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Abstract. In 2004, a new attack against SHA-1 has been proposed by
a team leaded by Wang [15]. The aim of this article® is to sophisticate
and improve Wang’s attack by using algebraic techniques. We introduce
new notions, namely semi-neutral bit and adjuster and propose then an
improved message modification technique based on algebraic techniques.
In the case of the 58-round SHA-1, the experimental complexity of our
improved attack is 23! SHA-1 computations, whereas Wang’s method
needs 2°* SHA-1 computations. We have found many new collisions for
the 58-round SHA-1. We also study the complexity of our attack for the
full SHA-1.
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1 Introduction

Conceptually, we can split Wang’s attack in four different steps.

Step 1. Choose a suitable 80 x 32-bit vector I'.

Step 2. Choose a differential characteristic.

Step 3. Find a set of sufficient conditions on a message m and the chain-
ing variables which guarantees with high probability that the message pair
(m,m + I') follows the differential characteristic. This implies that the two
messages do collide.

Step 4. Choose a message m randomly and modify it until all sufficient
conditions hold.

Using this method, Wang’s team succeeded in finding collisions on the most
popular hash functions, namely MD4, MD5, RIPEMD, SHA-0 and 58-round
SHA-1 [11,17,15]. The attack is conceptually simple, but its implementation
turns out to be very laborious in practice. To fill this gap between theory and
practice, several teams decided to compensate their lack of intuition by the power
of a computer, that is to say they tried to automatize the different steps of the
attack.

For instance, coding theory can be used for finding a suitable difference in Step
1[8] of the attack. Recently, De Canniére and Rechberger [3] presented an algo-
rithm allowing to find optimal differential characteristics in Step 2. The third
step is tightly coupled with the previous one; most sufficient conditions follow
from the choice of the differential characteristic.

We use algebraic techniques for actually finding collisions on 58-round SHA-1.
In this case, the complexity of our method for finding a collision is equivalent
to 23! SHA-1 computations (experimentally), whereas Wang’s method needs 234
SHA-1 computations. As a proof of concept, we have found many new collisions
for 58-round SHA-1, which have never been reported so far. We also apply our
method for the case of the full SHA-1, and study the complexity of our approach.

The key idea is to describe the message modification technique into an algebraic
framework. This is done by viewing the set of sufficient conditions as a non-
linear system of Boolean equations. We hope that this will be a first step towards
the use of algebraic tools (such as Grobner bases) in the cryptanalysis of hash
functions.

We will focus our attention on the last step of Wang’s et al attack [15]. Namely,
find a message satisfying a set of sufficient conditions depending on a disturbance
vector and a differential path. This message can be then use to produce a colli-
sion. We shall call conventional message modification the process [15] permitting
to construct such a suitable message. Here, we will present an improved message
modification technique. To do so, we introduce the concepts semi-neutral bits
and adjusters.

This paper is organized as follows. In Section 2, we give a description of SHA-
1. Along the way, we introduce the notations and definitions that will be used



throughout this paper. In Section 3, we describe our improved message modi-
fication technique. We explain how to use Gaussian elimination to construct a
set controlled relations from the sufficient conditions. We also introduce a new
notion, that we called semi-neutral bit, and describe then our improved message
modification. We also give an algebraic descriptions of our improved message
modification. This permits to give an interesting connection between the crypt-
analysis of hash functions and the use of Grobner bases. In Section 4, we present
the details of our method on 58-round SHA-1. In the appendix, we provide the
details for the full SHA-1.

2 Preliminaries

2.1 Description of SHA-1

The hash function SHA-1 generates a 160-bit hash value (or digest) from a mes-
sage of length less than 24 bits. The input message is padded and then processed
in 512-bit message blocks through the Merkle/Damgard iterative structure.

A 80-step compression function is then applied to each of these 512-bit message
blocks. It has two types of inputs: a chaining input of 160 bits and a message
input of 512 bits. The initial chaining value (called IV) is a set of fixed con-
stants, and the result of the last call to the compression function is the hash of
the message.

In SHA-1, the message expansion is defined as follows: each 512-bit block of the
padded message is divided into a 16 x 32-bit word (mg, my,..., m15), and then
expanded according to the following linear relation :

m; «— (mi_g DOm;_g Dm;_14 D mi_lg) < 1, for all 4,16 <1i < 79,

x < n, denoting the n-bit left rotation of a 32-bit word x. The compression
function is defined for all 7,1, < ¢ < 80 as follows:

a; — (ai—1 < 5) + fi(bi—1,ci—1,di—1) +ei—1 +mi_1 + k;
by < a;—1

c; +— b1 & 30

d; « ci—1

e; — di—1
The initial chaining value IV=(ay, by, cq, do, €0) being equal to:
(0267452301, 0ze fcdab89, 0z98badc fe, 0210325476, 0xc3d2el f0).

Note that we express as usual 32-bit words as hexadecimal numbers.

For n, 58 < n < 80, we call n-round SHA-1, the restriction of SHA-1 to the first
n rounds. The Boolean function f; and constant k; employed at each step are
defined as in Table 1.



Step | Boolean function f; Constant k;
1-20 |IF: (x Ay) V (mxz A 2) 025a827999
21 —40|XOR: 2y ® = 0z6edbebal
41 — 60|MAJ: (x Ay) V (z A 2) V (y A 2)|0x8 fabbede
61 —80|XOR: zdy & 2 0zcab2cld6

Table 1. Definition of f; and k; w.r.t. the step

2.2 Definition and notation

We will identify the ring Z/232Z with {0,1,2,...,232 — 1}. If we ignore carry
effects in the arithmetic of Z/2327Z, we can identify the ring Z/2327 with the
vector space F32 by using the canonical bijective mapping o:

0: $31231 + 1'30230 + -+ :L‘121 —|—£L'020 S Z/23QZ — (3;‘31,1130, . ,.’L‘o) S FgQ

Here and in the rest of the paper, we try to find a collision between two messages
m = (mg, ma,...,mz79) and m' = (mg, mj, ..., mhy) of (F%Q)SO. The correspond-
ing chaining variables will be denoted by a;, b;, ¢;, d;, e; and a}, b}, c;, d;, €} respec-

79 Y Yo Yo
1 — ! / / /
tively. For each m; = (m;31,mi30,...,mi0) and m; = (M 31, Mm] 39,-..,M; ),
we define:

Amw- =m,; ©® m;j S F27
Am; =m; @ m) € F3?
om; = o Y(my) — 0 1 (m)) € Z/23% 7.

Moreover, we set :

Nty = J L Omigmi )=, L (magymi ) = (1,0)
7 0 otherwise, 7 0 otherwise.

and

A+mi = (A+mi’31, ey A+mi,1, A+mi}0)7 A_mi = (A_mi’gl, ey A_mi,l, A_mi’()).

Note that Am; = ATm; & A~m! € F32. Similarly, we define A, AT, A~ § for
the chaining variables b;, ¢;, d; and e; (resp. b}, ¢}, d; and e}). Using the above

1) 71

definition, a differential characteristic and a differential are defined as follows.

Definition 1. We call differential characteristic the sequence :

(Ami, Aai, Abl, ACi, Adz, Aei)0<i<79,

and differential :

+ — + - + —
(A mi’A mi,A ai,A ai,...,A 61',A ei)0<i<79'



3 An Improved Message Modification Technique

Here, we will consider a n-round SHA-1, with n,58 < n < 80. We will focus
our attention on the last step of Wang’s attack. Thus, we will suppose that
a disturbance vector is fixed, as well as a suitable differential. We can then
determine sufficient conditions on the messages permitting to produce collisions.
Remark that sufficient conditions depend on the choice of a disturbance vector
and its differential.

3.1 How to calculate sufficient conditions on the a; 7

In this step, we only consider expanded messages by ignoring relations arising
from the message expansion. We compute the sufficient conditions on chaining
variables by adjusting b;, ¢; and d; such that for all 4,0 <i<n—1:

6f1(bza Ci,di) = 5ai+1 — (5@2 K 5) — (561' — 5m1

In this calculation, we must adjust carry effects by “hand”. It is indeed difficult to
calculate this full-automatically. In Table 2 and Table 6, we present the sufficient
conditions that we have obtained on the chaining variables for 58-round and the
full SHA-1, respectively. Note that sufficient conditions on the messages are also
quoted in this table.

3.2 Gaussian Elimination and Controlled Relations

. o 0<;5<31 :
To calculate sufficient conditions on the {m; ;};=/=.", we take into account

that Atm;; = 1 implies m; ; = 0 and A~ m,; = 0 implies m, ; = 1. We also
consider the relations derived from the key expansion :

My, j < (mi_37j D mi—g; Dmi—14,; D mi_16,j) & 1, forall 4,16 <i<n—1.

We shall call controlled relations a particular set of Fa-linear equations on the
m;,; on one hand, and on the chaining variables a; ; on the other. For the m; j,
we consider the relations obtained by performing a Gaussian elimination on the
linear equations defined by the key expansion, and the equations derived from the
sufficient conditions. To perform this Gaussian elimination, we have considered
the following order on the m; ; :

my o <mj, if i’ <iori =iandj <j.

For n = 58, we obtain for instance the following controlled relations :

mis,31 = 1, mis,30 = 1, mis,29 = 0,m15,28 +mM10,28 + Mg 29 +M7,29 + My,08 +Mo28 = 1,
Mi5,27 + M14,25 + M12,28 + Mi2,26 + M10,28 + M9, 27 + My 25 + Mg 29 + Mg 28 + M7 28 +
mr,27 + Me,26 + Ms5,28 + M4 26 + M3,25 + M2,28 + M1,25 + Mo,28 = 1, M15,26 + M10,28 +
m10,26 + M8,28 + Mg 27 + M7 27 + Me,29 + M5,27 + M4 26 + M2,27 + M2,26 + Mo27 = 1,
mi5,25 + M11,28 + M10,27 + M1io,25 + Mo,28 + Mg, 27 + Msg,26 + M7,26 + Me,29 + Me,28 +



Ms,26 + Ma,25 + M3,28 + M2,28 + M2,26 + M2 25 + M1,28 + Mo,28 + Mo,26 = 0, M15,24 +
mi2,28 + Mi1,27 + M10,26 + M10,24 + Mg, 28 + Mg 27 + Msg,29 + Mg 26 + Mg 25 + Mr7,25 +
me,29 +Meg,28 + Mg 27 + M5 25 + M4 28 + My 24 + M3 28 + M3 27 + M2 27 + M2 25 + M2 24 +
m1,28 +mM1,27 +mo,27 +Mo,25 = 1, m15,23 +M12,28 +M12,27 +M11,26 +M10,25 +M10,23 +
Mg,27 + Mg 26 + Mg, 28 + M8 25 + Mg 24 + M7 29 + M7 24 + Mg 28 + Me,27 + Me,26 + M5,24 +
Ma,27 +M4, 23 +M3,27 +M3,26 +M2,26 +M2,24 +M2 23 +M1,27 +M1,26 +M0,26 +Mo,24 = 1,
M15,22 +M14,25 +M12,28 +M12,27 +M11,25 + M10,27 +M10,24 + M10,22 + M9 28 + M9 27 +
mg 26 + Mg 27 + Mg 24 + Mg 23 + M7 28 + M7 27 + M7 23 + M6 27 + Me,25 + M5, 23 + M4 28 +
M4,27 + M4 22 +M3,26 +M2,28 +M2 27 +M2 25 + M2 23+ M2 22 +Mm1 26 +Mo,25 +Mp,23 = 0,
.., ms0+m3o+mi31 =1, mas31 =0, maz0 =0, ma29 =0, maeg =0, ma1 =1,
m3,30 = 1, ma29 =0, m3e =1, ma31 =0, ma3zo =1, mao =0, masg =1, mo1 =1,
mao =1, mi30 =0 mi20 =1 ms5=0 mis=1 mi1 =1, mos =0, moz30 =0,
mo,29 = 0.
The controlled relations also include a subset of the sufficient conditions on the
chaining variables. Precisely, we will only consider the conditions involving a; ;,
with ¢ < R. The bound R is a positive integer that will be defined later. We will
call uncontrolled relations, the sufficient conditions which are not a controlled
relation.

We define now the notions of semi-neutral bit, control bit and adjuster. The
concept of semi-neutral bit is closely related to Biham and Chen’s “neutral bit”
[2] and Klima’s “tunnels” [22]. Namely, if the effect of flipping a bit corresponding
to a chaining variable can be “easily” eliminated (i.e. such that all conditions
previously satisfied can be satisfied by modifying few bits), then we shall call
this bit a semi-neutral bit. Thus, the effect of changing a semi-neutral bit can be
eliminated by controlling a little number of bits. We shall call these particular
bits adjusters. Note that the choice of semi-neutral bits and adjusters is not
unique. Thus, we have to choose it heuristically.

We emphasize that each m; ; can be viewed as a polynomial on the ay ¢’s, with
k < i+ 1. Indeed, each m; ; can be viewed as a Boolean function on the ay ’s,
with & < i + 1, by the definition of SHA-1. Note that when we view m; ; as
a Boolean function, we do not approximate (based on approximating MAJ by
XOR, ignoring carry effect, etc.), but consider it as exact polynomial on the
ay,e. Control bits are determined for each controlled relation. Control bits are
chosen among the aj ¢ which appear as a leading term or a term near’ leading
term in m; ;, where m; ; is considered as a Boolean function on the ay . The
notion of leading term being related to a term ordering, we mention that we
have considered here the following order on the ay :

age < ap o LK <kork'=Fkand ¢ </

3.3 Conventional/Advanced Message Modification Techniques

The last step of Wang’s attack consists of randomly choosing a message and
modify some of its bits until all sufficient conditions are satisfied. To our knowl-
edge, this technique has been described for the first time in [18,19]. We shall
call this method conventional message modification technique.



Here, we introduce an improved message modification. The conventional message
modification will be used to obtain a “pre-collision”, i.e. a collision from the first
round to a given round R. This bound R will depend on the number n of rounds
considered. We take R = 23 in the case of 58-round SHA-1 and R = 26 for the
full SHA-1. The improved message modification will then allow to extend the
pre-collision into a real collision on n-round SHA-1.

We would like to emphasize that our procedure will modify the chaining variable
and not the message. Since IV=(ay, by, co, do, €g) is fixed, it is clear that SHA-1
induces a bijection between (mg,m1, ..., my5) and (a1, as,. .., a16). This implies
that a modification on the a; ; can be mapped into a modification on the m; ;.

Using our new terminology, we describe the conventional message modification.
For this, we use a list of controlled relations Cg, and a list of control bits Cp.

Algorithm 1 Conventional Message Modification

CMM

Input : A positive integer R, a list Cr of controlled relations, and a list Cg of
control bits

Output : a = (a1,as,...,a16) € (F§2)16 satisfying all the controlled relations
Randomly choose (a1,as,...,a16) € (]ng)w
a «— (al,ag,...,am)

While all the controlled relations C'g are not satisfied do
Perform an ezhaustive search on the bits a; j € Cp
If all the relations Cp are satisfied then return the updaded a

Else a < Randomly choose (a1, as,...,a1g) € (]FSQ) 16

The CMM algorithm permits then to find a collision on R-round SHA-1. Using
semi-neutral bits and adjusters, we present an improved algorithm permitting
to find a collision on a n-round SHA-1 (with n > R). The new procedure is as
follows.

Algorithm 2 Improved Message Modification

IMM

Input : Positive integers n, R, two lists (SNB, Ad) of semi-neutral bits and
adjusters, a list Cr of controlled relations, a list C'g of control bits, and a list
Sc of sufficient conditions

Output : a = (a1, az,...,a16) € (F%Q)w satisfying all the sufficient conditions
a = (al, az, ..., CL16) — CMM(R, CR, CB)

While all the sufficient conditions of S¢ are not satisfied do

Adjust the a; ; of a corresponding to a semi-neutral bit of SNB or an adjuster
of Ad

EndWhile

Return a

Remark 1. We mention that a different version of the CMM and IMM algorithms
can be found in [9, 10]. These versions could be more suitable for those wishing
to actually implement these two algorithms.



We now analyze the complexity of the IMM algorithm for finding a collision on
58-round SHA-1. In this case, we choose R = 23, i.e. the CMM algorithm will be
used to find a collision on 23-round SHA-1. It will remain 5 uncontrolled relations
in rounds 17-23. Therefore, the CMM algorithm needs at most 2° iterations for
returning a collision on 23-round SHA-1. There are 29 remaining conditions
from rounds 23-58. To adjust these 29 conditions, we use 21 semi-neutral bits
and 16 adjusters. Experimentally, the total complexity is improved to 23! SHA-1
computation — with our latest implementation — whereas Wang’s method needs
theoretically 234 SHA-1 computations. Note that the cost of the IMM algorithm
is dominated by the exhaustive search among 21 semi-neutral bits, which means
that we could neglect the cost of the CMM algorithm.

As a proof of concept, we give here a new collision on 58-round SHA-1.

m = 0x1lead6636319 fe59edea7ddchbc79616420ad9523a f98 f28db0ad135d0edd62aec
6¢2da52¢3c71600606ec74b2002d545ebdd9e4663 f1563194 f497592dd1506 f9
m = 0x3ead6636519 febac2ea7dd88e7961602ead95278998 f28d98ad135d1edd62acc
6¢2da52 f7c7160e446ec74 £2502d540c1dd9e466b f 1563596 f497593 fd150699

3.4 An Algebraic Description of the Improved Message Modification

We present here an algebraic description of the IMM and CMM algorithms which
could be useful for further improvements. For this, we remark that the CMM
algorithm is equivalent to the solving of a polynomial system of equations via
controlled relations with control bits as unknown variables. Similarly, the while-
loop of the IMM algorithm is equivalent to the solving of an algebraic system
of equations via sufficient conditions with semi-neutral bits and adjusters as
unknown variables.

In other words, let X = {Xj ; (1)2321 and let Fo[X] be the polynomial ring over
F5 whose variables are X. Remark that sufficient conditions can be considered
as polynomial equations via Boolean functions. Thus, they can be expressed as
algebraic polynomials on the a; ;. Therefore — by replacing each a; ; by the vari-
able X; ; — we can associate a set of polynomials on F[X] to the set of sufficient
conditions. With an obvious notation, we shall call controlled polynomial (resp.
uncontrolled polynomial) the polynomial associated to a controlled relation (resp.
uncontrolled relation).

Let J be an ideal in F3[X] generated by {X? + X (1)2;217 ie. J= (X7, +
X13>?§Z§21 Let then B,, be a quotient ring Fo[X]/J. Note that B, represents
the set of all Boolean functions on the variables X; ;.

Let £ = (f1, f2,...) be the set of controlled polynomials. Note that all controlled
polynomials of f are in the subring Fs[{X; ; (ng]g{l], where R is determined by
n (for instance, R = 23 when n = 58 and R = 26 when n = 80).

For a randomly taken a = (a1, as,...,a16) € (F3?)16, let Cr(a) be the system



obtain from the sufficient conditions by replacing each variables X; ; — not cor-
responding to a control bit — by a; ;. Similarly, let Sc(a) be the system obtain
from the sufficient conditions by replacing each variables X; ; — not correspond-
ing to a semi-neutral bit or adjuster — by a; ;. In this setting, the CMM and
IMM algorithms can roughly be described as follows:

Algorithm 3 Algebraic Message Modification

Randomly choose (a1, as,...,a1) € (]F%Q)16

a < (al,ag,...,aw)

Solve the algebraic system of equations Cr(a): The solutions correspond to
affectations of control bits verifying all controlled polynomials
Solve the algebraic system of equations Sc(a): The solutions correspond to
affectations of semi-neutral bits and adjusters verifying all
uncontrolled polynomials

Update a according to the solutions of the two previous systems

Return a

Relation between message modification and decoding of error-correcting
codes. Let S be the set of all points in F' = (IF§2) 10 satisfying advanced suffi-
cient conditions on {a; ;}. Note that S is a non-linear subset of F' because there
are non-linear conditions. Then, for a given a € F' which is not necessarily con-
tained in S, to find an element in S by modifying a is analogous to a decoding
problem in error-correcting codes. Hence, a conventional message modification
and a proposed improved message modification including changing semi-neutral
bits can be viewed as an error-correcting process for a non-linear code S in F.
More precisely, for a non-linear code S in F'| an error-correction can be achieved
by manipulating control bits and semi-neutral bits.

4 Analysis of the 58-round SHA-1 using the Improved
Message Modification

In this part, we detail the different steps of our technique for finding a collision
on 58-round SHA-1. In Table 2, we give the sufficient conditions. Note that we
have only quoted the sufficient conditions for the first 20 rounds due to space
limitation. For the complete list of the conditions, see [9,10]. The control bits
and controlled relations are given in Table 3. Semi-neutral bits and adjusters are
given in Table 4.

—’a’ means a; ; = @;—1,;

— A’ means a;; = a;—1; +1

=P’ means a; j = @;_1,(j+2 mod 32)

— B’ means a;j; = ;_1,(j+2 mod 32) T+ 1

—’c’ means a;j = G;—2,(j+2 mod 32)

—'C’ means a;j; = @;_2 (j+2 mod 32) + 1

— 'L’ means the leading term of controlled relation of Table 3
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Ieq?

w, 'W: adjust a; ; so that m;yq1; = 0,1, respectively

= v, 'V adjust a; j so that m; ;127 mod 32) = 0, 1, respectively

—’h’: adjust a; ; so that corresponding controlled relation including m;41; as
leading term holds

— 'r’ means to adjust a;; so that corresponding controlled relation including
M (j+27 mod 32) as leading term holds

—='x’,’y’: adjust aj41,5—1, @i, j—1 so that m; ; = 0, respectively

=X, ’Y’: adjust ai41,5—1, @i j—1 so that m; ; = 1, respectively

— 'N’: semi-neutral bit

—’q’ : adjust a; ; so that relations after 17-round hold

In this case, the set of bits corresponding to 'q’ is exactly same to the set of

adjusters.

message chaining
variable|31 - 24 23 -16 15-8 8-0 variable |31 - 24 23 -16 15-8 8-0
mg aqg 01100111 01000101 00100011 00000001
mq ay 101-==== ———————= ——====m - 1-allaa
mo ag 1--00010
Mg ag 0a-1a0-0
my ay 0laaa--- 0-10-100
mg as --00100- 0---01-1
mg ag 11--0110 -a-1001- 01100010 1-alli-1
mey ag -1--1110 alali11- -101-001 1---0-10
m - a -0----10 0000000a a00lal-- 100-0-1-
mg -- -0-1--1- ag 11000100 00000000 101-1-1-
miQ e ajp 11111011 11100000 00--0-1-
miq - -1-1--1- ayq  |1-0----= -----—- 01111110 11----0-
mig - - aig —mmmm- -l--a—-
mi3 ajg 1---01-
mi4 alq S
mis ajs -0--0
mi6 alg p—
miy a7 ~100-
mig aqg 1-1--mmm —mmmmmom —ommmmom oo 00-
mig 19 0
moQ agq ~C-mmmm= —mmmmmmm —mmmmm—m oo A-—-

Table 2. Sufficient condition on the m; ; (resp. a; ;)

The conditions remaining after the conventional message modification are listed
below: a173 = 1,a172 = 0,a171 = 0,a261 = 1,a27,0 = 1,a201 = 0,a30,1
0,a33,1 = 1,a371 = 1,a39,1 = 0,a41,1 = 0,a43,1 = 0,a20,30 + a18,0 = 1,a21,30 +
ag0,0 = 0,a24,30 + a220 = 0,a2530 + @240 = 1,025 3 + a243 = 0,a26 2 + a252
1,a28,30 + az,0 = 0,a28,3 + asr3 = 1,a2930 + a0 = 1,a293 + a3 =1,a323
az1,3 = 1,a36,3 + ass3 = 1,a383 +asr3z = 1,a39,31 + ass,1 = 1,a40,3 + azg3 =
1,a40,31 +a3s,1 = 1,a41,31 +a40,1 = 1,a4231 +as0,1 = 1,a43 31 +a421 = 1,a423+
ag13 = 1,a4431 + @421 = 1,a4531 + G441 = 1.

There are five conditions a17,3 = 1,a17,2 = 0, a17,1=0, @20,30 + @180 = 1, a21 30 +
a20,0 = 0 which are only related to first 23 rounds. For other 29 conditions,
we adjust by using 21 semi-neutral bits and 11 adjusters as explained in the
improved message modification algorithm (see Algorithm 2).

+
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Control Control Controlled relation r;
sequence bit

54 b;

s124 16,7, 915,95 @14.9 a23.0 =0

5123 16,9 az22 +az12=1

s122 916,13, 215,15, @15,12, 215,11 [922,1 = 1

s121 216,10 a21,3 + m20,3 =0

5120 16,8 a21,1 =1

5119 a16,15> ¢16,20 a20,3 +mi19,3 =1

5118 16,17 a19.0 =0

s117 216,21 18,31 = 1

5116 216,19 a18,29 =1

$115 13,4 18,2 =

s114 13,3 a18,1 =

5113 14,15 17,30 =

s112 216,31 mi15,31 =

S111 16,29 m15,29 =0

5110 16,28 m15,28 + m10,28 + Mg 29 + M7 29 + My 28 + M2 28 =

5109 a16,27: 313,28 mi5,27 +m14 25 +m12 28 + m12 26 T ™m10,28 + M9 27 + Mg 25 + mg 29 +
mg 28 +my 28 +m7 27 +mg 26 +m5,28 +my 26 +m3,25+m2 28 +m1 25+
mo,28 =1

5108 a16,26 m15,26 + m10,28 + m10,26 + M8, 28+m8 27 + m7 27 + mg 29 + m5 27 +
my 96 + ma 07 + M2 06 + Mo 07 = 1

$107 a1e,25 m15,25 +m11,28 + M10,27 + ™M10,25 + ™9 28 + Mg 27 + mg 26 + M7 26 +
me,29 T Mg, 28 T M5 26 + M4 25 +m3 28 +m2 28 +m2 26 +™M2,25+m1 28+
mg,28 + mp,26 =0

$106 a16,24 mi15,24 +m12 28 +m11,27 +m10,26 +m10,24 + M9 28 + mg 27 +mg 29 +
mg,26 Mg, 25+m7 25 +m6,20 + M6, 28 +m6 27+m5 25 +my 28 +ma 24+
m3 28 +m3 27 +mo 27+ma 25+ma 24+m1 28+m1 27+m0,27+m0,25 = 1

5105 a16,23 mi5,23 +m12 28 +mi12,27 +m11,26 +™m10,25 +™10,23 + M9 27 +mg 26 +
mg 28 +mg 25 +mg 24 + m7 29 +m7 04 +mg, 28 +mg 27+ MG, 26 +m5.24 +
my 27 +my 23+m3 27 +m3 26 +m2 26 +m2 24 +m2 23+m1,27+m1 26+
mg,26 + mp,24 =1

5104 a16,22 mi5 22 +mi4,25 +m12 28 +™m12 27 +™m11, 25 +m10,27 +™10,24 +™10,22 +
mg 28 +mg 27 +mg 26+ mg 27 +mg 24 +mg 23+m7 28+ m7 27 +my7 23+
meg 27 +me 25 +m5 23 +my 28 +my 27 +my 22 +m3 26 +m2 28 +m2 27+
mo 95 + mg 93 + mg 99 + mq 9g + mg o5 + My 23 =

5103 16,6 mi15.6 =1

5102 16,5 mi15,5 =1

S101 a16.4 mi5.4 + mio25 + mi0.4 F M4 + myg Mo s - mo g =

s3 a1,28 my1 =1

s2 a1,25 mi1,30 =0

S1 a1,24 my1,29 =1

S0 a1,23 miy 29 =1

Table 3. Control bits and controlled relations




12

message

variable 31-24 23-16 15-8 8-0 chaining
mq ==0-==== —mmmmmom —omoooo- - -—= variable |31 -24 23-16 15-8 8-0
my --01--1- aqg 01100111 01000101 00100011 00000001
mo aj Y AR 1-al0aa
mg ao 01100vVv 1-w00010
my ag 0010--Vv 0aX1a0Wo
mg agq 11010vv- -01----—- Olaaa--- 0W10-100
meg as 10w01laV- -1-0l-aa --00100- Ow--01W1
my ag 11W-0110 -a-1001- 01100010 1-a11iWi
mg ag wilx-1110 alallll- -101-001 1---0-10
mg -OL1--1L ag hOXvvv10 00000002 a0Olal-- 100X0-1h
miQ -OL-——-L ag 00XVrr-V 11000100 00000000 101-1-1y
myq aiQ Owl-rv-v 11111011 11100000 00hWO-1h
myo a1 1w0--V-V ~1 01111110 11x---0Y
my3 OLLLLL-L LL —OLLLLLL a0 [ i e — ~1XWa-Wh
™4 LLOLLL-L LLLL- —-LLLLLO a3 1W0——vv— —rr--———- ——————— - 1-qq01y
mis LLOLLLLL LL- -11LLLLL ajq 1rhhvvVh hh- QNNNNNgN Nihhhihh
mig ajs OrwhhhVh hhhh-—-N_gNNqqNqN NNhhOhhO
miy a6 Wivhhhhh hhqNQNgN NNgNNqqq qWWhahhh
mq ajr I 100-
mig aig 1-1--——- = - 00—
mag ajg
m21 @20
m22 @21
m23 a22
moy @23
mos a24
mog a5
mo7 a26
m2g az7
m29 azg
m30 a29
m31 230
m32 a3l
m33 @32
m34 a33
m35 @34
m36 a35
ms37 aze
m38 a37
39 a38
40 a39
m41 a40
m42 a41
m43 42
m44 a43
m4s5 44
mye e a4s5
my o a; (i > 46)

my (i > 48)

Table 4. Semi-neutral bits and adjusters
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A concluding Note

This paper present an improved method for finding collision on SHA-1. To do so,
we use algebraic techniques for describing the message modification technique
and propose an improvement. The details of our attack can be found in the
appendices. The proposed method improves the complexity of an attack against
58-round SHA-1 and we found many new collisions.
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Appendix

A Analysis of the full SHA-1

We present here the details of our method on the full SHA-1

A.1 Disturbance vector and Differential

We start from the disturbance vector and differential given by Wang et al [13].
From these, we construct a new differential. We modify Wang’s differential by
changing Aaj, 31 and Aayy 5. For our method, it is important to choose A*m
A™m, ATa and A~a Carefully A bad choice of plus/minus could lead to an
underdeﬁned system of equations (as result of the Gaussian elimination). For
this reason, we have to correct Wang’s differential. We present in Table 5 the
new differential constructed.

Am ATm AT m Aa Ata A" a

0 [a0000003 00000001 a0000002 0 { 00000000 00000000 00000000
1 (20000030 20000020 00000010 1 | e0000001 0000000 40000001
2 [60000000 60000000 00000000 2 20000004 20000000 00000004
3 1e000002a 40000000 a000002a 3 [cO07fff84 803fff84 40400000
4 [20000043 20000042 00000001 4 [ 800030e2 800010a0 00002042
5 [b0000040 a0000000 10000040 5 [ 084080b0 08008020 00400090
6 6
7 7
8 8
9 9

d0000053 40000042 00000011 80003a00 00001400 80002000
d0000022 40000000 00000022 0fff8001 08000001 07ff8000
20000000 00000000 20000000 00000008 00000008 00000000
60000032 20000030 40000002 80000101 80000100 00000001

sl ol o] o] o] o] o] o] s

00000002 00000002 00000000
00000100 00000000 00000100
00000002 00000002 00000000
00000000 00000000 00000000
00000000 00000000 00000000

60000043 60000041 00000002 10
11
12
13
14
15/ 00000001 00000001 00000000
16
17
18
19
20

10

11{20000040 00000000 20000040
120000042 0000000 20000042
60000002 00000002 60000000
80000001 00000001 80000000
00000020 00000020 00000000
00000003 00000002 00000001
40000052 00000002 40000050
40000040 00000000 40000040
0000052 00000002 e0000050
20000000 00000000 a0000000

5/ 00000000 00000000 00000000
80000002 80000002 00000000
00000002 00000002 00000000
80000002 80000002 00000000
00000000 00000000 00000000

S[e === ===~~~

0000004a 00000002 00000048 7 = 78[ 00000000 00000000 00000000

i="T78
i = 79/0000080a 00000808 00000002 1 = 79[ 00000040 00000000 00000040
i = 80[00000000 00000000 00000000 < = 80 00000000 00000000 00000000

Table 5. A differential for the full SHA-1

A.2 Sufficient Conditions

For the disturbance vector, and the differential given in the previous step, we
give in Table 6 the sufficient conditions for the full SHA-1. In Table 6: ’a’ means
a;; = aj—1,5, A means a;; = a;—1; + 1, '’ means a;; = @;_1,(j+2 mod 32); B
means a;j; = G;j_1,(j+2 mod 32) T 1, 'C’ Means a; ; = G;_2 (j+2 mod 32) and 'C’
means a; ; = ai,Q’(jJrz mod 32) + 1.
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message chaining

variable[31 - 24 23 - 16 15 - 8 8-0 variable [31 - 24 23 - 16 15 - 8 8-0
mq aqg 01100111 01000101 00100011 00000001
mq aq 010----0 -0-01-0- 10-0-10- ---a0101
mo ag -100---1 OaalOala 0lalaO11 1--allal
mg ag 01011 -1000000 00000000 01--alal
my -0----0 ayq 0-101--a ---10000 00101000 010---10
mg —= as 0-0101-1 -1-11110 00111-00 10010100
meg ag 1-0ala0a aOalaaa- --10010-
mey ag --0-0111 11111111 111-010-
mg ag -10---01 11110000 010-111-
mgqg ag 00----11 11111111 111----0
miQ ajg |-ii--
myg ajy
mi2 aig
mi3 a13
migq aiq
mis ais
mie aje
mi7 17
mig alg
mi9 @19
m20 a20
m7g —1-0- azs b
mr7g ----0-1- (224 T 1------
m80

280
Table 6. Sufficient conditions for the full SHA-1

By a Gaussian elimination, we reduce all conditions on the m;. The result of
Gaussian elimination is listed below. There are 167 conditions on m; ;

m15,31 = 0, m1530 = 1, m15,29 = 1, m15.28 + m1p,28 + myq,28 + m2,28 = 0, m15 27 + my1p,27 + mg,28 +
my 27 + m2 28 + ma 27 + mg 28 = 1, m15 26 + m10,28 + m10,26 + mg,28 + mg 27 + m7 27 + m5 27 + my 26 +
mg 27 + mg 26 + mg 27 =0, m15,25 + m11,28 + m10,27 + m10,25 + Mg, 28 + mg 27 + mg 26 + m7,26 + ™Mm5,26 +
myg 25 + m3 28 + m2 28 +m2 26 +m2 25+ my 28 +mg 28 + mo,26 =0, m1524 +m12,28 +m11,27 +m10,26
my10,24 + mg 28 + mg 27 + mg 26 + Mg 25 + m7 25 +me 27 + m5 25 + my 28 + My 24 + m3 28 + M3 27 + M3 27 +
mg 25 +m2 24 +my 28 +my 27 +mg 27 +mg 25 = 1, m15,23 +m12,28 +m12 27 +m11 26 +m10,25 + m10,23 +
mg 27 + mg 26 + mg,28 +mg 25 + mg 24 + my7 24 +m7 0+ mg 27 + Mg 26 +™Mm5,24 + My 27 + My 23 +m3 27 +
m3 26 + m2 26 + m2 24 +m2 23+ my 30+ my 27 +my1 26 +m1,0+ mp,26 +m0,24 =0,

ms5.0 + m1,30 + m1,0 = 0, mg 31 = 0, myg3p =0, mya9 =0, myg =0, myy =0 myog =1 mzgz =1,
m3 30 = 0, mg 29 =1, mgps5 =1, mg3 =1, mgq =1, mgg+myo =0, mg3z =1, my3zo =0, myo9 =0,
mg,0 +m1,30 =1, m1,31 +my30 =1, mp29 =0, my5 =0, myyq =1 mg3 =1, mg3z0 =0, mg29 =1,

mg,1 =1, mg,o = 0.

A.3 Control bits and Controlled Relations

The control bits and controlled relations are presented in Table 7.
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ctrl. seq.|control bits|controlled relation

5168 a15,8 a30,2 +ag9,2 =1

$167 16,6 a26,2 +az52 =1

5166 a15,7 ag5,3 +ag43 =0

5165 13,7 a4,3 +a233=0

$164 13,9 a23.0 =0

5163 216,10 |222,3 +a21,3=0

5162 a16,11 |921,29 +@20,31 =0

S161 16,8 az1,1 =0

5160 16,9 a20,29 =0

5159 @15,10 [920,3 + 2193 =0

5158 15,11 [219,31 =0

S157 a15,9 a19,29 + 18,31 =0

5156 a14.8 a19.1 =0

S155 214,11 [218,31 =1

$154 15,14 [218,29 =1

$153 13,8 a1g81 =0

$152 213,11 [217,31 =0

S151 213,10 [217,30 =0

$150 13,13 |e17,1 =0

$149 16,31 |M15,31 =

5148 16,29 |™M15,29 =1

$147 16,28 |™M15,28 + ™m10,28 + m4,28 + m2.28 =0

5146 216,27 |™15,27 + ™m10,27 + mg 28 + Mm4,27 + m3 28 + m2 27 + mp,28 =1

5145 a16,26 |™15,26 +™10,28 +™10,26 +™m8,28 + mg 27 +m7 27 +mp5 27 +my 26 +m2 27 +m2 26+
mp,27 =0

5144 a16,25 |™m15,25 + m11,28 + m10,27 + Mm10,25 + Mg 28 + mg 27 + mg 26 + m7,26 + M5,26 +
m4,25 + m3 28 + M2 28 + M3 .26 + M2 25 + ™1 28 + Mmp,28 + mg,26 =0

5143 a16,24 |m15,24 + m12,28 + m11,27 + m10,26 + M10,24 + ™9, 28 + ™9 27 + mg 26 + Mmg,25 +
my 25 +meg 27 + M5 25 + Mg 28 + M4 24 + M3 28 + M3 27 + M2 27 + M2 25 + M3 24 +
mi,28 + m1,27 + mp,27 + mp,25 =1

s142 a16,23 |m15,23 + m12,28 + m12,27 + m11,26 + ™m10,25 + Mm10,23 + Mg, 27 + mg 26 + Mg 28 +
mg o5 + mg 24 + m7 24 + m7 o+ me 27 +me,26 +m5,24 + My 27 +my 23 +m3 27+
m3,26 + m2,26 +m2,24 +m2 23 +m1,30 +m1,27 +m1,26 +m1,0+mp,26 +™m0,24 =0

s3 a2.5 my5 =0

s2 a1,26 m1,31 +m1.30 =1

S1 @1,23 mi,29 =0

Table 7. Control bits and controlled relations for the full SHA-1

Now we give the semi-neutral bits and adjuster in Table 8. In this table :

—’a’,’A’, b, 'B’, ’c’, ’C’: as in Section A.2.
— 'L’ means the leading term of controlled relation of Table 7.

Yeq?

— W', 'W: adjust a; ; so that m;y; ; = 0,1, respectively.

— v, 'V': adjust a; ; so that m; (127 mod 32) = 0,1, respectively.

— ’h’: adjust a;; so that corresponding controlled relation including m;41 ; as
leading term holds.

— 'r’ means to adjust a; ; so that corresponding controlled relation including
M (j+27 mod 32) as leading term holds.

= %', 'y’ adjust a;41,j-1, a5,;—1 so that m; ; = 0, respectively.

— X, ’Y’: adjust a;41,j—1, a4,;—1 so that m; ; = 1, respectively.

— 'N’: semi-neutral bit.

— ’q’ : adjust a; ; so that relations after 17-round hold.

— 'F’ . etc.
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For the full SHA-1, the CMM algorithm will be used to find a collision on 26-
round SHA-1. After the conventional message modification, it will remain the 9
following conditions; which are only related to rounds 17-26:

ai7,3 = 0, a18,3+a17,3 = 0, aza2+a21,2 = 0, a23,1 = 0, a24,30+a22,0 = 0, as4,3+az23,3 =0,
a25,30 + a24,0 = 1, azs5,1 =0, azs,1 = 1.

Uncontrolled Relations. There is 64 uncontrolled relations on the a; ;:
az7,0 = 0, a28,30 + az26,0 = 1, a2s,3 + az27,3 = 0, a29,30 + a28,0 = 0, a29,3 + az83 = 0,
a29,1 = 1, azo,1 = 0, az1,0 =1, az2,30 + a30,0 = 0, a33,30 + az2,0 = 0, a333 + azz,3 =0,
a34,3+a333 =1, aza2 +asz2 =1, ass;1 =0, azs;1 =0, azs,0 = 0, aze,30 + az4,0 = 0,
ase,3+a3s,3 = 1, asrz0+ase,0 = 1, az7r,3+ase,3 =1, asr,1 =1, ass,1 =0, a40,31+0a39,1 =
1, as0,3 +az9,3 = 1, as1,1 = 1, aa2,31 + as0,1 = 1, aa331 + aa2,1 = 1, 443 + aa33 =
1, ass1 = 0, as631 +aaa1 = 1, ase3 + ass53 = 1, a7 31 + ass1 = 1, aa71 =

a48,31 + a46,1 = 1, asg3 + asr3 = 1, as9,31 + asg,1 = 1, as9,;1 = 0, as0,31 + aas,1 =

ae6,a + a6s,4a = 1, agr2 = 0, ass,0 + ass,2 = 1, aso,5 + ass,s = 1, aeo,0 + aesg,2 =
ar0,3 =0, ar1,1+ae9,3 =1, ar26+ar,6 =1, ar2,14+arn3 =1,a734 =0, aras+arzs =
arap+tarza =1,ars7+ara7 =1,a753 = 0,ar5,2+araa = 1,a765 = 1, ar¢,1+ara,3 =
arr3+arss =1, arr1 +are3 =1, argz +arrs =0, arge = 1.

0
1
as50,3 + aa93 = 1, as1,31 + aso,1 = 1, as1,1 = 0, as2,31 +aso,1 = 1, as3,31 +as2,1 =1
1
17
1

’

To adjust these 64 conditions, we have tried to use semi-neutral bits and adjusters
as explained in the IMM algorithm. We use 10 semi-neutral bits (corresponding
to 'N” in Table 8) and 8 adjusters which are the bits 1-bit-left to 'N’. We present
an example of message m = (mg,my, ..., my5) obtained by Algorithm 2.

m = b85500b2 5b2elald 88a0e568 b0d7cba f 00430105 1e7 f1b5e 0637da31 0dcId562
7d857448 de fac00e 9d06ba9e 2dd8235a 324e9acb f7c56578 c69dfd0e 71bf1d08

The above m satisfies all message conditions of 0-80 rounds and all chaining
variable conditions of 0-28 rounds.



message chaining

variable|31 - 24 23 -16 15-8 8-0 variable [31 - 24 23 - 16 15 - 8 8-0
mg - aq 01100111 01000101 00100011 00000001
mi aq 010-FrFO y0-01-0- 10-0-10- F-Fa0101
mo ao F100-Vvi OaalOala Olala011 1-wallal
mg ag 01011VFV -1000000 00000000 O1FFalal
my ay Ow10lv-a y--10000 00101000 010XWF10
ms ag 0w0101y1 V1-11110 00111-00 10010100
meg ag lw0alaOa alalaaa- --10010F -WO1FOFh
my az wwOw0111 11111111 111-010F OwOW0110
mg ----L--L ag w1OwvvOl 11110000 010-111F 1-WhOOOF
mg --00-L1L ag 00WV--11 11111111 111----0 ---F1F01
mig —OLLLL10 ajg —TwwlhOw
myq —1LLLLLL ayy ~1hhOhWw
mio —1LLL-1L alo ~1hhhhOh
my3 |LI1LLLLL LLLLLLLL —-LLLLOL ay3 |OwW--V-— —F-F-F—- FNqNqqqq q1hhhOWW
mi4 1LLLLLLL LLLLLLLL --LLLLLO a4 1WWhhhhh q NNhhhiwh
mis LLLLLLLL LLLLLLLL L-OLLLLL als qNwhOhhO
mig ajg__|wiWhhhhh hqwhihAh
miy aiy
mig ajg
mi19 a19
m20 a20
maq a2y
moo ago aa
mos3 L e 00
mog agy a
mos ass “B------ —mmommm oo oo a-0-
mog agg  |-—————= ———————= —m————o= ————=. Al-
moy agy 0
mag ags
m29 a29
m30 a30
m31 a31
m3g a3
m33 a33
m34 a34
m3s agzs
m36 36 A
mar a3y | B-———== ———————= ——m——m= ———- A-1-
ms3g T e 0-
m39 azg
m40 @40 |B A
m4q LY S e 1-
m4o agp  |C
m43 a43 5
m4q aqq
T e e L e 0-
m46 46 |C
L e L 0-
myg |0 ayg8 C A
T 1————— L 0-
msQ o asQ C A
LSS T ettt tied 1-————- asq B--————= —mmmmmmm —mmmmmmm oo 0-
mgo e 1- a5 C:
ms53 a53
msyq 1 asq
ms55 |0 a55
m56 a56
ms7 as7
ms58 as58
m59 as59
m60 260
me1 a61
me2 a62
me3 a63
meq agq
mes5 a65
mge age A
meg7 agy |mmmmmmmm mmmmmmmm mmmmmee oo 0--
megs ags
me69 a69
m70 a70
m71 a7l
m72 a7
m73 ar3
mr7g agy  |————= —————m== —m—————= - A-—C—
mys a7y
m76 )
myy (3 &/ it C-B-
m78 arg
mrg agg [Tmmmmmmm mmmmmmmm —mmm—eee 1-—————
mgq

agQ
Table 8. Semi-neutral bits and Adjusters
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