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Abstract. The purpose of algebraic attacks on stream and block ciphers
is to recover the secret key by solving an overdefined system of multi-
variate algebraic equations. They become very efficient if this system is
of low degree. In particular, they have been used to break stream ciphers
immune to all previously known attacks. This kind of attack tends to
work when certain Boolean functions used in the ciphering process have
either low degree annihilators or low degree multiples. It is therefore
important to be able to check this criterion for Boolean functions. We
provide in this article an algorithm of complexity O

`

md
´

(for fixed d)
which is able to prove that a given Boolean function in m variables has
no annihilator nor multiple of degree less than or equal to d. This com-
plexity is essentially optimal. We also provide a more practical algorithm
for the same task, which we believe to have the same complexity. This
last algorithm is also able to output a basis of annihilators or multiples
when they exist.

Keywords : Algebraic attacks, Algebraic immunity, Stream ciphers, Boolean
functions, Annihilator, Low degree multiple.

1 Introduction

Algebraic attacks have proved to be a powerful class of attacks which might
threaten both block and stream ciphers [CM03,Cou03,CP02,CDG05,Arm04].
The idea is to set up an algebraic system of equations verified by the key bits
and to try to solve it. For instance, this kind of approach can be quite effective
[CM03] on stream ciphers which consist of a linear pseudo-random generator
hidden with non-linear combining functions acting on the outputs of the gener-
ator to produce the final output. For such an attack to work, it is crucial that
the combining functions have low degree multiples or low degree annihilators.
The reason for this is that it ensures that the algebraic system of equations
verified by the secret key is also of small degree, which is in general essen-
tial for being able to solve it. This raises the fundamental issue of determining
whether or not a given function has non-trivial low degree multiples or annihila-
tors [Car04,MPC04,DGM04,BP05,DMS05]. The smallest degree for which this
happens is called the algebraic immunity of the function.



Here we are going to address this issue for Boolean functions. Note that this
is the main case of interest in this setting and that the algorithms presented
here can be generalized to fields of larger size. This problem has already been
considered in the literature. In [MPC04] three algorithms are proposed to decide
whether or not a Boolean function in m variables has a non-trivial annihilator of
degree at most d. Note that it is readily checked that finding a multiple of degree
d for f amounts to finding an annihilator of degree d for 1 + f . Therefore it is
sufficient for computing the algebraic immunity to be able to test whether or
not a Boolean function has annihilators of a certain degree. All three algorithms

have complexities of order O
(

(

m
d

)3
)

. Gröbner bases have also been suggested to

perform this task (see [FA03]) but it is still unclear if they perform better than
the aforementioned algorithms.

Recall that a Boolean function g of degree d in m variables is an annihilator

of a Boolean function f with support of size N iff the k
def
=
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m
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)

+
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m
1

)

+ · · ·+
(

m
d

)

coefficients of the monomials of g verify a system of N linear equations (the
equations express the fact that g has to be equal to zero at points for which f
is equal to 1). We will suppose here that computing a value of f is in O(1) and
that it is the only thing we can do. This implies that the complexity of checking
whether or not a Boolean function has an annihilator of degree at most d is at
least of order Ω(k) since we need to check the value of f on at least k points.

We are going to present here a new algorithm (namely Algorithm 1 in this
paper) which is able to prove the non-existence of annihilators of a certain degree
efficiently. More precisely, we prove that for fixed d, the expected running time
for our algorithm to prove that there is no non-trivial annihilator of maximum
degree d is of order O(k). This algorithm might fail to prove such a property
for certain Boolean functions which have actually annihilators of this kind, we
prove however that the proportion of such functions is negligible. In view of the
previous lower bound, this algorithm is essentially optimal.

We also present another algorithm, namely Algorithm 2, which computes a
basis for the annihilators of degree ≤ d. We conjecture that the average running
time of this algorithm is not worse than the average running time of Algorithm
1 when the latter succeeds in proving that there is no annihilator (which would
then be of order O(k)), but we are only able to prove that its average running
time is in this case of order O(k(log m)2). Several remarks can be made here.

– It should be noted that the case of small d and rather large m is definitely
interesting in cryptography. We wish to emphasize that it implies that we
are far from checking all the entries of f to perform such a task. For instance,
we are able to test that a random function in 64 variables has no non-trivial
annihilator of degree 5 in a few minutes.

– It should be stressed here that our proof does not rely on any assumption
about the linear system of equations which arises when a degree d annihi-
lator is sought after. In particular, we do not assume that it behaves like a
random system of linear equations, but we rely on a general result about the
probability of not being able to recover erasures for linear codes for which
the generalized weights distribution is known [Did05].



– The complexity of Algorithm 2 is not the same when there is an annihilator of
the specified degree. We note that in this case, if we want to be sure that the
output is indeed an annihilator, then the complexity of such an algorithm is
necessarily at least of order the number of entries of f . We present in Section
4 a way to modify this algorithm to make it faster in this case. Its output
is in general only a basis of a space which contains the space of annihilators
we look after. This algorithm and Algorithm 2 itself have been implemented.
In our experiments, we found no example for which the output was not the
space of annihilators itself.

2 Algebraic Immunity of a Boolean function

In this section we recall basic facts about Boolean functions and algebraic im-
munity. We also introduce the tools we will need to analyze the complexity of
our algorithms. In all this paper, we consider the binary vector space B(m) of m-
variable Boolean functions, that is the space of functions from {0, 1}m to {0, 1}.
It will be convenient to view {0, 1} as the field over two elements, what we de-
note by F2. It is well known that such a function f can be written in an unique
way as an m-variable polynomial over F2 where the degree in each variable is at
most 1 using the Algebraic Normal Form (ANF) :

f(x0, . . . , xm−1) =
∑

u∈F
m
2

αu

(

Πm−1
i=0 xui

i

)

where αu ∈ F2, u = (u0, . . . , um−1).

By monomial, we mean in what follows, a polynomial of the form Πm−1
i=0 xui

i with
(u0, . . . , um−1) ∈ Fm

2 . The degree of f is the maximum weight of the u’s for which
αu 6= 0. By listing the images of a Boolean function f over all possible values of
the variables, that is (f(x))x∈F

m
2

(with some particular order over Fm
2 ) we can

also view it as a binary word of length n
def
=2m. The weight of a Boolean function

f is denoted by |f | and is equal to
∑

x∈F
m
2

f(x) (the sum being performed over

the integers). We also denote in the same way the (Hamming) weight of a binary
2m-tuple. A balanced Boolean function is a function with weight equal to half its
length, that is n/2.

Dealing with algebraic immunity, we will be interested in the subspace B(d, m)
of B(m) formed by all Boolean functions of degree ≤ d. Note that the set of
monomials of degree ≤ d forms a basis of B(d, m), we call it the monomial basis.
By counting the number of such monomials we obtain that the dimension k of
B(d, m) is given by k =

∑d
i=0

(

m
i

)

.
As mentioned in the introduction, the algebraic immunity quantifies the im-

munity of a cryptosystem to some recent algebraic attacks. These attacks try to
break a cryptosystem by solving an algebraic system involving the key bits. The
equations involved often depend on a Boolean function f used in the ciphering
process. The idea is that f can be replaced by its annihilators or multiples to
obtain a new system of lower degree. The complexity of the attack depends on
the degree of this system which is nothing but the algebraic immunity of f .
Considering the pointwise product of two m-variable Boolean functions f and g,



∀x ∈ Fm
2 , f.g(x) = f(x)g(x), a function g is an annihilator of f if and only if

f.g is equal to 0, and a function g is a multiple of f if and only if there exists a
Boolean function h such that f.h is equal to g. Note that in the latter case, since
the existence of such a function is equivalent to the fact that the set of zeros of
f is included in the set of zeros of g, we also have f.g = g, which is equivalent
to (f + 1)g = 0, i.e. g is an annihilator of 1 + f . By definition, the algebraic
immunity of f is the smallest degree d such that f admits a non-trivial annihi-
lator or multiple of degree d. By the previous remark, this is also the smallest
degree of a non-trivial annihilator of f or 1 + f . In this paper, we will be inter-
ested in computing efficiently the algebraic immunity of a Boolean function. For
achieving this aim, it is clearly sufficient to be able to find efficiently the smallest
degree of a non-trivial annihilator of a Boolean function. Note that a Boolean
function f admits a non-trivial annihilator of degree ≤ d iff the following set
of equations with unknowns βu ∈ F2, where u = (u0, . . . , um−1) ranges over all
binary m-tuples of weight ≤ d, has a non-zero solution





∑

|u|≤d

βuxu0
0 . . . x

um−1

m−1 = 0





x=(x0,...,xm−1)∈F
m
2 :f(x)=1

(1)

This just expresses the fact that a Boolean function g of degree ≤ d (that is
a function g(x0, . . . , xm−1) =

∑

u=(u0,...,um−1)∈F
m
2 :|u|≤d βuxu0

0 . . . x
um−1

m−1 ) annihi-

lates f if and only if for all points x at which f evaluates to 1, g is equal to 0.
Our task will be to solve this linear system efficiently.

To estimate the complexity of the algorithms given in the following sections,
we will use this result

Theorem 1 Let λ be the fraction of m-variable Boolean functions of weight w
with a non-trivial annihilator of degree ≤ d, k =

(

m
0

)

+
(

m
1

)

+ · · · +
(

m
d

)

and

n = 2m. Then λ ≤ exp
[

n
2d

(

k
n (d ln 2 + 3) + ln

(

1− w
n

))]

.

Proof. See [Did05]. ut

3 Proving the non-existence of an annihilator efficiently

We provide in this section an efficient algorithm which proves that a given
Boolean function has no non-trivial annihilator up to a given degree. We hasten
to say that we are going to present an improved version of this algorithm in the
next section which will also be able to output a basis of the annihilator space up
to a certain degree. The purpose of the algorithm presented here is that it can
be analyzed rigorously and has average complexity of order O(md) to prove that
an m-variable Boolean function has no non-trivial annihilator of degree ≤ d.

This algorithm makes heavily use of Gaussian elimination in its basic sub-
routines. What we call lazy Gaussian elimination in what follows simply consists
in solving system (1) by inserting one by one the equations in a matrix that is
kept reduced all the time.



When our algorithm looks for annihilators of degree ≤ d for an m-variable
Boolean function f , it will apply lazy Gaussian elimination on subfunctions of
f and will look for annihilators of lower degree. More precisely, it will apply
lazy Gaussian elimination for other values of d and m, that is degrees d′ in the
range 1 ≤ d′ ≤ d and number of variables m′ of the form 2d + 1 + dlog me. We
need a bound on the probability that an m′-variable Boolean function has no
non-trivial annihilator in B(d′, m′). We will focus on random balanced Boolean
function which is one of the most significant random model in a cryptographic
context. The analysis carried over here can of course be applied to more general
probabilistic models.

Lemma 1. Let f be a random balanced Boolean function in m variables. Con-
sider an m′-variable Boolean function f ′ obtained by fixing m − m′ variables of
f . Let m′ = 2d + 1 + dlog me and 1 ≤ d′ ≤ d, then as m tends to infinity, the
probability that there is a non-trivial degree d′ annihilator for f ′ is upper bounded

by e−22d−d′

(1+o(1))m.

Proof. See appendix, Section A.

Moreover, we also need to give an upper bound on the expected running time
of the previous lazy Gaussian elimination. It is quite likely that it is of order
O(k3), but we are only able to prove the slightly weaker statement :

Lemma 2. The expected running time of lazy Gaussian elimination applied to

the f ′ of the previous lemma is upper bounded by O(d′k′3), where k′ =
(

m′

0

)

+

· · · +
(

m′

d′

)

.

Proof. See appendix, Section B.

Our algorithm is based on the the classical (u, u + v) decomposition of a
Boolean function. Given a Boolean function f of degree r in algebraic normal
form, one can write f(x0, . . . , xm−1) = u(x0, . . . , xm−2) + xm−1v(x0, . . . , xm−2)
where u and v are Boolean functions in m− 1 variables. Note that for xm−1 = 0
we have f(x0, . . . , xm−1) = u(x0, . . . , xm−2) whereas for xm−1 = 1 we have
f(x0, . . . , xm−1) = u(x0, . . . , xm−2) + v(x0, . . . , xm−2) . In other words, u is the
restriction of f to the space xm−1 = 0 and u + v is the restriction of f for
xm−1 = 1. Moreover, the degree of u is at most r and the degree of v is at most
r − 1.

Now, if there exists a non-trivial annihilator g for f of degree ≤ d, then by
decomposing g in (u′, u′ + v′) we either have:
- u′ 6= 0 and u′.u = 0. This yields a non-trivial annihilator of u of degree ≤ d.
- u′ is zero but not v′. Then v′.(u + v) = 0 and we get a non-trivial annihilator
of u + v of degree ≤ d − 1.

This simple remark is the underlying idea of our algorithm : to check that
f has no non-trivial annihilator of degree ≤ d we check that neither u (or what
is the same the restriction of f to xm−1 = 0) has a non-trivial annihilator of
degree ≤ d nor u + v (i.e. the restriction of f to xm−1 = 1) has a non-trivial



annihilator of degree ≤ d− 1. We perform this task recursively by decomposing
u and u+v further, up to the time the number of variables in the decomposition
is equal to 2d + 1 + dlog me. This is illustrated by Figure 1. The first number in
each couple represents the maximum annihilator degree to consider. The second
number corresponds to the number of variables in the corresponding subfunction.
We will continue the decomposition up to a certain depth as indicated above.
Note that the decomposition may also stop because the degree of the annihilator
to consider is zero.
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Fig. 1. Recursive decomposition of a 9-variable Boolean function used to find an an-
nihilator of degree smaller than or equal to 2. The decomposition is performed up to
6-variable subfunctions. The bottom squares represent the domains of the subfunctions
which are leaves of the decomposition.

It is important to notice the following fact

Fact 1 The first level of decomposition of a Boolean function f(x0, . . . , xm−1)
corresponds for the left part to the restriction of f to xm−1 = 0, whereas the right
part corresponds to the restriction of f to xm−1 = 1. More generally, consider
a subfunction f ′ at the l-th level of the decomposition. It is associated to a path
p = (p1, . . . , pl) ∈ Fl

2 starting from the root (that is f) by choosing either left or
right children at each level. Here the value of pi is 0 if we go from level i−1 to level
i by choosing the left children and 1 otherwise. Notice that f ′ is the restriction
of f to xm−1 = p1, . . . , xm−l = pl. Moreover, if we look for an annihilator of
degree d for f , we search for an annihilator of degree d − |p| for f ′.

More formally, our algorithm is the following

Algorithm 1 (Immunity verification) The input is an m-variable Boolean func-
tion f and a parameter d. The output is Yes if it can prove that there is no
non-trivial annihilator of degree ≤ d, No otherwise.

1. [decomposition] Recursively decompose the variable space of f according to
d and this up to subfunctions in 2d + 1 + dlog me variables. For each leaf,
execute step 2.

2. [Subfunction verification] Use lazy Gaussian elimination with the correct de-
gree to compute the annihilator space of the considered subfunction. If there
is a non-trivial annihilator then go directly to step 4, otherwise continue.

3. [Immune] Output Yes: f has no non-trivial annihilator of degree ≤ d.



4. [Unknown] Output No: we cannot prove the immunity of f .

Since in most cases of interest in cryptography, d is small, we can continue
the decomposition quite far and still have with high probability that each sub-
function does not admit any annihilator of the required degree. The point is
that verifying with a classical algorithm that there is no annihilator for each
subfunction is much faster than verifying it for the whole function. The real gain
comes actually from the fact that the decomposition often ends at subfunctions
for which we just have to check that the constant function 1 is not an annihi-
lator. For this, we just have to find a corresponding value of the subfunction
which is equal to 1. This can be done in O(1) expected time. Hence, the more
we decompose f , the faster we get but the more chance we have to output “No”,
since the probability that at least one of the subfunctions admits an annihila-
tor increases. Choosing to decompose the functions up to a number of variables
equal to 2d + 1 + dlog me is a good tradeoff. For this choice we are able to prove
the following

Theorem 2 Let f be a random balanced m-variable Boolean function. Let d be
fixed, then as m tends to infinity, Algorithm 2 runs in O(k) = O

(

md
)

expected
time and proves that there is no non-trivial annihilator up to degree d, except

for a proportion of functions which is at most O
(

e−2dm(1+o(1))
)

.

Proof. See Appendix C.

4 An efficient algorithm for finding annihilators

It the previous section, we considered a fixed depth decomposition, but the depth
of decomposition may vary. For a given function f , the best decomposition for
our problem is actually the smallest decomposition such that each subfunction
has no non-trivial annihilator of the required degree.

By using a specific order on the monomials it is possible to work on this best
decomposition. In practice, this new algorithm (Algorithm 2) will perform really
well as shown by the running time presented later and will even be able to output
an annihilator when it exists. However, analyzing directly Algorithm 2 seems to
be more involved. We can only get a good upper bound on its complexity when
there is a decomposition for which Algorithm 1 outputs Yes, and even in this
case, the bound is slightly larger than the O(k) bound of Algorithm 1.

4.1 The Algorithm

We describe here the new algorithm. Its relation with Algorithm 1 is not clear
at first sight but will be explained in the next subsection. We will heavily use a
specific order on the monomials and on elements of Fm

2 . This order is induced
by the integer order on the set of integers J0, 2m − 1K by viewing an m-tuple



x (or a monomial X) as a binary representation of an integer. More precisely
an element (x0, . . . , xm−1) ∈ Fm

2 or the corresponding monomial Xx0
0 . . .X

xm−1

m−1

are both associated to the integer
∑m−1

i=0 xi2
i. This identification allows us to

compare monomials with points in Fm
2 and to speak about intervals. For instance

for a, b ∈ Fm
2 with a < b we define [a, b)

def
= {y ∈ Fm

2 : a ≤ y < b}. We also index
from 0 to k − 1 the m-variable monomials of degree ≤ d arranged in increasing
order.

We are now ready to describe Algorithm 2. The idea behind it is just to com-
pute incrementally (for an x varying in Fm

2 ) an annihilator basis of f restricted
to the first x points.

Algorithm 2 (Incremental algorithm) The input is a Boolean function f in m
variables and a number d. The output is a basis of the subspace of annihilators
for f of degree ≤ d.

1. [Initialization] Set the basis stack S to the constant function 1. Set the current
monomial index i to 0. Initialize x to the first value in Fm

2 such that f(x) = 1.
2. [Add basis element?] While the monomial of index (i + 1) is smaller than or

equal to x, push it onto the top of S and increment i.
3. [Remove basis element?] If any, find the element of S closest to the top that

evaluates to 1 on x. XOR it with all the other elements of S that evaluate to
1 on x and remove it from S.

4. [Skip to next monomial?] If the annihilator space is trivial, increment i, push
the monomial of index i onto the top of S and set x to be this monomial.

5. [Loop?] If possible, increment x until f(x) = 1 and go back to step 2.
6. [end] Execute a last time step 2 and return the current basis stored in S.

The correctness of this algorithm follows from the two following lemmas

Lemma 3. Given a monomial Xx0
0 . . . X

xm−1

m−1 of degree d, the associated mono-
mial function is zero on all entries strictly smaller than x = (x0, . . . , xm−1).
Moreover, this function is equal to 1 on the interval [x, x′) where x′ is the first
point in Fm

2 greater than x of weight ≤ d.

Proof. The aforementioned monomial function evaluates to 1 on an m-tuple
y = (y0, . . . , ym−1) iff for all i such that xi = 1 we also have yi = 1. In such

a case, we necessarily have
∑m−1

i=0 yi2
i ≥

∑m−1
i=0 xi2

i which concludes the first
part of the proof. Now, let us define i0 to be the minimum of the set {i, xi 6= 0}.
Denote by x′ the first point greater than x of weight less than or equal to d.
The second assertion follows from the fact that all y′ strictly between x and x′

coincide with x for all positions greater than or equal to i0. This implies that
the aforementioned monomial evaluates to 1 at such y’s. ut

Lemma 4. Let A<x(d), respectively A≤x(d) be the set of m-variable Boolean
functions g generated by the monomials of degree ≤ d which are smaller than or
equal to x that satisfy f(y)g(y) = 0 for all entries y ∈ Fm

2 smaller than x, resp.



smaller than or equal to x. We use the same notation when x is a monomial by
identifying x with the corresponding point in Fm

2 . For a value x chosen by the
algorithm, we denote by x− its previously chosen value. Then

– The set S obtained after completing step 2 is a basis for A<x(d).
– The set S obtained after completing step 3 is a basis of A≤x(d).
– If a monomial X has been added in step 4, then just after completing step

4, A<X(d) = {0, X}.
– For step 5, if no monomial has been added in step 4 just before, then after

completing step 5 we have that f(x) = f(x−) = 1 and f(y) = 0 for all y
such that x− < y < x. If a monomial X has been added in step 4 just before,
we have after step 5 has been completed, that A<X(d) = {0, X}.

Proof. The key point is that by Lemma 3 the value of a Boolean function on x
depends only on the monomials in its ANF smaller than or equal to x.

Let us check by induction on the number of times we perform step 2 that
S is a basis of A<x(d) after step 2 has been completed. This is obviously true
the first time we perform step 2. The assertions on step 3,4,5 are also clearly
true the first time they are performed. Consider now a further step 2 for which
all assertions about the previous steps 2,3,4,5 hold. There are two possibilities
depending on whether the previous step 4 has added or not a monomial to S.
Case 1 : Assume that step 4 has added a monomial X .
Then A<X(d) = {0, X}. All monomials added in step 2 are precisely the mono-
mials X ′ of degree ≤ d such that x ≥ X ′ > X . Note that for all these X ′ we
have X ′(y)f(y) = 0 for all y < x. This is also true for monomial X . Therefore
all elements in S belong to A<x(d). All the elements in S are monomials and are
necessarily independent. Consider now an element g in A<x(d). Let us first note
that the ANF of g contains no monomial < X , otherwise the Boolean function
formed by the part of the ANF of g involving only monomials < X would belong
to A<X(d), which is impossible. g is then necessarily a sum of monomials in S
since we have put in S all monomials of degree ≤ d between X and x. S is
therefore a basis of A<x(d).
Case 2 : Assume that step 4 has added no monomial. In this case, we have added
to S all monomials between x−(exclusive) and x(inclusive) of degree ≤ d. Note
that f(y) = 0 for all y such that x− < y < x. From this, it is easy to check
that all elements in S belong to A<x(d). They are also clearly independent. As
before, consider a g ∈ A<x(d). Write g = g≤x− + g>x− , where the ANF of g≤x−

consists in the monomials of the ANF of g which are smaller than or equal to x−.
Notice from Lemma 3 that g≤x− belongs to A≤x−(d). It is therefore generated
by elements in S. g>x− is also clearly generated by the monomials added in step
2. S is therefore a basis of A<x(d).

The assertion on step 3 follows at once from the assertion on step 2, and the
assertions about step 4 and 5 are straightforward. ut

Remarks :

1. Step 4 might seem odd at first sight, because it could be omitted without
changing the correctness of the algorithm. However it is an essential step for



having a low complexity algorithm. The point is that it avoids checking a
lot of values of x satisfying f(x) = 1 which are useless for the algorithm.

2. In step 3, taking the element of S closest to the top of the stack is a heuristic
which really helps in being fast. Define the trailing monomial of a Boolean
function as the smallest monomial appearing in its ANF, the closer we are
to the top of the stack, the larger the trailing monomial will be. Taking
elements the closest possible to the top of the stack will therefore tend to
reduce the number of monomials in its ANF form. XOR’ing such a function
to the other elements of the stack will therefore be more efficient.

3. Observe that Algorithm 2 necessarily outputs the empty-set if f evaluates
to 1 in at least one point in any interval [X1, X2) where X1 and X2 are
two consecutive monomials of degree ≤ d (the monomials being ordered as
explained above). This result comes from the second part of Lemma 3 and
implies that such a function has no non-trivial annihilator in B(d, m). In
particular, this applies to the inverse m-variable majority function which
is defined by f(x) = 1 iff |x| ≤ bm/2c. This function is equal to 1 on all
monomials of degree ≤ bm/2c and has therefore no non-trivial annihilator
of degree ≤ bm/2c.

4.2 Complexity issues

Let us now explain the relationship between Algorithm 1 and Algorithm 2 when
there exists a decomposition for which the output of Algorithm 1 is “YES I

can prove that there are no annihilator of degree ≤ d”. Indeed let Al-
gorithm 1∗ be a modified version of Algorithm 1 where we use Algorithm 2 on
subfunctions instead of lazy Gaussian elimination. Then we have

Proposition 1. The complexity of Algorithm 2 is upper-bounded by the smallest
1 complexity of Algorithm 1∗ when it outputs YES.

Proof. Assume that we apply Algorithm 1∗ to a certain decomposition for which
the corresponding output is YES. Consider the first restriction of f for which
we look for an annihilator of degree ≤ d. Notice that this subfunction is the
restriction of f on [0, a), where the integer associated to a is equal to 2m′

, m′

being the number of variables on which the restriction depends. Algorithm 1∗

coincides with Algorithm 2 on this subfunction and outputs that there are no
annihilator. Notice now that the second subfunction considered by Algorithm 1∗

is a restriction of f over an interval of the form [a, b), and so on for all the other
subfunctions which correspond to restrictions of f . Note that these intervals
are consecutive and that they are examined by Algorithm 1∗ in a consecutive
order. Since Algorithm 1∗ notices that every subfunction has no annihilator of
the corresponding degree, Algorithm 2 also reduces in applying itself to each
subfunction separately. The reduction is done implicitly because in this case an
element in S will have only non zero coordinates on monomials in the current
subfunction interval. The proposition follows. ut

1 Recall that this means that the minimum is taken over all decompositions of f for
which all subfunctions have no non-trivial annihilators.



However, the problem is that this does not show that Algorithm 2 is as effi-
cient as Algorithm 1. If we use Algorithm 2 instead of lazy Gaussian elimination
on the subfunctions in Algorithm 1, we are only able to use the weak bound
E(m′, d′) ≤ n′k′2 instead of the bound of Lemma 2 (E(m′, d′) representing the
expected running time of Algorithm 2 on the corresponding subfunction). But
we still have E(m′, 0) = O(1) and we obtain

Proposition 2. The complexity of Algorithm 1∗ applied to the decomposition
of the previous section is O

(

k(log m)2
)

.

Proof. Let us first bound the expected complexity of Algorithm 2 when applied
to a subfunction f ′ on m′ variables to find annihilators of degree ≤ d′. When
d′ ≥ 1 we will simply use the worst case complexity where we consider all n′

points and for each of them, step 3 and 4 run in k′2. Thus we have E(m′, d′) =
O(n′k′2). In the case d′ = 0, because of step 4, we will stop as soon as we get
a point where f ′ = 1 and we have the same expected running time as the lazy
Gaussian algorithm, that is E(m′, 0) = O(1).

In the end, with the new E(m′, d′) = O(n′k′2) we obtain a complexity in
O(k(log m)2) for Algorithm 1∗ which is only slightly larger than the bound of
complexity of Algorithm 1. ut

4.3 Benchmarks

We have implemented a version of Algorithm 2 in C language running on a
Pentium 4 at 2.6GHz with 1Gb memory. The (d, m) entry in the following tables
means that we calculated the annihilator subspace in B(d, m) of a balanced m-
variable Boolean function.

First of all, we ran some computations to find high degree annihilators. The
results are presented in Figure 2. Notice that even for such large values of d
corresponding to m, Algorithm 2 performs much better than lazy Gaussian elim-
ination. Notice that the memory usage is better too, allowing to deal with cases
where lazy Gaussian elimination ran out of memory.

d,m 2,6 3,8 4,10 5,12 6,14 7,16 8,18 9,20

k 22 93 386 1586 6476 26333 106762 431910

Lazy G 0s 0s 0s 0.1s 5s 2m30s oom oom

Algo 2 0s 0s 0s 0.01s 0.5s 20s 15m 12h

Fig. 2. Running time to check a high degree immunity for random balanced functions.
The abbreviation oom means Out Of Memory. The lowest degree of a non-trivial anni-
hilator of all the tested functions appeared to be the maximum possible, that is dm

2
e

for an m-variable balanced Boolean function.

After this, we ran Algorithm 2 for small values of d and large values of m.
The table in figure 3 clearly reflects the theoretical complexity in O(k).

We have also checked the performances of our algorithm when there is an
annihilator. The results are displayed in Figure 4. To make sure that the balanced
Boolean function in m variables had an annihilator of a specified degree d, we



d,m 4,32 5,32 6,32 7,32 3,64 4,64 5,64 2,128 3,128 2,256

k 4.104 2.105 1.106 4.106 4.104 6.105 8.106 8.103 3.105 3.104

Algo 2 1s 5s 30s 2m40s 1s 32s 8m 0.1s 32s 0.3s

Fig. 3. Running time to check low degree immunity of functions with a large number
of variables. The functions were chosen randomly among balanced function and no
non-trivial annihilators were found.

d,m 2,30 3,30 4,30 5,30 6,30

k 466 4526 3.104 2.105 8.105

Algo 2 13m 1h 3h45 - -

Algo 2∗ 1s 1s 4s 31s 4m34s

Fig. 4. Running times for Algorithm 2 and 2∗ when m = 30 and a non-trivial annihi-
lator of degree d exists.

took a random g in B(m) of degree d and weight w greater than 2m−1. Then
we chose w − 2m−1 random values of g equal to 1 and made them equal to 0 to
obtain a balanced function f . The f obtained this way has obviously 1 + g as
an annihilator of degree d. We chose m = 30 for our experiments. In this case,
Algorithm 2 has to check all 230 points and this can be really long. It is possible
to modify the algorithm to obtain a new algorithm (Algorithm 2∗) which runs
much faster by avoiding to consider all points of f . Since we know that there
is an annihilator, the first modification is to skip to the next monomial in step
4 as soon as the annihilator space is of dimension 1. To speed up the process
even more, another modification is to consider (at random) only a fraction of
all the points where f is equal to 1 (one half for example). However, with this
last modification, the output of the new algorithm is just a candidate set for the
annihilator subspace : it always contains the right annihilator space, but it could
be much larger. In spite of this fact, we found an annihilator space of dimension
1 at the end of all our experiments.

5 Conclusion

This article presents two algorithms of low complexity which allow to detect
whether or not a given Boolean function has low degree multiples or low degree
annihilators. They allow to check this kind of property even for Boolean functions
with a large number of variables. They can be used to build cryptographically
strong functions by devising such functions with respect to other criterions (non-
linearity, being balanced, resiliency, ... ) and by checking afterwards that such
functions are also immune against algebraic attacks.

The analysis of the complexity of Algorithm 2 is probably somehow pes-
simistic and it is likely that it can be improved. It should also be interesting
to improve this algorithm when we apply it to a Boolean function admitting a
non-trivial annihilator of the specified degree.
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A Proof of Lemma 1

Let n′ = 2m′

, k′ =
(

m′

0

)

+
(

m′

1

)

+ · · ·+
(

m′

d′

)

and n = 2m. Note that n′ ≥ 22d+1m.
We start the proof by noticing that the probability that the weight of f ′ is w is
given by

(

n−n′

n/2−w

)(

n′

w

)

(

n
n/2

) .

By Stirling’s formula this probability can be shown to be of the form O(en′(h(w/n′)−1)),
with h(x) = −x lnx − (1 − x) ln(1 − x). Using Theorem 1 we obtain that the



probability that f ′ has an annihilator of degree ≤ d is of the form

n′

∑

w=o

O

(

e
22d+1m

h

h(w/n′)−1+ 1

2d′

“

ln(1−w/n′)+
k′(d′ ln 2+3)

n′

”i
)

.

It is straightforward to check that k′

n′ = o(1) as m′ tends to infinity. This implies

that the k′(d′ ln 2+3)
n′ term in the exponent tends to zero. Moreover, we have a

linear (in m) number of terms in the sum. Hence, we can upperbound it by its
largest term times an emo(1) factor. Putting all these facts together, we obtain
that the probability that f ′ has an annihilator of degree d′ is upperbounded by
an expression of the form

e22d+1m supx∈[0,1] g(x,d′)(1+o(1)),

where g(x, d′)
def
=h(x) − 1 + 1

2d′ ln(1 − x). It can be checked that for d′ ≥ 1

we have that supx∈[0,1] g(x, d′) ≤ − 1
2d′+1 . The upper-bound given in Lemma 1

follows directly from this last remark.

B Proof of Lemma 2

Let n′ = 2m′

. First of all, the maximum complexity of lazy Gaussian elimination
is O(n′k′2). Moreover, by using Theorem 1, the processing of w0 = k′(dd′ ln 2e+
5) equations in lazy Gaussian elimination fails to prove the immunity of f ′ in

O(w0k
′2) with a probability smaller than

e
n′

2d′

“

k′

n′ (d
′ ln(2)+3)+ln(1−w0

n′ )
”

≤ e
− k′

2d′−1
(1+o(1))

We can split the expected running time E in two. One part for the case where
the Hamming weight of f ′ is greater than w0 and one part where this is not the
case. We get

E ≤

[

Ew0 + O(w0k
′2) + e

− k′

2d′−1
(1+o(1))

O(n′k′2)

]

+ P (|f ′| < w0)O(n′k′2)

where Ew0 is the expected number of function evaluations we have to perform
before actually finding w0 points where f ′ is equal to 1. Notice that in this

setting k′ = O(m′d′

) and e
− k′

2d′−1
(1+o(1))

n′ = O(1). The probability that we have
to check i points to find w0 points for which an m-variable balanced Boolean
function evaluates to 1 is given by

(

i − 1

w0 − 1

)

(

n−i
n/2−w0

)

(

n
n/2

) =

(

i − 1

w0 − 1

)

(n)!(n/2)!(n/2)!

(n − i)!(n/2− w0)!(n/2 + w0 − i)!

We can upper-bound this expression by

(

i − 1

w0 − 1

)

ni

2i(n − i)i
≤

(

i−1
w0−1

)

2i

1

(1 − n′

n )n′



Therefore we have for the expected number of function evaluations

Ew0 =
1

(1 − n′

n )n′

n′

∑

i=w0

(

i − 1

w0 − 1

)

i

2i
= O(w0)

In the same way, we have

P (|f ′| < w0) ≤

w0−1
∑

i=0

(

n′

i

)(

n−n′

n/2−i

)

(

n
n/2

) ≤ w0

(

n′

w0

)

(n−n′

n−n′

2

)

(

n
n/2

) ≤
w0n

′w0

2n′

1

(1 − n′

n )n′

So P (|f ′| < w0)n
′ = O(1) which concludes the proof.

C Proof of Theorem 2

The proof of this theorem starts by first evaluating N(m, d, m′, d′) which is the
number of times we obtain an m′-variable subfunction for which we have to
determine whether or not it has a degree ≤ d′ annihilator.

Lemma 5. We have N(m, d, m′, d′) =
(

m−m′

d−d′

)

.

Proof. We use Fact 1 (and also the notation introduced there) and notice that

such subfunctions correspond to paths p = (p1, p2, . . . , pm−m′) ∈ Fm−m′

2 for

which |p| = d − d′. The number of paths of this kind is obviously
(

m−m′

d−d′

)

. ut

Let E(m′, d′) be the expected running time of checking whether or not the
m′-variable subfunction has a non-trivial annihilator of degree ≤ d′. The crux of
obtaining a low-complexity algorithm is that

Lemma 6. For any m′, E(m′, 0) = O(1).

Proof. The idea is that in this case we just have to check whether or not the
constant function 1 is an annihilator for the subfunction. This can be done by
finding a point of the subfunction which evaluates to 1. Let n = 2m and n′ = 2m′

.
The probability that we have to check i points to find a point for which an m-

variable balanced Boolean function evaluates to 1 is equal to
( n−i

n/2−1)
( n

n/2)
. Therefore

the expected time is equal to

n′

∑

i=1

i

(

n−i
n/2−1

)

(

n
n/2

) + n′

(

n−n′

n/2

)

(

n
n/2

) .

The last term corresponds to the probability that the subfunction is the all-zero
function and tends to 0 as n′ tends to infinity. For the sum, we notice that
( n−i

n/2−1)
(n−i−1

n/2−1)
= n/2−i+1

n−i ≤ 1
2 and therefore the expected time is smaller than

n′

∑

i=1

i

(

1

2

)i

+ o(1) = O(1).

ut



We finish the proof of the first assertion in Theorem 2 by noticing that the
expected running time E of our algorithm is equal to

d
∑

i=1

N(m, d, 2d + 1 + dlog me, i)E(2d + 1 + dlog me, i) + E0

where :

- 2d + 1 + dlog me is the number of variables at which we stop the decompo-
sition.

- E0 is the expected time spent in checking the subfunctions for which d′ = 0.

From Lemma 6, E0 depends on the number of subfunctions for which d′ = 0. It
corresponds to paths of weight exactly d in the decomposition tree and we get

E0 = O

((

m − (2d + 1 + dlog me)

d

))

.

We use Lemma 2 to bound the E(2d+1+dlog me, i)’s (and by noticing that the
k′’s involved in this lemma are of the form O

(

(2d + 1 + log m)i
)

and we obtain
that

E = O

(

(

m − 2d − 1 − dlog me

d

)

+

d
∑

i=1

(

m − 2d − 1 − dlog me

d − i

)

i(2d + 1 + log m)3i

)

= O

(

md +

d
∑

i=1

md−ii(2d + 1 + log m)3i

)

= O(md) = O(k).

It should be noted that it is really the time spent in proving that subfunctions
have not the constant 1 as annihilator which is responsible for the O(k) term in
the average complexity. The time spent in proving that the other subfunctions
have annihilators of larger degree is negligible.

To prove that there is only a negligible part of functions for which Algorithm
1 answers “No”, we proceed as follows. The probability P1 that Algorithm 2 exits
for values of d′ greater than 0 can be bounded by using lemmas 5 and 1 by

P1 ≤

d
∑

d′=1

(

m − 2d − 1 − dlog me

d − d′

)

e−22d−d′

(1+o(1))m

≤ O(md)e−2d+1(1+o(1))m + e−2d(1+o(1))m

≤ e−2d(1+o(1))m

The probability P2 that Algorithm 1 exits for values of d′ equal to 0 is clearly
upper-bounded by the number of subfunctions for which d′ equals 0 times the
probability that such a subfunction evaluates to 0 on a domain of size 22d+1+dlog me.

This last probability is clearly of the form O
(

e−22d+1m(ln 2+o(1))
)

. Summing P1

and P2 yields an upper-bound for the probability we wish to bound and leads
to the second assertion in Theorem 2.


