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Abstract. The reflection attack is a recently discovered self similarity
analysis which is usually mounted on ciphers with many fixed points.
In this paper, we describe two reflection attacks on r-round Blowfish
which is a fast, software oriented encryption algorithm with a variable
key length k. The attacks work successfully on approximately 2k+32−16r

number of keys which we call reflectively weak keys. We give an almost
precise characterization of these keys. One interesting result is that 234

known plaintexts are enough to determine if the unknown key is a reflec-
tively weak key, for any key length and any number of rounds. Once a
reflectively weak key is identified, a large amount of subkey information
is revealed with no cost. Then, we recover the key in roughly r · 216r+22

steps. Furthermore, it is possible to improve the attack for some key
lengths by using memory to store all reflectively weak keys in a table
in advance. The pre-computation phase costs roughly r · 2k−11 steps.
Then the unknown key can be recovered in 2(k+32−16r)/64 steps. As an
independent result, we improve Vaudenay’s analysis on Blowfish for re-
flectively weak keys. Moreover, we propose a new success criterion for an
attack working on some subset of the key space when the key generator
is random.

Keywords: Blowfish, cryptanalysis, reflection attack, fixed point, key
dependent S-Box, self similarity analysis, weak key.

1 Introduction

Self similarity attacks, such as slide attack [4, 5], related key attack [2], and a
very recently discovered attack, reflection attack [10], generally work on ciphers
with very simple key schedules. In this paper, we propose reflection attacks on
full-round Blowfish which has a very complicated key schedule.

Blowfish is a widely used, unpatented, license-free, fast block cipher designed
by Schneier in 1994 [16]. Blowfish is a 16-round Feistel network and uses a
large number of subkeys. Security of the algorithm is particularly based on the
key dependent S-boxes and the difficulty of recovering the key from a partial
knowledge of some subkeys. No attacks have been published on a full version
of Blowfish so far. Nevertheless, there have been a few studies on cryptanalysis
of Blowfish. The analysis by Rijmen [14] is a second order differential attack
against 4-round Blowfish. Another differential cryptanalysis is by Vaudenay [18]
and uses 3 · 251 chosen plaintexts with the assumption that the round function



F is known and weak in the sense that some of its S-boxes are not one to one.
The number of the keys producing the weak F functions is approximately 2k−15.
The slide attack by Biryukov and Wagner [4] uses only 227 chosen plaintexts and
works under the powerful assumption that all the P subkeys are equal to zero
which happens with a probability of roughly 2−576.

1.1 Our Contributions and Organization of the Paper

The notion of fixed points of weak DES keys is well known[9, 6, 12, 13]1. These
works focus on algebraic properties of DES permutations and their short cycles.
In this paper, we also exploit permutations with many fixed points. However, we
aim to identify weak keys and recover these keys in Blowfish.

We give two new models of description of Blowfish and deduce some reflection
properties of Blowfish by utilizing these models. In particular, we show that
certain keys produce (r−2)-round Blowfish encryption function with many fixed
points. We call these keys as reflectively weak keys. The number of reflectively
weak keys is approximately 2k+32−16r. We propose two reflection attacks on
Blowfish with variable number of rounds. These attacks work on reflectively
weak keys.

We identify a reflectively weak key using roughly 234 known plaintexts for
any number of rounds and any key length. Moreover, we characterize a reflec-
tively weak key by certain equalities among its subkeys. The characterization
is not precise, but it is true with a probability almost 1. Theorem 1 states the
characterization in detail. The first attack is a guess-and-determine type attack
utilizing this characterization. First, we determine whether the unknown key is a
reflectively weak key. Once a reflectively weak key is identified, we obtain a large
amount of subkey information with no cost. This information leads to a guess-
and-determine attack. The time complexity of the attack is roughly r · 216r+22

steps where each step is equal to one step of exhaustive search. In the second
attack, we improve the time complexity of the first attack by using memory for
some key lengths. We detect all reflectively weak keys and save them in a table
in advance by checking all keys. The check mechanism deduced from the char-
acterization of reflectively weak keys reduces the workload since we do not have
to implement the whole key schedule, even though we check all the keys. The
pre-computation phase costs roughly r · 2k−11 steps and we recover the key in
2(k+32−16r)/64 steps using 2k+32−16r memory. Note that this is an improvement
of the first attack when k < 16r + 32. Some interesting examples are given in
Table 1 for r = 8 and r = 16.

Another result is a straightforward improvement of Vaudenay’s attack. We
reduce the number of chosen plaintexts from 3 · 251 to 3 · 244 on a set of keys of
size roughly 2k−271.

In addition, we propose a new success criterion for an attack working on
some subset of the key space. We argue that such an attack is successful if the
workload of determining that the unknown key is in the subset, is less than the

1 We would like to thank the anonymous referees for pointing these references.



r k w PC M T
128 232 2120.6 232 -
160 264 2152.6 264 1

8 192 296 2184.6 296 232

192 296 - - 2153.3

256 232 2249.3 232 -
288 264 2281.3 264 1

16 320 296 2313.3 296 232

384 2160 - - 2282.1

448 2224 - - 2282.1

Table 1. Some Complexity Examples of The Attack. w is the average number of weak
keys; PC is Pre-computation steps; M is Memory Space Used; T is Time Steps. Each
step is equal to one step in exhaustive search. Data complexity is roughly 234 known
plaintexts. Complexities without memory are the examples of the first attack.

number of keys in the subset, and recovering it is less than that of exhaustive
search.

The paper is organized as follows. Blowfish is described briefly in Section
2. Moreover, we give two new descriptions of the Blowfish algorithm. We state
reflection properties of Blowfish in Section 3 as a preparation phase for the state-
ments of the attacks. The notion of reflectively weak key and its characterization
is introduced in this section. Then, we give the details of the attack and its im-
provement in Section 4. The improvement of Vaudenay’s analysis for a subset of
keys is given in Section 5. In the last section, we discuss the similarity degrees
of the functions producing subkeys and the parameters of Blowfish, and give the
argument about the success criterion for attacks working on some keys.

1.2 Notation

We use the following notation throughout the paper: k is the bit length of the key;
r is the number of rounds; F is the key dependent round function of Blowfish;
P is the array of 32 bit subkeys of Blowfish and Pi is its i-th component for
i = 1, .., r+2; I is the array of hexadecimal digits of π XORed with the key bits;
and ⊕ is the XOR operator.

2 High Level Descriptions of Blowfish

Blowfish is a 16-round Feistel network with 64 bit block length and a variable
key length of at most 448 bits. It is also specified as an 8-round cipher with a
key length of at most 192 bits [17]. Blowfish uses a large number of subkeys. The
set of subkeys consists of two parts: The P array which contains r+2 number of
32-bit subkeys, P1, ..., Pr+2, and four 8× 32 key dependent S-boxes used in the
F function. The encryption process starts after the P array and the S-boxes are



generated. Let (x1, y1) be a plaintext for x1, y1 ∈ GF (2)32. Then, i-th round of
the encryption process is given as (xi+1, yi+1) = (F (Pi ⊕ xi)⊕ yi, Pi ⊕ xi). The
corresponding ciphertext is defined as (yr+1 ⊕ Pr+2, xr+1 ⊕ Pr+1). We do not
give the details of F function since we do not use it in the analyses. The high
level description of Blowfish is depicted as Type I in Figure 1.

Generating the P array and the S-boxes is as follows:

– Initialize the I array and the S-boxes with hexadecimal digits of π.
– XOR I1 with the first 32 bits of the key, I2 with the second 32 bits of the key

and so on for all bits of the key. Repeatedly cycle through the key bits until
the entire I array has been XORed with key bits. Then copy the contents of
the I array to the P array.

– Encrypt the all-zero string with the Blowfish algorithm, using the P array
as subkeys. Replace P1 and P2 with the output.

– Repeat the last process, replacing all entries of P array, four S-boxes in order,
with the output of continuously changing Blowfish algorithm.

2.1 New Models for Description

The XOR operator is commutative. Hence, an XOR operator of a subkey in
Blowfish can be pushed through other XOR operators until a non-commutative
operation such as an F operation is obtained. So, by moving certain subkeys
we can obtain various descriptions of Blowfish. Two descriptions are depicted
in Figure 1. We call them the Type II description of Blowfish and the Type
III description of Blowfish. For example, in the Type II description we move
the third round key through the second round to the first round and the fourth
round key through the third round to the second round. So we consider the third
round key as a part of the first round and the fourth round key as a part of the
second round.

Repeating this process we obtain a new description of Blowfish where half of
the rounds use two subkeys and the other half of the rounds use no subkey. The
type III description can be obtained similarly. These descriptions facilitate the
attack idea. Particularly, we treat two-round Blowfish as keyed or unkeyed:

Definition 1. Two-rounds of Blowfish given as

x′ = F (Pi1 ⊕ x)⊕ y ⊕ Pi3 ⊕ Pi4 and
y′ = F (F (Pi1 ⊕ x)⊕ y ⊕ Pi3)⊕ Pi1 ⊕ Pi2 ⊕ x

is called a two-round keyed Blowfish function (K2 in short) and

x′ = F (x)⊕ y and
y′ = F (F (x)⊕ y)⊕ x

is called a two-round unkeyed Blowfish function (U2 in short). Here (x, y) is an
input and (x′, y′) is the corresponding output.

Two-round keyed/unkeyed Blowfish functions are depicted in Figure 2.
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3 Reflection Properties of Blowfish

One of the very recent cryptanalysis methods is the reflection attack [10]. This
attack exploits the similarities between the round functions of the encryption
and the round functions of the decryption. It can be very powerful especially
against product ciphers using involutions, such as Feistel networks. In general,
self-similarity attacks are mounted on ciphers with simple key schedules. We
apply reflection attack on Blowfish, as an exceptional example with a very com-
plicated key schedule, and successfully recover the key in some special cases.

Let us note that Blowfish can be written as a composition of K2 and U2

functions (see Figure 1). The reflection attack exploits certain properties of these
functions. U2 has many fixed points and so does K2 for some subkeys. Moreover,
any U2 is an involution and K−1

2 has the same structure as K2.

Lemma 1. Consider a two-round keyed Blowfish function given as

x′ = F (Pi1 ⊕ x)⊕ y ⊕ Pi3 ⊕ Pi4 and
y′ = F (F (Pi1 ⊕ x)⊕ y ⊕ Pi3)⊕ Pi1 ⊕ Pi2 ⊕ x

where (x, y) is the input and (x′, y′) is the corresponding output. If the subkeys
Pi1 = Pi4 and Pi2 = Pi3 , then the two-round keyed Blowfish function has 232

fixed points.

Proof. Assume that Pi1 = Pi4 and Pi2 = Pi3 . Then, (x, y) is encrypted to (x, y)
if and only if y = F (Pi1 ⊕ x)⊕ x⊕Pi1 ⊕Pi2 . However, we have 232 plaintexts of
the form (x, F (Pi1 ⊕ x)⊕ x⊕Pi1 ⊕Pi2). Therefore, the K2 has 232 fixed points.

ut
A straightforward corollary of Lemma 1 is obtained when two-round Blowfish

is unkeyed, i.e., P1 = P2 = P3 = P4 = 0. Hence, any two-round unkeyed Blowfish
function (U2) has 232 fixed points of the form (x, F (x)⊕ x).



Definition 2. A (4r′− 2)-round function K2SU2SK2SU2S · · ·SU2SK2 is called
a (4r′ − 2)-round Blowfish function, where S is the swap operation of Feistel
network.

Note that, we have r′ number of K2 and r′ − 1 number of U2 operations in a
(4r′ − 2)-round Blowfish function.

We show that when there are certain relations among the round subkeys used
in a (4r′ − 2)-round Blowfish function, then (4r′ − 2)-round Blowfish function
has many fixed points.

Proposition 1. Let B be a (4r′ − 2)-round Blowfish function. Assume that the
i-th K2 of B is the inverse of the (r′ − i + 1)-th K2 of B for i = 1, ..., b r′

2 c where
b r′

2 c is the integer part of r′
2 . If r′ is odd, then assume also that the ( r′+1

2 )-th K2

has 232 fixed points. Then the function B has 232 fixed points.

Proof. Let x be an input of B. The intermediate two-round in the center of
encryption is ( r′+1

2 )-th K2 if r′ is odd and ( r′
2 )-th U2 if r′ is even. U2 has 232

fixed points by Lemma 1 and the ( r′+1
2 )-th K2 also has 232 fixed points by

the assumption. Moreover, the i-th K2 is the inverse of (r′ − i + 1)-th K2 by
the assumption. Then, the input of the i-th K2 is equal to the output of the
(r′ − i + 1)-th K2 for any i = 1, ..., b r′

2 c corresponding to x means x is a fixed of
B. Hence, any fixed point of the central round produces a fixed point of B and
any fixed point of B gives a fixed point of the central round. Therefore, B has
232 fixed points.

ut
Observe that, the i-th K2 is the inverse of the (r′− i+1)-th K2 if and only if

their subkeys are equal in twist order. That is, if Pi1 , Pi2 , Pi3 , Pi4 are the subkeys
of i-th K2 and P ′i1 , P

′
i2

, P ′i3 , P
′
i4

are the subkeys of (r′− i+1)-th K2 then we have
Pi1 = P ′i4 , Pi2 = P ′i3 , Pi3 = P ′i2 and Pi4 = P ′i1 . On the other hand, a sufficient
condition for having 232 fixed points of ( r′+1

2 )-th K2 is given by Lemma 1.

Definition 3. A key is called a reflectively weak key with respect to a (4r′− 2)-
round Blowfish function B if B has 232 fixed points.

Assumptions of Proposition 1 and Lemma 1 are satisfied when certain equali-
ties among subkeys hold. In this case, we have many fixed points. In the following
theorem, we prove that this is the only case resulting in many fixed points, by
assuming that Blowfish is a random permutation when the assumptions do not
hold.

Theorem 1. Assume that a given key is reflectively weak with respect to an
(r − 2)-round Blowfish function B and also assume that B is a random permu-
tation when the assumptions of Proposition 1 and Lemma 1 do not hold. Then,
the subkeys of B satisfy the assumptions of Proposition 1 and Lemma 1 with a
probability approximately

1− 216·r − 1
232! · e + 216·r − 1



where e is the Euler constant.

Proof. Let XA be the event that B satisfies the assumptions of Proposition 1
and Lemma 1 and XF be the event that B has 232 fixed points. Assumptions of
Proposition 1 and Lemma 1 imply that we have r

2 equalities between r subkeys of
B. Each equality holds with a probability approximately 2−32. Hence, Pr(XA) =
2−16·r. We have Pr( XF | XA ) = 1 by Proposition 1. The rencontres numbers,
i.e., the number D(n,m) of permutations of n containing m fixed points, is given
as

D(n,m) =
n!
m!

n−m∑

k=0

(−1)k

k!

which immediately implies that D(n,m)
n! ≈ e−1

m! for large n (see [15] for details).
Since B is a random permutation when the assumptions of Proposition 1 and
Lemma 1 do not hold, we have Pr( XF | XA ) = e−1

232! . Then,

Pr(XF ) = Pr(XA) Pr( XF | XA ) + Pr(XA) Pr( XF | XA )

= 2−16·r +
e−1

232!
(1− 2−16·r).

Now, applying Bayes Rule we get,

Pr( XA | XF ) =
Pr( XF | XA ) · Pr(XA)

Pr(XF )
= 1− 216r − 1

232! · e + 216r − 1

which is the probability that the assumptions of Proposition 1 and Lemma 1
hold, given that B has 232 fixed points. ut
Remark 1. Using Stirling’s approximation, we have 232! ≈ (232)2

32
= 2237

and
the probability given in Theorem 1 is almost 1 (roughly 1−2−237

). Therefore, the
converses of both Proposition 1 and Lemma 1 are true with a probability almost
1. This probability affects the success rate of the attacks. However, Theorem 1
implies that the false alarm probability is negligible. Hence, we can assume that
we have r

2 equalities between r subkeys of B if B has 232 fixed points.

Example 1. Let r = 16 and let B be the 14-round Blowfish function obtained by
removing the first and the last rounds in Type III description of Blowfish. Then,
loosely speaking, a key is a reflectively weak key with respect to B means that
the following 7 equalities are satisfied: P4 = P15, P3 = P16, P5 = P14, P6 = P13,
P7 = P12, P8 = P11 and P9 = P10. The eighth equality already holds (0=0) by
the definition of Type III description of Blowfish.

4 Two Reflection Attacks

In this section, we introduce an attack and its improvement for some key lengths.
The improvement has two phases: Reflectively weak keys are collected in the pre-
computation phase, and the reflectively weak key is recovered during the on-line
phase.



4.1 First Attack

The attack consists of two parts. In the first part, we identify if the key is
reflectively weak. Subkeys of a reflectively weak key satisfies certain equalities
and we utilize these equalities to recover the key in the second part.

We use several known plaintext-ciphertext pairs to identify a reflectively weak
key . Let (x, y) denote plaintext and (x′, y′) denote the corresponding ciphertext.
Assume that a reflectively weak key is used with respect to the (r − 2)-round
Blowfish function B, obtained by removing the first and the last rounds in Type
III description of Blowfish. Then, B will have 232 fixed points by Proposition 1.
Observe that, if B has a fixed point for (x, y), then we have P1 ⊕ Pr+2 = x⊕ x′

and P2 ⊕ Pr+1 = y ⊕ y′. Hence, we expect the value (P1 ⊕ Pr+2, P2 ⊕ Pr+1)
to occur with probability 2−32 and other values to occur with probability 2−64

when a reflectively weak key is used. On the other hand, we expect that each
vector,(x⊕x′, y⊕y′), occurs with probability 2−64 if the key is not a reflectively
weak key. Consequently, we identify a reflectively weak key and obtain (P1 ⊕
Pr+2, P2 ⊕ Pr+1) with 234 known plaintexts.

Once we identify a reflectively weak key, we can recover information on r
2 +1

subkeys of P array since we have r
2 +1 equalities between r+2 subkeys. r

2 −1 of
the equalities are deduced by Theorem 1 and two equalities are obtained while
identifying the reflectively weak key. By guessing r

2 +1 subkeys we can determine
remaining r

2 + 1 subkeys and obtain the whole P array. One can recover the I
array and the key by reversing the key schedule by the following Lemma.

Lemma 2. Assume that the P array of a key is known. Then it is possible to
recover the key by r

2 + 1 encryptions.

Proof. For any i = 1, ..., r
2 +1, (P2i−1, P2i) is the encryption of the all-zero string

with the Blowfish algorithm with the subkeys

(P1, P2, · · · , P2i−3, P2i−2, I2i−1, I2i, · · · , Ir+1, Ir+2)

and a publicly known F function.
We encrypt the all-zero string up to r rounds with subkeys (P1, P2, · · · , Pr−1,

Pr) and obtain (Pr+1⊕Ir+2, Pr+2⊕Ir+1). Then, we can easily recover the subkeys
(Ir+1, Ir+2). We need to recover (Ir−1, Ir) by using the P array and (Ir+1, Ir+2),
and recover (Ir−3, Ir−2) by using the P array and (Ir−1, Ir, Ir+1, Ir+2). We repeat
this process until the whole I array is obtained. So, the problem of reversing the
key schedule and recovering the I array from the P array is reduced to the prob-
lem of recovering the value of (I2i−1, I2i) using (P1, P2, · · · , P2i−3, P2i−2, I2i+1,
I2i+2, · · · , Ir+1, Ir+2) and (P2i−1, P2i). Observe that this problem is recovering
the subkeys for two-round Blowfish given an input-output pair. The second sub-
key can be moved up to the first round and both subkeys can be considered as
an initial whitening. Hence we can decrypt the output for two rounds, XOR the
result with the input and obtain the subkeys (I2i−1, I2i). This process costs only
one Blowfish encryption. Therefore we recover the whole I array with a cost of
r
2 + 1 encryptions. Then the key is extracted from I with no cost. ut



Observe that repetition of 32 bit key words in the construction of the I array
allows one to check whether the obtained I array is a valid array. Although
several candidates may turn out to give valid I arrays, complexity of exhaustively
searching these candidates is dominated by the complexity of the attack.

We guess 16r+32 bits in total and each guess is checked in r
2 +1 encryptions

by Lemma 2. On the other hand, each step of exhaustive search costs r
2 + 514

encryptions. Therefore, the time complexity is 216r+32·(r+2)
r+1028 exhaustive search

steps. Hence we have the following theorem.

Theorem 2. Let B be the (r−2)-round Blowfish function obtained by removing
the first and the last rounds in the type III description of Blowfish. Then, one
may determine if an unknown key is a reflectively weak key with respect to B by
using approximately 234 known plaintexts and then recover the key in 216r+32·(r+2)

r+1028
steps if it is reflectively weak, where each step is a key loading time plus one
encryption.

Let us note that the time complexity of the attack is independent of the
key length. On the other hand, a key is a reflectively weak key with respect
to the (r − 2)-round Blowfish function B in Type III description of Blowfish if
r
2 −1 equalities are satisfied among r−2 subkeys of B by Theorem 1. Therefore,
assuming the Blowfish key schedule is random, the probability that a key is a
reflectively weak key is 232−16r.

4.2 Second Attack

For some key lengths, the previous attack can be improved using memory. We
search all the keys and collect reflectively weak keys in a table with their subkeys
(P1 ⊕ Pr+2, P2 ⊕ Pr+1), sorted with respect to (P1 ⊕ Pr+2, P2 ⊕ Pr+1). A key is
loaded to the key schedule and the P array is generated. Then, we check whether
the subkeys P2, ..., Pr satisfy the equalities so as to satisfy the assumptions of
Proposition 1. Note that the first check is the equality Pr/2+1 = Pr/2+2 and most
of the keys are eliminated in this step where it is enough to produce P arrays
up to Pr/2+2 which costs r

4 + 1 encryptions. We need to produce P subkeys up
to Pr/2+4 for only one in 232 keys, up to Pr/2+6 for only one in 264 keys and so
on. Hence, the total time complexity is given as

2k−1(r + 4)
r + 1028

+
2k−33(r + 8)

r + 1028
+

2k−65(r + 12)
r + 1028

+ · · · ≈ 2k−1(r + 4)
r + 1028

which seems to cost almost that of exhaustive search. However, it is done once
and faster than exhaustive search.

The table of weak keys occupies 2k+32−16r spaces in memory. The attack is
now straightforward. First, we determine if the unknown key is reflectively weak
with 234 known plaintexts as in the first attack. If the key is a reflectively weak
key, then we obtain (P1 ⊕ Pr+2, P2 ⊕ Pr+1). By searching the table sorted with
respect to (P1⊕Pr+2, P2⊕Pr+1), we get approximately 2(k+32−16r)/64 candidates.
The correct key can be recovered by searching these candidates. Therefore, the
time complexity will be 2(k+32−16r)/64 steps.



5 Improvement of Vaudenay’s Cryptanalysis on a Subset
of Keys

In [18], Vaudenay proposes a differential attack on 16-round Blowfish with 3 ·251

chosen plaintexts with the assumption that the F function is known and weak
in the sense that some of the S-boxes are not one to one. The attack works
for approximately 2k−15 keys. The number of chosen plaintexts required for the
attack can be generalized as 22+7·d r−2

2 e for r ≤ 10 and 3 · 22+7·d r−2
2 e for r ≥ 11.

We improve Vaudenay’s attack on 16-round Blowfish in a certain subset of
Vaudenay’s weak key class by reducing the amount of chosen plaintext required
for the attack. The improved version has two steps: In the first step, we recover
both whitening keys P17 and P18, by a reflection attack to reduce the algorithm
to 14 rounds. In the second step, we apply Vaudenay’s differential attack to the
14-round algorithm.

Assume that F is known and weak. Assume also that a reflectively weak
key with respect to the first 14 rounds of the Type II description of Blowfish
is used. The latter assumption can be checked by collecting roughly 234 vectors
(F (x) ⊕ y ⊕ x′, F (F (x) ⊕ y) ⊕ x ⊕ y′) where (x, y) is a plaintext and (x′, y′) is
the corresponding ciphertext. If a plaintext (x, y) is a fixed point of the first 14
rounds, then

(P18, P17) = (F (x)⊕ y ⊕ x′, F (F (x)⊕ y)⊕ x⊕ y′).

Hence, we expect one of the vectors to occur approximately four times in the
collection of approximately 234 plaintexts, encrypted by a reflectively weak key.
This vector is (P18, P17) since the probability that (P18, P17) occurs is slightly
more than 2−32 whereas the probability that any arbitrary vector occurs is ap-
proximately 2−64. Therefore, if a reflectively weak key with respect to the first 14
rounds of the Type II description is used, then we can identify it and recover the
whitening keys (P18, P17) by using approximately 234 known plaintexts. Then, we
peel the last two rounds, obtaining 14-round Blowfish. Applying the differential
attack in [18] to 14 round Blowfish requires 3 · 244 chosen plaintexts. Therefore,
we reduce the number of chosen plaintexts from 3 · 251 to 3 · 244.

The attack works if the key is weak both in terms of Vaudenay’s attack and
reflectively. F is weak for 2−15 of key space. On the other hand, by Proposition
1 and Theorem 1, if a key is reflectively weak with respect to the first 14 rounds
of the Type II description of Blowfish, then certain eight equalities between
subkeys in these 14 rounds hold. Thus, the probability that a reflectively weak
key is used is approximately 2−256 since each equation holds with probability
2−32. Therefore, the attack works for a subset of key space of size 2k−271.

6 Discussion of Attacks

A new definition of similarity degree between two functions is given in [10]. The
definition is as follows:



Definition 4. Let F1, F2 : GF (2)n → GF (2)m be two functions. Then, F1 and
F2 are called similar of degree (d1, d2) with probability p if the number of (x, x′) ∈
GF (2)n ×GF (2)n satisfying

HW (x⊕ x′) ≤ n− d1 ⇒ HW (F1(x)⊕ F2(x′)) ≤ m− d2

is p · 2n ·∑n−d1
i=0

(
n
i

)
where HW () is the Hamming Weight of binary vectors.

It is argued in [10] that round functions should not be similar of large degrees
with large probabilities. In Blowfish the functions producing round keys are given
as

φi : GF (2)k −→ GF (2)32800, φi(K) = (Pi, F ), for i = 1, ..., r.

Hence, any two functions φi and φj are similar of degree (k, 32768) with prob-
ability 1. In other words, they are similar of the full degree, (k, 32800), with
probability 2−32. That is, the functions producing round keys are highly sim-
ilar even though they are one way functions by themselves. We exploited this
property to mount a reflection attack on Blowfish. This example indicates that
ciphers having round functions which are similar of high degree with high prob-
ability, may be vulnerable to self similarity attacks even though they have very
complicated key schedules. Moreover, we argue that the attacks presented here
can be improved further by taking different degrees of similarity or by decreasing
the number of pairs of the functions compared.

Another property that we exploited is the relatively short block length of
Blowfish. Its key length can be as long as 448 bits whereas its block length is
always 64 bits. We propose that block length of a block cipher should not be
smaller than key length. This is also necessary to provide resistance to tradeoff
attacks [8, 1, 7] when the cipher is operated in a stream mode.

By Lemma 2, it is easy to take inverse of the key schedule of Blowfish and
deduce the key if one knows the P array . For example, if the P array were
updated once more after the F function were constructed in the key schedule,
then we could not recover the key from the P array. For 16-round Blowfish, this
change makes the key schedule only 1.7% slower than the original key schedule.

Unlike typical Feistel structure, Pi’s are XORed outside F . Adding the sub-
keys to left half of the Feistel network seems to hinder the self similarity attacks
since it destroys the typical symmetry of Feistel network. However, we recon-
structed the symmetry by describing Blowfish in different manners (see Figure
1). Moreover, one can push some of the subkey XORs to the whitening which
allows to increase the number of weak keys.

A recent phenomenon is how to evaluate an attack mounted on some so
called weak keys. Most conventional attacks such as differential cryptanalysis [3]
or linear cryptanalysis [11] work generally on any key. On the other hand, the
attacks working only on a subset of the keys form a new class. These attacks
have two important parameters: The number of weak keys and the workload to
identify that the unknown key is weak. For a given attack, let W be the workload
of identifying a weak key and w be the number weak keys. Given a set of 2k

w
randomly generated keys, we expect one weak key on the average. To identify the



weak key, we run the identification process on all 2k

w keys with a cost of W 2k

w . So,
a necessary condition for the success of the attack is W 2k

w < 2k, i.e., W < w. This
leads to the following criteria: Assuming that the keys are produced randomly,
we propose that an attack on weak keys should be considered successful, if the
workload of identification of a weak key is less than the number of weak keys, in
addition to the widely adopted phenomenon that the workload of key recovery
is less than that of exhaustive search.

Acknowledgments
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