantages of the
original CTR mode. For example, if the construction from [4] is used, we need
the ideal blockcipher model for security proofs and have the efficiency prob-
lem for re-keying. The constructions from [10] are not very efficient and the
truncation construction has relatively small security improvement. If Gk (z) =
Ex(z]|0)® Ex (z||1) is used, 21 blockcipher calls are needed to encrypt I plaintext

blocks. We see that the main reason for inefficiency is that the output size of
these PRFs is one block (or less).

To achieve beyond the birthday bound security, we first show a new “from
PRPs to PRF conversion,” where the output size of the new PRF is larger than
the block size. In particular, our PRF outputs w blocks at a time by using w+ 1
blockcipher calls. The parameter, w, is called a frame width, and one frame is
equivalent to nw bits. The frame width, w, can be any fixed positive integer. We
prove that the adversary’s success probability is at most wo® /22773 + wa /27,
where o is the total number of blocks that the adversary obtains.

Based on the PRF, we show a new encryption mode with beyond the birthday
bound security. The new mode is called CENC, which stands for Cipher-based
ENCryption. CENC calls I + [I/w] blockciphers to encrypt ! plaintext blocks,
and the default value is w = 28, i.e., we need [+ [I/256] blockcipher calls to
encrypt ! plaintext blocks. Notice that, with the AES (n = 128), one frame
corresponds to nw bits, which is 128 x 256 = 4KBytes, and almost all the traffic
on the Internet fits in one frame [8]. This implies we need 4+ 1 blockcipher calls
for these short data, i.e., the cost is one blockcipher call per data compared to
CTR mode. As for the security, with w = 2% and the AES, the security bound
of CENC is 63/2%48 + 5/2'21 where 6 is (roughly) the total number of blocks
that the adversary obtains. The security of CENC is beyond the birthday bound
with the standard PRP assumption. Besides, CENC has desirable advantages
of CTR mode. It uses single blockcipher key, it is fully parallelizable, allows
precomputation of keystream, and random access is possible.

An authenticated-encryption with associated-data scheme, or AEAD scheme,
is a scheme for both privacy and authenticity. It takes a plaintext M and a header
H, and provides privacy for M and authenticity for both M and H. There are
a number of proposals: we have TAPM [13], OCB mode [23], CCM mode [25,
12], EAX mode [7], CWC mode [15], GCM mode [19,20], and CCFB mode
[17]. Based on CENC and a universal hash-based MAC (Wegman-Carter MAC),
we propose a new AEAD scheme called CHM, which stands for CENC with
Hash-based MAC. We show that the security of CHM is beyond the birthday
bound, which is the first example in literature. The scheme is similar to GCM,
achieves higher security with small efficiency loss. It also fixes several undesirable
properties of GCM (for example, GCM is not online in the sense that headers
must be MACed before starting MAC the ciphertext, and the plaintext length
is limited to 64GBytes when used with the AES).

2 Preliminaries

Notation. If z is a string then |z| denotes its length in bits. If and y are two
equal-length strings, then x @y denotes the xor of z and y. If x and y are strings,
then z||y denotes their concatenation. Let x <+ y denote the assignment of y to
x. If X is a set, let z & X denote the process of uniformly selecting at random
an element from X and assigning it to z. For a positive integer n, {0,1}™ is the
set of all strings of n bits. For positive integers n and w, ({0,1}™)* is the set of

all strings of nw bits, and {0,1}* is the set of all strings (including the empty
string). For positive integers n and m such that n < 2™ — 1, [n],, is the m-bit
binary representation of n. For a bit string x and a positive integer n such that
|z| > n, first(n,z) and last(n, z) denote the first n bits of z and the last n bits of
x, respectively. For a positive integer n, 0™ and 1™ denote the n-times repetition
of 0 and 1, respectively.

Blockciphers and function families. The blockcipher (permutation family) is a
function £ : K x {0,1}™ — {0,1}", where, for any K € K, E(K,-) = Ex(-) is a
permutation on {0, 1}". The positive integer n is the block length and an n-bit
string is called a block. If K = {0,1}*, then k is the key length.

The PRP notion for blockciphers was introduced in [18] and later made
concrete in [3]. Let Perm(n) denote the set of all permutations on {0,1}™. This
set can be regarded as a blockcipher by considering that each permutation is
specified by a unique string. P is a random permutation if P ¢ Perm(n). An
adversary is a probabilistic algorithm (a program) with access to one or more
oracles. Let A be an adversary with access to an oracle, either the encryption
oracle Ex (+) or a random permutation oracle P(-), and returns a bit. We say A
is a PRP-adversary for E, and we define

AQvEP(A) & [Pr(K & K2 APFO) = 1) = Pr(P & Perm(n) : AP0 = 1)|.

Similarly, the function family is a function F : IC x {0,1}™ — {0,1}", where,
for any K € K, F(K,:) = Fg() is a function from {0,1}™ to {0,1}". Let
Func(m,n) denote the set of all functions from {0,1}™ to {0,1}™. This set can
be regarded as a function family by considering that each function in Func(m,n)
is specified by a unique string. R is a random function if R & Func(m,n). Let
A be an adversary with access to an oracle, either F(-) or a random function
oracle R(-), and returns a bit. We say A is a PRF-adversary for F, and we define

= Pr(K & K: A" = 1) — Pr(R & Func(m,n) : A%O) =1)].

AdvhT(4)
For an adversary A, A’s running time is denoted by time(A). The running
time is its actual running time (relative to some fixed RAM model of computa-
tion) and its description size (relative to some standard encoding of algorithms).
The details of the big-O notation for the running time reference depend on the
RAM model and the choice of encoding.

The frame, nonce, and counter. The modes described in this paper take a posi-
tive integer w as a parameter, and it is called a frame width. For fixed positive
integer w (say, w = 2%), a w-block string is called a frame. Throughout this
paper, we assume w > 1. A nonce N is a bit string, where for each pair of
key and plaintext, it is used only once. The length of the nonce is denoted by
Chonces and it is at most the block length. We also use an n-bit string called a
counter, ctr. This value is initialized based on the value of the nonce, then it

z||10 z|[11

Fig. 1. Example illustration of F. In this example, w = 3, w =1 + |log, w| = 2, and
F'5 {0,114 x{0,1)"~% = ({0, 1}")* where Fi(2) = (y([0], 1], y[2]). Here = € {0, 1}"2,
y[0] = L& Ex (2||01), y[1] = L& Ex («||10), y[2] = L& Ek(x||11), where L = Ex(z||00).

is incremented after each blockcipher invocations. The function for increment is
denoted by inc(-). It takes an n-bit string = (possibly a counter) and returns the
incremented x. We assume inc(z) = = + 1 mod 2", but other implementations
also work, e.g., with LFSRs if = # 0”. For i > 0, inc’(ctr) means ctr is incre-
mented for ¢ times. Since the value is initialized based on the value of the nonce,
there is no need to maintain this value across the massages.

3 The Basic Tool: A New Pseudorandom Function F

In this section, we define a new function family F'. It takes two parameters, a
blockcipher, and a frame width.

Fix the blockcipher E : {0,1}* x {0,1}* — {0,1}", and the frame width w.
Define w =1 + [log, w], i.e., we need w bits to represent w. Now we define the
function family F : {0,1}* x {0,1}"% — ({0,1}")¥ as Fx (x) = (y[0],...,y[w—
1]), where y[i] = L& Ex (inc"* (2]|[0].)) fori = 0,...,w—1and L = Eg (z||[0].,).
We call L a mask. See Figure 1 for an example.

We have the following information theoretic result on F.

Theorem 1. Let Perm(n) and w be the parameters for F. Let A be a PRF-
adversary for F' making at most q oracle queries. Then

w+1)'¢ ww+1)g
22n+1 2n+1

AdvPi(4) < (

Notice that w is a constant and the security bound of Theorem 1 is “beyond
the birthday bound.” Also, if we set ¢ = qw (i.e., the total number of blocks
that the adversary obtains) and measure the security bound in terms of o, we
have Adv2 ' (4) < wo? /2273 4 wo /2", since 1+ w < 2w.

The following definition is useful in proving Theorem 1.

Definition 1. Let x = (zo,...,%q-1) € ({0,1}"7%)? be an arbitrary (n — w)gq-
bit string. We say that “x is distinct,” if x; # x; for 0 < ¢ < j < ¢ — 1.
Similarly, let Y = (Yo,...,Y,—1) € ({0,1}™)? be an arbitrary nquw-bit string,
where Y; = (yi[0], ..., yi[w —1]) € ({0,1}™")% for 0 < i < g —1. We say that
“Y" is non-zero-distinct,” if there is no equal bit strings in {0™, y;[0], ..., y;[w—1]}
forany i s.t. 0<i<gq-—1.

Note that 0™ is included in the definition for “Y is non-zero-distinct.” Suppose
that Fr(x;) = (v:]0], ..., y;[w—1]). Then we always have y,[j] # 0™, and we also
see that y;[j] # vi[y'] for j # j'. We allow, for example, y;[j] = yu[j'] for i # .
Intuitively, Definition 1 is the set of possible input-output pairs, and for these
pairs the following lemma, which will be used in the proof of Theorem 1, shows
that the distribution is close to uniform. This is the crucial observation for the
security improvement. There are no collisions in “one frame,” but the collision
occurs across the frames.

Lemma 1. Let x = (xg,...,24-1) € ({0,1}"™)? and Y = (Yp,...,Y,_1) €
({0,1}™)? be arbitrarily fized bit strings, where x is distinct and Y is non-zero-
distinct. Then
PE
PR

3 4
¢(w+1)

>1- Tomnt1 (1)

where pp = Pr(P & Perm(n) : Fp(x;) =Yi for 0<i<q—1) and pg =

Pr(R & Func(n —w,nw) : R(x;) =Y; for 0 <i<q—1).

The proof is based on the counting argument.

Proof (of Lemma 1). We first count the number of P € Perm(n) which satisfies
Fp(x;) =Y; for 0 <i < q—1.Let Lg,...,Ls_1 be n-bit variables. Then the
number of Ly, ..., L,_1 which satisfy {L;, L;®y;[0],. .., Li®y:[w—1]}N{L;,L;®
y;[0],... . Lj@y;lw—1]} =0 forany 0 <i < j < g—1lisatleast [[o,, (2" —
i(w+1)?), since there are 2" possibilities for Lg, and once Lo, ..., L;_; are fixed,
we have at least 2" — i(w + 1)? possibilities for L;. If we set L; = P(z;]|[0].),
then it is possible to set P(inc(x;||[0]w)) = Li @ v4[0],. .., P(inc*(z;]|[0].)) =
L; ® y;[w — 1] uniquely. We have fixed ¢(w + 1) input-output pairs of P, and
the remaining 2™ — g(w + 1) entries can be any value. Therefore, the number
of P € Perm(n) which satisfies Fp(x;) = Y; for 0 < ¢ < ¢ — 1 is at least
(2" = q(w + D)) lpcicqr 2" —i(w +1)?).
Then, the left hand side of (1) is at least

(2")7 (2" = q(w + D) locicy—1 (2" —i(w + 1)*)

(2")!
H 1-— 1(11}2#1)2
> . : g :
0<iZe (1 B 1(1;;&-1)) (1 _ l(w-gi)-i-l) (1 B 1(wJ;L)+w)
i(w+1)? i(w+1)? ww+1)
> I (1=t (1t e)
0<i<qg—1

We have used the fact that (1 —a)™! > 1+ a for |a| < 1, and the right hand
side of (1) is given by simplifying (2). O

The proof of Theorem 1 uses Lemma 1, and is given in Appendix A.

4 A Relaxed Version FT

In F, if the input is x, then the mask is always generated with z||[0],. In this
section, we present a slightly relaxed version of F', called F'T, which removes
this restriction. Similarly to F, F'T takes two parameters, a blockcipher E :
{0,1}* x {0,1}™ — {0,1}", and a frame width w.

Now the function family F* : {0,1}* x {0,1}" — ({0,1}")* is defined as
Fi(z) = (y[0],...,y[w—1]), where y[i] = L ® Ex(inc"**(x)) fori =0,...,w—1
and L = Ek (z).

Observe that F'T takes n-bit x as input, and the mask is generated with x.
Also, it is not hard to show that F'* is a good PRF as long as there is no collision
in the input to E.

Let A be an adversary that makes at most g oracle queries and let z; € {0,1}"
denote A’s i-th query. Define X; = {x;,inc(x;),inc*(z),...,inc"(z;)}, i.e., X;
is the set of input to E in the i-th query. We say that A is input-respecting if
XinX; =0 forany 0 < i < j < ¢g— 1, regardless of oracle responses and
regardless of A’s internal coins.

We have the following information theoretic result on F'*.

Corollary 1. Let Perm(n) and w be the parameters for F*. Let A be a PRF-
adversary for F+ making at most q oracle queries, where A is input-respecting.
Then

(w+1)*¢® ww+1)qg

rf
Adv;(4) < 92n+1 ont1

The proof is almost the same as that of Theorem 1, and omitted.

5 CENC: Cipher-based ENCryption

In this section, we propose a new (nonce-based) encryption scheme, CENC. It
takes three parameters, a blockcipher, a nonce length, and a frame width.

Fix the blockcipher E : {0,1}* x {0,1}™ — {0,1}", the nonce length f,once
and the frame width w, where 1 < flonce < n. CENC consists of two algo-
rithms, the encryption algorithm (CENC.Enc) and the decryption algorithm
(CENC.Dec). Both algorithms internally use the keystream generation algorithm
(CENC.KSGen). These algorithms are defined in Figure 2. A picture illustrating
CENC.KSGen is given in Figure 3.

CENC.Enc has the following syntax. CENC.Enc : Key x Nonce x Plaintext —
Ciphertext, where Key is {0, 1}*, Nonce is {0, 1}woscc and Plaintext and Ciphertext
are {M € {0,1}* | |M]| < n2f==x}, ie., the set of bit strings at most lpax
blocks, where (. is the largest integer satisfying (. < w(27 fnonce — 1) /(w +
1). It takes the key K, the nonce N, and the plaintext M to return the ci-
phertext C. We write C < CENC.Encg (N, M). The decryption algorithm
CENC.Dec : Key x Nonce x Ciphertext — Plaintext takes K, N, C to return
M. We write M < CENC.Deck (N, C). For any K, N, and M, we have M +
CENC.D(—)CK (N, CENC.EHCK (N, M))

Algorithm CENC.Encx (N, M) | [Algorithm CENC.KSGeny (ctr,)

100 ctr < (NV]jon fnonce) 300 for j«+ 0 to [I/w] —1 do

101 1« [|M|/n] 301 L + Ex(ctr)

102 S+ CENC.KSGeng (ctr,!)| (302 ctr <+ inc(ctr)

103 C + M @ first(|M], S) 303 for i <~ 0 to w —1 do

104 return C 304 Swjti — Fr(ctr) ® L
305 ctr inc(ctr)

Algorithm CENC.Decg (N, C) 306 if wj+i=1—1 then

200 ctr + (N[|o"nonee) 307 S (SollS1ll -+ 11Si—1)

201 1« [|C/n] 308 return S

202 S + CENC.KSGeng (ctr,!)

203 M «+ C&first(|C], S)

204 return M

Fig. 2. Definition of the encryption algorithm CENC.Enc (left top), the decryp-
tion algorithm CENC.Dec (left bottom), and the keystream generation algorithm
CENC.KSGen (right), which is used in both encryption and decryption.

CENC.Enc and CENC.Dec call CENC.SKGen to generate the keystream of
required length, where the length is in blocks. The encryption (resp. decryption)
is just the xor of the plaintext (resp. ciphertext) and the keystream.

The keystream generation algorithm, CENC.KSGen, takes K, the initial
counter value ctr, and a non-negative integer [. The output is a keystream
S, where the length of S is [blocks. We write S + CENC.KSGengk (ctr,1).

In CENC.KSGen, we first generate an n-bit mask, L. [I/w] is the number
of frames, incomplete frame counts as one frame. We see that [//w] masks are
generated in line 301. For each mask, w blocks of the keystream are generated
in line 304 (except for the last frame, as the last frame may have fewer than
w blocks). If [blocks of keystream are generated in line 306, the resulting S is
returned in line 308. Observe that the blockcipher is invoked for I + [I/w] times,
since we generate [I/w] masks and we have [blocks of keystream, where each
block of keystream requires one blockcipher invocation.

Discussion and default parameters. CENC takes the blockcipher E : {0, 1}* x
{0,1}™ — {0,1}™, the nonce length ¢yonce (1 < lhonce < 1) and the frame width
w, as the parameters. With these parameters, CENC can encrypt at most 2¢nonce
plaintexts, and the maximum length of the plaintext is ¢;,ax blocks. Note that
limax is derived by solving Ciax+ [fmax/w] < 27 feence in (. and in general, the
bound on liay 18 lmax < 27 feenee =1 since [Cpax /W] < lmax. As we will present
in Section 6, the security bound of CENC is (w+1)*63 /w32?" 1 + (w+1)6 /2",
where 6 is (roughly) the total number of blocks processed by one key.

Our default parameters are, F is any blockcipher such that n > 128, ,once =
n/2, and w = 28 = 256. For example, if we use the AES, CENC can en-
crypt at most 2% plaintexts, the maximum length of the plaintext is 2% blocks
(2"GBytes), and the security bound is 2 /2248 +6 /22! (we used (w+1)*/w® <
261 < 27), thus & should be sufficiently smaller that 252 blocks (2°°GBytes).

NHOn%uumo

ctr

Fig. 3. Illustration of the keystream generation algorithm. This example uses w = 3
and outputs [= 7 blocks of keystream S = (So, ..., Se). This S is used in both encryp-
tion and decryption. The mask L is updated after generating w blocks of keystream.
The counter ctr is incremented for [+ [I/w] = 10 times, and there are 10 blockcipher
invocations.

The frame width, w, should be large enough so that we can implement CENC
efficiently. On the other hand, it affects the security bound. We chose w = 28 =
256, which implies 256 blocks of keystream are generated with 257 blockcipher
invocations, thus the cost is about 0.4% compared to CTR mode. We see that
the efficiency loss is very small in both software and hardware. Also, the security
bound is low enough with this value of w. We do not recommend w > 2% (when
n = 128) because of the security loss.

64-bit blockciphers. We do not claim that CENC is generally useful for n = 64,
since there are restrictions on the nonce length (thus the number of plaintexts),
and the plaintext length.

For example, if we use Triple-DES and ({honce, w) = (32,256), CENC can
encrypt at most 23? plaintexts, and the maximum length of the plaintext is 23!
blocks (16GBytes), which may not be enough for general applications (still, it is
comparable to CTR mode). In this case, the security bound is 63/2'20 + 5 /257,
which implies 6 should be sufficiently smaller that 2%° blocks (2!3GBytes).

The limitations of the nonce length and the plaintext length can be removed
if we use a counter (instead of a nonce) that is maintained across the plaintexts.
This “counter version of CENC” is more suitable for 64-bit blockciphers.

6 Security of CENC

CENC is a symmetric encryption scheme. Before showing the security results on
CENC, we first formally define what we mean by symmetric encryption schemes,
and what we mean by such schemes to be secure.

Symmetric encryption schemes. A (nonce-based) symmetric encryption scheme
is a pair of algorithms S€ = (£,D) where £ is a deterministic encryption al-
gorithm £ : Key x Nonce x Plaintext — Ciphertext and D is a deterministic

decryption algorithm D : Key x Nonce x Ciphertext — Plaintext. The key space
Key is a set of keys, and is a nonempty set having a distribution (the uniform
distribution when the set is finite). The nonce space Nonce, the plaintext space
Plaintext, and the ciphertext space Ciphertext are nonempty sets of strings. We
write Ex (N, M) for E(K, N, M) and Dk (N, C) for D(K, N, C). We require that
D (N,Ex(N,M)) = M for all K € Key, N € Nonce and M € Plaintext.

Nonce-respecting adversary. Let A be an adversary with access to an encryp-
tion oracle Ex(+,-). This oracle, on input (N, M), returns C' + Ex (N, M). Let
(No, Mp), ..., (Ngy—1,M,_1) denote its oracle queries. The adversary is said to
be nonce-respecting if Ny, ..., Ng_1 are always distinct, regardless of oracle re-
sponses and regardless of A’s internal coins.

Privacy of symmetric encryption schemes. We adopt the strong notion of pri-
vacy for nonce-based encryption schemes from [23]. This notion, which we call
indistinguishability from random strings, provably implies the more standard
notions given in [1].

Let A be an adversary with access to an oracle, either the encryption oracle
Ex(-,-) or R(-,-), and returns a bit. The R(-,-) oracle, on input (N, M), returns
a random string of length |Ex (N, M)|. We say that A is a PRIV-adversary for
SE. We assume that any PRIV-adversary is nonce-respecting. The advantage of
PRIV-adversary A for S€ = (£, D) having key space Key is

AQVER (A) € |Pr(K & Key : A< = 1) — Pr(AR() = 1)].

Security results on CENC. Let A be a nonce-respecting PRIV-adversary for
CENC, and assume that A makes at most ¢ oracle queries, and the total length
of these queries is at most ¢ blocks, where “the total length of queries” is defined
as follows: if A makes g queries (No, My), ..., (Ny—1, My_1), then the total length
of queries is o = [|Mo|/n] + - - + [|M4-1]/n], i.e, the total number of blocks of
plaintexts. We have the following information theoretic result.

Theorem 2. Let Perm(n), bhonce, and w be the parameters for CENC. Let A be
a nonce-respecting PRIV-adversary for CENC making at most q oracle queries,
and the total length of these queries is at most o blocks. Then

riv (w+1)*6% (w+1)6
Advl()jENC(A) S w322n+1 on+1 ’ (3)

where & = o + qw.

If we use the rough inequality of w+ 1 < 2w, then we have the simpler form,
AdvEE o (A) S ws? 22773 +we /2.

The proof of Theorem 2 is based on the contradiction argument. If there exists
a nonce-respecting PRIV-adversary A such that Advggye(4) is larger than the
right hand side of (3), then we can construct an input-respecting PRF-adversary
B for F* which contradicts Corollary 1. The proof is given in Appendix B.

Given Theorem 2, we have the following complexity theoretic result.

Corollary 2. Let E : {0,1}* x {0,1}* — {0,1}", lnonce, and w be the pa-
rameters for CENC. Let A be a monce-respecting PRIV-adversary for CENC
making at most q oracle queries, and the total length of these queries is at most
o blocks. Then there is a PRP-adversary B for E making at most (w + 1) /w
oracle queries, time(B) = time(A)+O0(néw), and AdvP(B) > AdvPine(4) —
w3 (2273 — w6 /27, where 6 = o + qu.

The proof of Corollary 2 is given in [11].

7 CHM: CENC with Hash-based MAC

In this section, we present a new (nonce-based) authenticated-encryption with
associated-data (AEAD) scheme, CHM. It takes six parameters, a blockcipher,
a nonce length, a tag length, a frame width, and two constants.

Fix the blockcipher E : {0,1}* x {0,1}™ — {0,1}", the nonce length (yonce,
the tag length 7, the frame width w, and two n-bit constants constg and
const;. We require that 1 < lhonce < n, 1 < 7 < n, constg # consty, and
first(1, constg) = first(1, consty) = 1 (the most significant bits of consty and
const; are both 1).

CHM counsists of two algorithms, the encryption algorithm (CHM.Enc) and
the decryption algorithm (CHM.Dec). These algorithms are defined in Figure 4.
Both algorithms use the keystream generation algorithm (CHM.KSGen) and a
hash function (CHM.Hash). CHM.KSGen is equivalent to CENC.KSGen defined
in Figure 2, and the hash function CHM.Hash is defined in Figure 5.

The syntax of the encryption algorithm is CHM.Enc : Key x Nonce x Header x
Plaintext — Ciphertext x Tag, where the key space Key is {0, 1}*, the nonce space
Nonce is {0, 1}%ene and the header space Header is {0, 1}*. The plaintext space
Plaintext and ciphertext space Ciphertext are {M € {0,1}* | |[M| < n2fmex}
where (.5 is the largest integer satisfying (ia, < w (27 fonce=t 1) /(w+1) —1.
The tag space Tag is {0,1}7. It takes the key K, the nonce N, the header
H, and the plaintext M to return the ciphertext C' and the tag T'. We write
(C,T) + CHM.Enck (N, H,M). The decryption algorithm CHM.Dec : Key x
Nonce x Header x Ciphertext x Tag — Plaintext U {reject} takes K, N, H, C' and
T to return M or a special symbol reject. We write M < CHM.Deci (N, H,C,T)
or reject + CHM.Decg (N, H,C,T).

CHM is the natural combination of CENC and a universal hash function-
based MAC (Wegman-Carter MAC). As a universal hash function, we chose the
standard polynomial-based hash, since it is efficient in both software and hard-
ware, and it is well studied. The multiplication is done in the finite field GF(2™)
using a canonical polynomial to represent field elements. The suggested canon-
ical polynomial is the lexicographically first polynomial among the irreducible
polynomials of degree n that have a minimum number of nonzero coefficients.
For n = 128 the indicated polynomial is x'2® + x” +x% +x + 1.

Discussion and default parameters. CHM takes six parameters, the blockcipher
E :{0,1}* x {0,1}® — {0,1}", the nonce length (yonce, the tag length 7, the

Algorithm CHM.Enck (N, H, M) Algorithm CHM.Deck (N, H,C,T)
100 Sp + FEx(constg) 200 Sp + Fx(constg)
101 S; < Ek(consti) 201 S < Ek(comnsti)
102 [+ [|M|/n] 202 1« [|C|/n]
103 ctr < (0| N|jon tnonce =1y 203 ctr < (0||N||on fnonce—1)
104 S + CHM.KSGengk(ctr,l+1)| [204 S + CHM.KSGeng (ctr,l+ 1)
105 S « first(n, S) 205 S « first(n, S)
106 Sz <« last(nl, S) 206 Hashg < CHM.Hashg,(C)
107 C + M & first(| M|, Ss) 207 Hash; + CHM.Hashg, (H)
108 Hasho + CHM.Hashs, (C) 208 T’ « Hashg @ Hash; @ Ss
109 Hash; + CHM.Hashg, (H) 209 T« first(r,T")
110 T + Hashg @ Hash; & S 210 if 7’ # T then return reject
111 T « first(7,T) 211 S3 <+ last(nl, S)
112 return (C,T) 212 M + C &first(|C|, S3)

213 return M

Fig. 4. Definition of the encryption algorithm CHM.Enc (left), and the decryption
algorithm CHM.Dec (right). CHM.KSGen is equivalent to CENC.KSGen in Figure 2,
and CHM.Hash is defined in Figure 5.

Algorithm CHM.Hashg(M)

100 M < M|j1on~ L= (M| medn)
101 1+ |M|/n

102 Hash « 0"

103 for i+ 0tol—1do

104 Hash + (Hash & M;) - S
105 return Hash

Fig. 5. Definition of CHM.Hash : {0,1}" x {0,1}" — {0,1}". M; is the i-th block of
M||1on=t=UMEmedn) 5 6 (My,..., M;_y) = M]||1om~ = (MImed) “Niyltiplication in
line 104 is in GF(2").

frame width w, and two n-bit constants constg and const;. With these parame-
ters, CHM can encrypt at most 2ue plaintext-header pairs, and the maximum
length of the plaintext is {yax blocks (€iax is derived by solving lrax+ 14 [(Cmax+
1)/w] < 27~ fence=Lin ,..). As we will present in Section 8, the security bound
of CHM is (w+1)362 /w?22" =3 + (w+1)*6> /w3221 +1/2" + (w+1)5 /2" for
privacy, and (w+1)36%/w?22" 73 + (w+1)*63 /w32*" 1 +1/2" + (w+1)5 /2" T +
(1+ Hpax + Mmax)/27 for authenticity, where & is (roughly) the total number of
blocks processed by one key, M.« is the maximum block length of plaintexts,
and Hp,x is the maximum block length of headers.

Our default parameters are, E is any blockcipher such that n > 128, ,once =
n/2—1,7> 96, w =28 =256, constg = 1" }||0 and const; = 1™.

With these parameters, if we use the AES, CHM can encrypt at most
plaintexts-header pairs, and the maximum length of the plaintext is 253 blocks
(23"GBytes), and the security bounds are 3/2%12 + 5/2'20 for privacy, and

263

73 /2242 45 /220 + (14 Hopax + Minax) /27 for authenticity. This implies 6 should
be sufficiently smaller that 280 blocks (2°4GBytes), and Hyax and M., should
be small enough so that (1 + Humax + Mmax)/27 is low enough.

8 Security of CHM

CHM is an authenticated-encryption with associated-data (AEAD) scheme. Be-
fore showing the security results on CHM, we first formally define what we mean
by AEAD schemes, and what we mean by such schemes to be secure.

AEAD schemes. A (nonce-based) authenticated-encryption with associated-data
(AEAD) scheme is a pair of algorithms AE = (€, D) where £ is a deterministic
encryption algorithm £ : Key x Nonce x Header x Plaintext — Ciphertext x Tag and
D is a deterministic decryption algorithm D : Key x Nonce x Header x Ciphertext x
Tag — Plaintext U {reject}. The key space Key is a set of keys. The nonce space
Nonce and the header space Header (also called the space of associated data),
the plaintext space Plaintext and the ciphertext space Ciphertext are nonempty
sets of strings. (We note that there is a more general treatment where Ciphertext
and Tag are not separated. See [7]. We separate them for simplicity.) We write
Ex(N,H,M) for E(K,N,H,M) and Dg(N,H,C,T) for D(K,N,H,C,T). We
require that Dy (N, H,Ex (N, H,M)) = M for all K € Key, N € Nonce, H €
Header and M € Plaintext.

Privacy of AEAD schemes. We follow the security notion from [7]. Let A be
an adversary with access to an oracle, either the encryption oracle Ex(-,-,-)
or R(:,-,-), and returns a bit. The R(-,-,-) oracle, on input (N,H, M), re-
turns a random string of length |Ex (N, H,M)|. We say that A is a PRIV-
adversary for AE. We assume that any PRIV-adversary is nonce-respecting (i.e.,
it (No, Ho, My), ..., (Ny—1,Hy—1,My_1) is A’s oracle queries, Ny, ..., N, are
always distinct, regardless of oracle responses and regardless of A’s internal
coins). The advantage of PRIV-adversary A for AEAD scheme A€ = (£,D)
having key space Key is

AV (A) € |Pr(K & Key : AS<C) = 1) - Pr(ARC) = 1))

Authenticity of AEAD schemes. A notion of authenticity of ciphertext for AEAD
schemes was formalized in [23,22] following [14,6,5]. This time, let A be an
adversary with access to an encryption oracle Ek(-,-,-) and returns a tuple,
(N,H,C,T). This tuple is called a forgery attempt. We say that A is an AUTH-
adversary for AE. We assume that any AUTH-adversary is nonce-respecting.
(The condition is understood to apply only to the adversary’s encryption oracle.
Thus a nonce used in an encryption-oracle query may be used in a forgery at-
tempt.) We say A forges if A returns (N, H,C,T) such that Dy (N,H,C,T) #
reject but A did not make a query (N,H,M) to Ek(-,-,-) that resulted in
a response (C,T). That is, adversary A may never return a forgery attempt

(N,H,C,T) such that the encryption oracle previously returned (C,T) in re-
sponse to a query (N, H,M). Then the advantage of AUTH-adversary A for
AEAD scheme A€ = (€, D) having key space Key is

def Pr(K & Key : A%<C) forges).

AdvyER(A)
Privacy results on CHM. Let A be a nonce-respecting PRIV-adversary for CHM,
and assume that A makes at most ¢ oracle queries, and the total plaintext length
of these queries is at most o blocks, where “the total plaintext length of queries”
is defined as follows: if A makes queries (No, Ho, M), ..., (Ng=1,Hq—1, My—1),
then o = [|Mo|/n] + -+ + [|My—1]/n], i-e., the total number of blocks of plain-
texts. We have the following information theoretic result.

Theorem 3. Let Perm(n), lnonce, T, W, consty and consty be the parameters
for CHM. Let A be a nonce-respecting PRIV-adversary making at most q oracle
queries, and the total plaintext length of these queries is at most o blocks. Then

32 4~3 ~
priv (w+1)%5 (w+1)* 1 (w+1)5
AdVCHM(A) < w222n—3 w322n+1 on on+1l (4>

where 6 = o + q(w + 1).

Note that there is no restriction on the header length. If we use w+1 < 2w, we
have the simpler form, AdvPyy (A) < wg? /22776 +ws3 /22773 41 /2" + w5 /2",

The proof of Theorem 3 is given in [11]. From Theorem 3, we have the
following complexity theoretic result.

Corollary 3. Let E : {0,1}* x {0,1}" — {0,1}", luonce, T, w, consty and
consty be the parameters for CHM. Let A be a nonce-respecting PRIV-adversary
making at most q oracle queries, and the total plaintext length of these queries
1s at most o blocks. Then there is a PRP-adversary B for E making at most
(w+ 1) /w oracle queries, time(B) = time(A) + O(néw), and AdvyP(B) >
AdvPiy (A) —wd? /2276 — w3 /2273 —1/2" —wé /27, where 6 = o +q(w+1).

The proof of Corollary 3 is given in [11].

Authenticity results on CHM. Let A be an AUTH-adversary for CHM, and
assume that A makes at most ¢ oracle queries (including the final forgery at-
tempt), the total plaintext length of these queries is at most o blocks, the max-
imum plaintext length of these queries is at most M,,x blocks, and the maxi-
mum header length of these queries is at most Hp.x blocks. Here, if A makes
queries (N, Ho, My), ..., (Ny—2, Hj—2, M,_>), and returns the forgery attempt

(N*, H*,C*,T*), then 0, Myax and Hyax are defined as

o Z[|Mo|/n] + -+ [|Myosl/n] + |C*| /n],

Muax = max{[|Mo|/n],..., [|M,o|/n], [|C*|/n},

Huax = max{[|Ho|/n],..., [|Hy o|/n], [[H*|/n}.
We say A’s query resource is (¢, 0, Miax, Hmax). We have the following informa-
tion theoretic result.

Theorem 4. Let Perm(n), lnonce, T, W, consty and consty be the parameters
for CHM. Let A be a nonce-respecting AUTH-adversary whose query resource is
(Qa a, Mmax7 Hrnax)- Then Advgﬁlﬁ/[(A) s at most

(w+1)36?2 (w+1%* 1 (w+1)6 1+ Hpax + Muax .
w222n—3 w322n+1 on on+1 o7) (5)

where 6 = o + q(w + 1).

If we use w+1 < 2w, we have the simpler form, Advi (4) < wa? /2276 4
w3 [22773 +1/2" + w5 /2™ + (1 + Huax + Mmax)/27.

The proof of Theorem 4 is given in [11]. From Theorem 4, we have the
following complexity theoretic result.

Corollary 4. Let E : {0,1}* x {0,1}" — {0,1}", luonce, T, w, consty, and
consty be the parameters for CHM. Let A be a nonce-respecting AUTH-adversary
whose query resource s (q,0, Mmax, Hmax). Then there is a PRP-adversary B
for E making at most (w+ 1) /w oracle queries, time(B) = time(A) + O(now),
and AdvDP(B) > AdvERy (A) — ws? /2270 —wg? /2273 — 1/2" + w5 /2" —
(1 4+ Hupax + Mmax)/27, where 6 = o + q(w + 1).

9 Discussions

Counter-based versions. CENC and CHM use a nonce, and it is natural to
consider their counter-based versions. Call them CENC-C and CHM-C, respec-
tively. They use an n-bit counter maintained across the plaintexts (usually by
the sender). The drawback is the difficulty of implementation and it is relatively
harder to use them properly, which is the reason why we have concentrated on
the nonce-based schemes. The advantage of CENC-C and CHM-C is that, the
nonce length and the maximum plaintext length restrictions are removed, while
the security is unchanged (further, non-adaptive version of PRP is enough for
the security proofs). The restrictions only come from the security bound (instead
of the schemes). Thus, if carefully implemented and properly used, these counter
versions are suitable especially for 64-bit blockciphers

Tightness of the security bounds. For CTR mode, the security bound is tight up
to a constant factor. However, for CENC and CHM (and the PRF F' in Section
3), we do not know the tightness of our security bounds. The tightness is an open
question. For example, if we take CENC, the bound is O(wé? /22" + ws/2™).
The question is the existence of an adversary A that breaks the privacy of CENC
with about & = 282 data (without breaking the pseudorandomness of the AES),
or the proof that the security is better than the above. We conjecture that the
bound of CENC can be improved to O(wd /2™), possibly by using the technique
from [2]'.

! However, it is not possible to check the details of the proof of [2], since only a sketch
is given.

Acknowledgement

The author would like to thank Kazumaro Aoki, Fumihiko Sano, and Akashi
Satoh for useful comments.

References

1.

10.

11.

12.

13.

14.

15.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. Proceedings of The 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, pp. 394-405, IEEE, 1997.

M. Bellare, and R. Impagliazzo. A tool for obtaining tighter security analyses
of pseudorandom function based constructions, with application to PRP — PRF
convention. Cryptology ePrint Archive, Report 1999/024, Available at http://
eprint.iacr.org/, 1999.

M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code. JCSS, vol. 61, no. 3, pp. 362-399, 2000. Ear-
lier version in Advances in Cryptology—CRYPTO 94, LNCS 839, pp. 341-358,
Springer- Verlag, 1994.

M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff backwards: Increas-
ing security by making block ciphers non-invertible. Advances in Cryptology—
EUROCRYPT 98, LNCS 1403, pp. 266-280, Springer-Verlag, 1998.

M. Bellare, and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. Advances in Cryptology—
ASIACRYPT 2000, LNCS 1976, pp. 531-545, Springer-Verlag, 2000.

M. Bellare, and P. Rogaway. Encode-then-encipher encryption: How to ex-
ploit nonces or redundancy in plaintexts for efficient cryptography. Advances in
Cryptology—ASIACRYPT 2000, LNCS 1976, pp. 317-330, Springer-Verlag, 2000.
M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. Fast
Software Encryption, FSE 2004, LNCS 3017, pp. 389-407, Springer-Verlag, 2004.
K. Clafty, G. Miller, and K. Thompson. The nature of the beast: Recent traffic
measurements from an Internet backbone. Proceedings of INET ’98. Available at
http://www.caida.org/outreach/papers/1998/Inet98.

D. Delov, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Comput.,
vol. 30, no. 2, pp. 391-437, 2000.

C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. Ad-
vances in Cryptology—CRYPTO ’98, LNCS 1462, pp. 370-389, Springer-Verlag,
1998.

T. Iwata. New blockcipher modes of operation with beyond the birthday bound
security. Full version of this paper. Available from the author, 2006.

J. Jonsson. On the Security of CTR+ CBC-MAC. Selected Areas in Cryptography,
9th Annual Workshop (SAC 2002), LNCS 2595, pp. 76-93. Springer-Verlag, 2002.
C.S. Jutla. Encryption modes with almost free message integrity. Advances in
Cryptology—EUROCRYPT 2001, LNCS 2045, pp. 529-544, Springer-Verlag, 2001.
J. Katz, and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. Fast Software Encryption, FSE 2000, LNCS 1978, pp. 284-299,
Springer-Verlag, 2000.

T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional
authenticated encryption mode. Fast Software Encryption, FSE 2004, LNCS 3017,
pp- 408-426, Springer-Verlag, 2004.

16. S. Lucks. The sum of PRPs is a secure PRF. Advances in Cryptology—
EUROCRYPT 2000, LNCS 1807, pp. 470-484, Springer-Verlag, 2000.

17. S. Lucks. The two-pass authenticated encryption faster than generic composition.
Fast Software Encryption, FSE 2005, LNCS 3557, pp. 284-298, Springer-Verlag,
2005.

18. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373-386, 1988.

19. D. McGrew, and J. Viega. The Galois/Counter mode of operation (GCM). Submis-
sion to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/, 2004.

20. D. McGrew, and J. Viega. The security and performance of Galois/Counter mode
of operation. Progress in Cryptology—INDOCRYPT 2004, LNCS 3348, pp. 343—
355, Springer-Verlag, 2004.

21. P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption, FSE
2004, LNCS 3017, pp. 348-358, Springer-Verlag, 2004.

22. P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the
ACM Conference on Computer and Communications Security, ACM CCS 2002,
pp- 98-107, ACM, 2002.

23. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of op-
eration for efficient authenticated encryption. ACM Trans. on Information System
Security (TISSEC), vol. 6, no. 3, pp. 365-403, 2003. Earlier version in Proceedings
of the eighth ACM Conference on Computer and Communications Security, ACM
CCS 2001, pp. 196-205, ACM, 2001.

24. M.N. Wegman, and J.L. Carter. New hash functions and their use in authentication
and set equality. JCSS, vol. 22, pp. 256-279, 1981.

25. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Sub-
mission to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/,
2002.

A Proof of Theorem 1

Proof (of Theorem 1). Without loss of generality, we assume that A makes ex-
actly g oracle queries and A does not repeat an oracle query. Also, since A is com-
putationally unbounded, we assume that A is deterministic. Now we can regard
A as a function fa : ({0,1}"*)? — {0,1}. To see this, let ¥ = (Yp,...,Y,_1)
be an arbitrary nqw-bit string, where each Y; is nw bits. The first query, zg,
is determined by A. If we return Y; ; as the answer for z; 1, the next query
x; is determined, and finally, if we return Y,_; as the answer for z,_1, the
output of A, either 0 or 1, is determined. Therefore, the output of A and
the ¢ queries, zg,...,x4—1, are all determined by fixing Y. Note that for any
Y, the corresponding sequence of queries x = (xq,...,T4_1) is distinct. Let
Vone = {V € ({0,1}")7 | fa(¥) = 1}, and vawe = {¥ € ({0,1}")7 |
Y is non-zero-distinct}. Observe that |vaise| = (2" —1)(2" =2)--- (2" —w))? >
274 (1 — qw(w + 1)/2"*1), and therefore, we have

|V0ne N Vdist| Z |Vone| - 2”“”1qw(w + 1)/2n+1 (6>

Let P & Pr(R & Func(n — w,nw) : AR) =1). Then we have

vOIle
Pr = Z PR = [Vone (7)

Y EvVone (2”“’)’1

PRF-adversary B Algorithm CENC.KSGen.Sim(ctr,)
If A makes a query (N;, M;): 300 for j+ 0 to [l/w]—1do

100 ctr 4 (N;]|om ence) 301 Y; + O(ctr)

101 1« [|M;]/n] 302 ctr «+ incw+1(ctr)

102 S + CENC.KSGen.Sim(ctr,l)| (303 Y «+ (Yo,...,Y[i/w1-1)

103 C; « M; & first(|M;], S) 304 Y «first(nl,Y)

104 return C; 305 return Y

If A returns b:

200 output b

Fig. 6. The PRF-adversary B for 't based on the PRIV-adversary A for CENC.

On the other hand, let Py ' Pr(P & Perm(n) : AP() =1). Then

3 4
Pe= Y pe> % sz(l_qgg%}))) ;w)q

Y EVone Y €(VoneMNVdist) Y E(YoneNYdist)

where the last inequality follows from Lemma 1. Then Pr is at least

C(w+ 1)\ |Vone N Vaist| @ (w+1)* qu(w + 1)
1= >(1-) (PR
22n+1 (2nw>q 22n+1 2n+1
from (6) and (7). Now, we have Pr > Pgr — ¢*(w +1)*/22"+! — qw(w + 1) /2",
and by applying the same argument to 1 — Pr and 1 — Pg, we have 1 — Pr >
1—Pr—@(w+1)4/22" — quw(w + 1)/27FL, O

B Proof of Theorem 2

Proof (of Theorem 2). Suppose for a contradiction that Advg‘g\lc(A) is larger
than the right hand side of (3). Let the oracle O be either Fi(-) or R() €
Func(n,nw). Consider the PRF-adversary B for F'* in Figure 6, where B uses
the nonce-respecting PRIV-adversary A for CENC as a subroutine.

We see that if O is F7(+), then B gives A a perfect simulation of CENC.Enc,
since % (+) corresponds to “one frame” of CENC.KSGen, and therefore the out-
puts of CENC.KSGen.Sim(ctr,!) and CENC.KSGenp(ctr,) are the same. This
implies Pr(P & Perm(n) : BFFO) = 1) = Pr(P & Perm(n) : ACENC.Ener() —
1). Also, it is easy to check that B is input-respecting. On the other hand, if O
is R(-), then B gives A a perfect simulation of R. That is, Pr(R ¢ Func(n, nw) :
BR() = 1) = Pr(AR(+) = 1). Therefore, we have Adv%‘i (B) = Adv2iYo(A).

Suppose that the queries made by A are (No, My), ..., (Ng=1, My—1). If we
let I; = [|M;|/n], then B makes [lo/w]+- -+ [l;—1/w] queries, which is at most
(lo+-+l4—1)/w+q < 0/w+q = 6 /w queries. Note that this holds regardless of

the value of lg, ..., l,_1. From the assumption for a contradiction, Adv%%\f\lc (A)
is larger than the right hand side of (3), which implies Adv%‘i (B) > (w+

1)463 Jw322" Tt 4 (w + 1)6 /2™ L. This contradicts Corollary 1. |

