
Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis

Matthieu Rivain1,2, Emmanuelle Dottax2, Emmanuel Prouff2

1 University of Luxembourg
2 Oberthur Card Systems

{m.rivain,e.dottax,e.prouff}@oberthurcs.com

Abstract. In the recent years, side channel analysis has received a lot
of attention, and attack techniques have been improved. Side channel
analysis of second order is now successful in breaking implementations
of block ciphers supposed to be effectively protected. This progress shows
not only the practicability of second order attacks, but also the need for
provably secure countermeasures. Surprisingly, while many studies have
been dedicated to the attacks, only a few papers have been published
about the dedicated countermeasures. In fact, only the method proposed
by Schramm and Paar at CT-RSA 2006 enables to thwart second order
side channel analysis. In this paper, we introduce two new methods which
constitute a worthwhile alternative to Schramm and Paar’s proposal. We
prove their security in a strong security model and we exhibit a way to
significantly improve their efficiency by using the particularities of the
targeted architectures. Finally, we argue that the introduced methods
allow us to efficiently protect a wide variety of block ciphers, including
AES.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in
analyzing the physical leakage (called side channel leakage) produced dur-
ing the execution of a cryptographic algorithm embedded on a physical
device. SCA exploits the fact that this leakage is statistically dependent
on the intermediate variables that are processed, these variables being
themselves related to secret data. Different kinds of leakage can be ex-
ploited. Most of the time SCA focuses on the execution time [12], the
power consumption [13] or the electromagnetic emanations [8].

Block ciphers implementations are especially vulnerable to a power-
ful class of SCA called Differential SCA (DCSA) [4, 13]. Based on sev-
eral leakage observations, a DSCA-attacker estimates a correlation be-
tween the leakage and different predictions on the value of a sensitive
variable. According to the obtained correlation values, this attacker is
able to (in)validate some hypotheses on the secret key. An alternative



to DSCA exists when profiling the side channel leakage is allowed. The
so-called Profiling SCA [6, 24] is more powerful than DSCA, but it as-
sumes a stronger adversary model. Indeed, a Profiling SCA attacker has
a device under control, which he uses to evaluate the distribution of the
side channel leakage according to the processed values. These estimated
distributions are then involved in a maximum likelihood approach to re-
cover the secret data of the attacked device. Profiling attacks are not only
more efficient than DSCA but they are also more effective since they can
target the key manipulations.

A very common countermeasure against SCA is to randomize sensi-
tive variables by masking techniques [5,9]. The principle is to add one or
several random value(s) (called mask(s)) to each sensitive variable. Masks
and masked variables (together called the shares) propagate throughout
the cipher in such a way that every intermediate variable is independent
of any sensitive variable. This strategy ensures that the instantaneous
leakage is independent of any sensitive variable, thus rendering SCA diffi-
cult to perform. Two kinds of masking can be distinguished: the hardware
masking (that is included at the logic gate level during the design of the
device) and the software masking (that is included at the algorithmic
level). Hardware masking is expensive in terms of silicium area and it
has some security flaws. In particular, the shares are usually processed
at the same time. As a consequence the instantaneous leakage is actually
dependent on the sensitive variables, which makes some dedicated attacks
possible [19,28]. Other vulnerabilities come from physical phenomena such
as glitches [16] or propagation delays [27]. Compared to hardware mask-
ing, software masking does not imply any overhead in silicium area, but it
usually impacts the timing performances and the memory requirements.
Regarding security, it does not suffer from the previous flaws and it is
therefore widely used to protect block ciphers implementations.

The masking can be characterized by the number of random masks
that are used per sensitive variable. A masking that involves d random
masks is called a dth order masking. When a dth order masking is used, it
can be broken by a (d+1)th order SCA, namely an SCA that targets d+1
intermediate variables at the same time. Indeed, the leakages resulting
from the d + 1 shares (i.e. the masked variable and the d masks) are
jointly dependent on the sensitive variable. Whatever the order d, such
an attack theoretically bypasses a dth order masking [21]. However, the
noise effects imply that the difficulty of carrying out a dth order SCA in
practice increases exponentially with its order [5, 25] and the dth order



SCA resistance (for a given d) is thus a good security criterion for block
cipher implementations.

Though block ciphers can theoretically be protected against dth order
SCA by using a dth order masking, the actual implementation reveals
some issues. The main difficulty lies in performing all the steps of the
algorithm by manipulating the shares separately, while being able to re-
build the expected result. As we will see, non-linear layers – crucial for
the block cipher security – are particularly difficult to protect. Only a
few proposals have been made regarding this issue and actually none of
them provides full satisfaction. A first attempt has been made by Akkar
and Goubin for the DES algorithm [2] – and improved in [1, 15] – but it
rests on an ad-hoc security and it is not provably secure against second
order SCA. A second proposal has been made by Schramm and Paar
in [25] to secure an AES implementation against dth order SCA but it
has been broken in [7] for d ≥ 3. Even if it seems to be resistant for
d = 2, its security has not been proved so that there is nowadays no
countermeasure provably secure against second order SCA.

The lack of solutions implies that the higher order SCA resistance still
needs to be investigated. As a first step, resistance against second order
SCA (2O-SCA) is of importance since it has been substantially improved
and successfully put into practice [11,14,17–19,28].

In this paper, we focus on block ciphers implementations provably
secure against 2O-SCA. We first introduce in Sect. 2 notions about block
ciphers. We recall how they are usually protected and we introduce the se-
curity model. We show that in this model, the whole cipher security can
be simply reduced to the security of the S-box implementation. Then,
two new generic S-box implementations are described in Sect. 3. We an-
alyze their efficiency and we prove their security against 2O-SCA. In this
section, we also propose an improvement that allows us to substantially
speed up our solutions when several S-box outputs can be stored on one
microprocessor word.

Because of length constraints, some results could not be included in
the paper. They are given in the extended version [23]. In particular, in
[23, Sect. 4] we compare our new proposal with the existing solutions, we
give practical implementation results, and we discuss their requirements
and their efficiency.



2 Block Ciphers Implementations Secure Against
2O-SCA

In this section, we introduce some basics about block ciphers and we
explain how to implement such algorithms in order to guarantee the se-
curity against 2O-SCA. Then, we introduce a security model to prove the
security of the proposed implementations.

2.1 Block Ciphers

A block cipher is a cryptographic algorithm that, from a secret key K,
transforms a plaintext block P into a ciphertext block C through the
repetition of key-dependent permutations, called round transformations.
Let us denote by p, and call cipher state, the temporary value taken by
the ciphertext during the algorithm. In practice, the cipher is iterative,
which means that it applies R times the same round transformation ρ to
the cipher state. This round transformation is parameterized by a round
key k that is derived from K by iterating a key scheduling function α. We
shall use the notations pr and kr when we need to precise the round r
during which the variables p and k are involved: we have kr+1 = α(kr, r)
and pr+1 = ρ[kr](pr), with p0 = P, pR = C and k0 = α(K, 0). Moreover,
we shall denote by (p)j the jth part of the state p.

The round transformation ρ can be further modeled as the composi-
tion of different operations: a key addition layer σ, a non-linear layer γ,
and a linear layer λ:

ρ[k] = λ ◦ γ ◦ σ[k].

The whole cipher transformation can thus be written3:

C = ©R−1
r=0 λ ◦ γ ◦ σ[kr] (P ).

Remark 1. The key scheduling function α can also be modeled as the
composition of linear and non-linear layers.

The key addition layer is usually a simple bitwise addition between
the round key and the cipher state and we have σ[k](p) = p⊕k. The non-
linear layer consists of several, say N , non-linear vectorial functions Sj ,
called S-boxes, that operate independently on a limited number of input
bits: γ(p) =

(
S1((p)1), · · · , SN ((p)N )

)
. For efficiency reasons, S-boxes are

3 This is not strictly the case for all iterated block ciphers. For instance, the last round
of AES slightly differs from the iterated one. But this restriction does not impact
on our purpose.



most of the time implemented as look-up tables (LUT). We will consider
in this paper that the layer λ, that mixes the outputs of the S-boxes, is
linear with respect to the bitwise addition.

As an illustration, Fig. 1 represents a typical round transformation
with a non-linear layer made of four S-boxes. Note that this description
is not restrictive regarding the structure of recent block ciphers. In par-
ticular, this description can be straightforwardly extended to represent
the AES algorithm.

S1

S2

S3

S4

pr

σ γ

kr

pr+1
λ

Fig. 1. A typical round transformation with a non-linear layer composed of four S-
boxes.

2.2 Securing Block Ciphers Against 2O-SCA

In order to obtain a 2O-SCA resistant implementation of a block cipher,
we use masking techniques [5, 9]. To prevent any second order leakage,
random shares are introduced: the cipher state p and the secret key k
are represented by three shares – (p0, p1, p2) and (k0, k1, k2) respectively
– that satisfy the following relations:

p = p0 ⊕ p1 ⊕ p2 , (1)
k = k0 ⊕ k1 ⊕ k2 . (2)

In order to ensure the security, shares (p1, p2) and (k1, k2) – called the
masks – are randomly generated. And in order to keep track of the correct
values of p and k, shares p0 and k0 – called the masked state and the
masked key – are processed according to Relations (1) and (2).

Remark 2. For an implementation to be secure against 2O-DSCA only,
the key does not need to be masked. This amounts in our description to
fix the values of k1 and k2 at zero. In such a case, the key scheduling
function can be normally implemented.



At the end of the algorithm, the expected ciphertext (which corre-
sponds to the final value pR) is re-built from the shares

(
pR
0 , pR

1 , pR
2

)
.

To preserve the security throughout the cipher and to avoid any second
order leakage, the different shares must always be processed separately.
Thus, the point is to perform the algorithm computation by manipulating
the shares separately, while maintaining Relations (1) and (2) in such a
way that the unmasked value can always be re-established. To maintain
these relations along the algorithm, we must be able to maintain them
throughout the three layers λ, σ and γ.

For the linear layer λ, maintaining Relations (1) and (2) is simply
done by applying λ to each share separately. Indeed, by linearity, λ(p)
and the new shares λ(pi) satisfy the desired relation:

λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2) .

An easy relation stands also for the key addition layer σ where each
ki can be separately added to each pi since we have:

σ[k](p) = σ[k0](p0)⊕ σ[k1](p1)⊕ σ[k2](p2) .

For the non-linear layer, no such a relation exists and maintaining
Relation (1) is a much more difficult task. This makes the secure imple-
mentation of such a layer the principal issue while trying to protect block
ciphers.

Because of the non-linearity of γ, new random masks p′1, p
′
2 must

be generated. Then a masked output state p′0 has to be processed from
p0, p1, p2 and p′1, p

′
2 in such a way that:

γ(p) = p′0 ⊕ p′1 ⊕ p′2.

Since γ is composed of several S-boxes, each operating on a subpart of
p, the problem can be reduced to securely implement one S-box. The
underlying problem is therefore the following.

Problem 1. Let S be an (n,m)-function (that is a function from Fn
2 in

Fm
2 ). From a masked input x⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of masks (r1, r2) ∈
Fn

2 × Fn
2 and a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , compute S(x)⊕

s1 ⊕ s2 without introducing any second order leakage.

If the problem above can be resolved by an algorithm SecSbox, then
the masked output state p′0 can be constructed by performing each S-box
computation through this algorithm. Let us now assume that we have



pr+1
2

pr+1
0

pr+1
1

pr
0

pr
1

pr
2

λ

λ

λ

SecSbox(S1)

SecSbox(S2)

SecSbox(S4)

SecSbox(S3)

kr
0 kr

1 kr
2

Fig. 2. A 2O-SCA resistant round transformation.

such a secure S-box implementation. Then, the scheme described in Fig.
2 can be viewed as the protected version of the round transformation
described in Fig. 1. Finally, the whole block cipher algorithm protected
against 2O-SCA can be implemented as depicted in Algorithm 1.

Remark 3. We have described above a way to secure a round transforma-
tion ρ. The secure implementation αsec of the key scheduling function α –
necessary to thwart Profiling 2O-SCA – can be straightforwardly deduced
from this description since it is also composed of linear and non-linear lay-
ers.

Algorithm 1 Block Cipher secure against 2O-SCA
Input: a plaintext P , a masked key k0 = K ⊕ k1 ⊕ k2 and the masks (k1, k2)
Output: the ciphertext C

1. (p1, p2) ← rand()

2. p0 ← P ⊕ p1 ⊕ p2

3. for r = 0 to R− 1 do

4. (k0, k1, k2) ← αsec ((k0, k1, k2), r)

5. (p0, p1, p2) ← (p0 ⊕ k0, p1 ⊕ k1, p2 ⊕ k2)

6. (p′1, p
′
2) ← rand()

7. for j = 1 to N do (p′0)j ← SecSbox (Sj , (p0)j , (p1)j , (p2)j , (p
′
1)j , (p

′
2)j)

8. (p0, p1, p2) ← (λ (p′0) , λ (p′1) , λ (p′2))
9. return p0 ⊕ p1 ⊕ p2

This paper aims to design implementations that are provably secure
against any kind of 2O-SCA. We will show how it can be achieved by us-
ing masking only. However, as stated in [5,26], masking must be combined



with hiding-like countermeasures (such as noise addition, pipelining, oper-
ations order randomization etc.) to provide a satisfying resistance4 against
SCA of any order. Otherwise a higher order SCA may be easy to carry
out (see for instance [17, 18]). As a consequence, to offer a good level
of resistance against SCA of order greater than 2, the implementations
we propose hereafter should be combined with classical hiding techniques
(e.g. the operations order randomization described in [10] for the AES).

2.3 Security Model

In order to prove the security of our implementations, we need to intro-
duce a few definitions. We shall say that a variable is sensitive if it is a
function of the plaintext and the secret key (that is not constant with
respect to the secret key). Additionally, we shall call primitive random
values the intermediate variables that are generated by a random number
generator (RNG) executed during the algorithm processing. In the rest
of the paper, the primitive random values are assumed to be uniformly
distributed and mutually independent.

In the security analysis of our proposal, we will make the distinction
between a statistical dependency and what we shall call a functional de-
pendency. Every intermediate variable of a cryptographic algorithm can
be expressed as a discrete function of some sensitive variables and some
primitive random values (generated by a RNG). When this function in-
volves (resp. does not involve) a primitive or sensitive variable X, the
intermediate variable is said to be functionally dependent (resp. indepen-
dent) of X. If the distribution of an intermediate variable I varies (resp.
does not vary) according to the value of a variable X then I is said to be
statistically dependent (resp. independent) of X. It can be checked that the
two notions are not equivalent since the functional independency implies
the statistical independency but the converse is false. We give hereafter
an example that illustrates the difference between these notions.

Example 1. Let X be a sensitive variable and let R be a primitive ran-
dom value. The variable I = X ⊕ R is functionally dependent on X and
on R. On the other hand, it is statistically independent of X since the
probability P [X = x|I = i] is constant for every pair (x, i).

In the rest of the paper, the term (in)dependent will be used alone to
refer to the statistical notion.
4 By resistance, we mean the computational difficulty of the attack.



Definition 1 (2O-SCA). A second order SCA is an SCA that simulta-
neously exploits the leakages of at most 2 intermediate variables.

From Definition 1 and according to [3,7], we formally define hereafter the
security against 2O-SCA.

Definition 2. A cryptographic algorithm is said to be secure against 2O-
SCA if every pair of its intermediate variables is independent of any sen-
sitive variable.

Conversely, an algorithm is said to admit a second order leakage if two of
its intermediate variables jointly depend on a sensitive variable.

Remark 4. Usually a second order SCA refers to an SCA that simulta-
neously targets two different leakage points in the time-indexed leakage
vector corresponding to the algorithm execution. Thus Definitions 1 and
2 implicitly assume that an instantaneous leakage gives information on at
most one intermediate variable. However, a non-careful implementation
may imply that an instantaneous leakage jointly depends on two inter-
mediate variables. This may result from physical transitions occurring at
the hardware level (e.g. in a register or on a bus [4, 20]). The different
algorithms proposed in this paper fulfill security according to Definition 2
and assume a careful implementation to preclude this kind of phenomena.

Due to Definition 2, proving that an algorithm is secure against 2O-
SCA can be done by listing all pairs of its intermediate variables and by
showing that they are all independent of any sensitive variable. In order
to simplify our security proofs, we introduce the notion of independency
for a set.

Definition 3. A set E is said to be independent of a variable X if every
element of E is independent of X.

By extension, Definition 3 implies that the cartesian product of two
sets E1 and E2 is independent of a variable X if any pair in E1 × E2 is
independent5 of X. Thus, according to Definition 2, an algorithm pro-
cessing a set I of intermediate variables is secure against 2O-SCA if and
only if I × I is independent of any sensitive variable.

Based on the definitions above, our security proofs make use of the
two following lemmas.

5 Unlike for a set, a pair is independent of a variable X if its two elements are jointly
independent of X.



Lemma 1. Let X and Z be two independent random variables. Then,
for every family (fi)i of measurable functions the set E = {fi(Z); i} is
independent of X.

Remark 5. In the sequel we will say that an intermediate variable I is a
function of a variable Z (namely I = f(Z)), if its expression involves Z
and (possibly) other primitive random values of which Z is functionally
independent.

Lemma 2. Let X be a random variable defined over Fn
2 and let R be

a random variable uniformly distributed over Fn
2 and independent of X.

Let Z be a variable independent of R and functionally independent of X.
Then the pair (Z, X ⊕R) is independent of X.

When a sensitive variable is masked with two primitive random values,
then Lemmas 1 and 2 imply that no second order leakage occurs if the
three shares are always processed separately.

According to the definitions and lemmas we have introduced, we get
the following proposition.

Proposition 1. Algorithm 1 is secure against 2O-SCA if and only if
SecSbox is secure against 2O-SCA.

Sketch of Proof. Let us denote by I the set of intermediate variables
processed during one execution of Algorithm 1. Moreover, let us denote
by S the set of intermediate variables processed in the different execu-
tions of SecSbox, and by O the set of the other intermediate variables
of Algorithm 1 (namely I = O ∪ S). We will argue that I × I admits a
leakage (namely a pair of I × I depends on a sensitive variable) if and
only if S × S admits a leakage.

If S × S admits a leakage then it is straightforward that so does
I × I. Let us now show that the converse is also true. In Algorithm 1,
all the operations except the S-box computations are performed inde-
pendently on the three shares of every sensitive variable. This implies
that O × O is independent of any sensitive variable i.e. that it admits
no leakage. Since one execution of SecSbox takes as parameter a tu-
ple

(
(p0)j , (p1)j , (p2)j , (p′1)j , (p′2)j

)
, every intermediate variable in S can

be expressed as a function of such a tuple. Hence, if O × S depends
on a sensitive variable then this one is either (p)j or (p′)j = S

(
(p)j

)
.

We deduce that the intermediate variable in O that jointly leaks with
the one in S is either a share (pi)j or a share (p′i)j . Since we have



{(p0)j , (p1)j , (p2)j , (p′0)j , (p′1)j , (p′2)j} ⊂ S we deduce that if a leakage oc-
curs in O × S then it also occurs in S × S.

Finally, we can conclude that if a leakage occurs in I×I then it occurs
in S × S. ¦

In the next section, we propose two new methods to implement any
S-box in a way which is provably secure against 2O-SCA. Using one of
these methods as SecSbox in Algorithm 1 guarantees a global 2O-SCA
security.

3 Generic S-box Implementations Secure Against
2O-SCA

In this section, we first describe two methods (Sect. 3.1 and Sect. 3.2)
to implement any (n,m)-function S and we prove their security against
2O-SCA. Then we propose an improvement (Sect. 3.3) that allows us to
substantially reduce the complexity of both methods.

3.1 A First Proposal

The following algorithm describes a method to securely process a second
order masked S-box output from a second order masked input.

Algorithm 2 Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

2

1. r3 ← rand(n)

2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a = 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′] ← (S(x̃⊕ a)⊕ s1)⊕ s2

6. return T [r3]

Remark 6. In the description of Step 5, we used brackets to point out
that the introduction of the two output masks s1 and s2 is done in this
very order (otherwise a second order leakage would occur).

The random value r3 is used to mask the sum r1 ⊕ r2 and to avoid
any second order leakage. The value returned at the end of the algorithm
satisfies: T [r3] = S(x̃⊕ r3 ⊕ r′)⊕ s1 ⊕ s2 = S(x)⊕ s1 ⊕ s2, which proves
the correctness of Algorithm 2.



Complexity. Algorithm 2 requires the allocation of a table of 2n m-bit
words in RAM. It involves 4×2n (+2) XOR operations, 2×2n (+1) memory
transfers and the generation of n random bits.

Security Analysis. We prove hereafter that Algorithm 2 is secure against
2O-SCA.

Security Proof. Algorithm 2 involves four primitive random values r1, r2,
s1 and s2. These variables are assumed to be uniformly distributed and
mutually independent together with the sensitive variable x.

The intermediate variables of Algorithm 2 are viewed as functions of
the loop index a and are denoted by Ij(a). The set {Ij(a); 0 ≤ a ≤ 2n−1}
is denoted by Ij . If an intermediate variable Ij(a) does not functionally
depend on a, then the set Ij is a singleton. The set I = I1 ∪ · · · ∪ I15 of
all the intermediate variables of Algorithm 2 is listed in Table 1.

Remark 7. In Table 1, the step values refer to the lines in the algorithm
description (where Step 0 refers to the input parameters manipulation).
Note that one step (in the algorithm description) can involve several in-
termediate variables. However, these ones are separately processed and
do not leak information at the same time.

Table 1. Intermediate variables of Algorithm 2.

j Ij Steps

1 r1 0,2
2 r2 0,2
3 s1 0,2
4 s2 0,2
5 r3 1,6
6 r1 ⊕ r3 2
7 r1 ⊕ r2 ⊕ r3 2,4
8 a 3,4,5
9 a⊕ r1 ⊕ r2 ⊕ r3 4,5

10 x⊕ r1 ⊕ r2 0,5
11 x⊕ r1 ⊕ r2 ⊕ a 5
12 S(x⊕ r1 ⊕ r2 ⊕ a) 5
13 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 5
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 5

15 S(x)⊕ s1 ⊕ s2 6

In order to prove that Algorithm 2 is secure against 2O-SCA, we need
to show that I × I is independent of x. For this purpose, we split I into



the three subsets E1 = I1∪ · · ·∪ I9, E2 = I10∪ · · ·∪ I14 and I15. First, the
sets E1 × E1, E2 × E2 and I15 × I15 are shown to be independent of x.
Then, we show that E1×E2, E1× I15 and E2× I15 are also independent
of x, thus proving the independency between I × I and x.

The set E1×E1 is independent of x since E1 is functionally indepen-
dent of x. Moreover, since x⊕r1⊕r2 (resp. S(x)⊕s1⊕s2) is independent
of x and since each element in E2×E2 (resp. I15× I15) can be expressed
as a function of x⊕ r1 ⊕ r2 (resp. S(x)⊕ s1 ⊕ s2), then Lemma 1 implies
that E2 × E2 (resp. I15 × I15) is independent of x.

One can check that E1 is independent of r1 ⊕ r2 and is functionally
independent of x. Hence, we deduce from Lemma 2 that E1×{x⊕r1⊕r2}
is independent of x, which implies (from Lemma 1) that E1 × E2 and x
are independent. Similarly, E1 is independent of s1⊕s2 so that E1×{I15}
(namely E1 × {S(x)⊕ s1 ⊕ s2}) is independent of S(x) and hence of x.

To prove the independency between E2 × I15 and x, we split E2 into
two subsets: I10∪· · ·∪I13 and I14. One can check that (x⊕r1⊕r2, S(x)⊕s2)
is independent of x and that every element of (I10 ∪ · · · ∪ I13) × I15 can
be expressed as a function of this pair. Hence one deduces from Lemma
1 that (I10 ∪ · · · ∪ I13) × I15 is independent of x. In order to prove that
I14 × I15 is also independent of x, let us denote u1 = S(x) ⊕ s1 ⊕ s2

and u2 = S(x ⊕ a ⊕ r1 ⊕ r2). The variables u1 and u2 are uniformly
distributed6, independent and mutually independent of x. Since I14× I15

equals {S(x)⊕ u2 ⊕ u1} × {u1}, we deduce that it is independent of x. ¦

3.2 A Second Proposal

In this section, we propose an alternative to Algorithm 2 for implementing
an S-box securely against 2O-SCA. This second solution requires more
logical operations but less RAM allocation, which can be of interest for
low cost devices.

The algorithm introduced hereafter assumes the existence of a masked
function compareb that extends the classical Boolean function (defined
by compare(x, y) = 0 iff x = y) in the following way:

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

. (3)

Based on the function above, the second method is an adaptation of the
first order secure S-box implementation which has been published in [22].
6 This holds for u2 if and only if the S-box S is balanced (namely every element in Fm

2

is the image under S of 2n−m elements in Fn
2 ). As it is always true for cryptographic

S-boxes we implicitly make this assumption.



Algorithm 3 Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

2

1. b ← rand(1)

2. for a = 0 to 2n − 1 do

3. cmp ← compareb(r1 ⊕ a, r2)

4. Rcmp ← (S(x̃⊕ a)⊕ s1)⊕ s2

5. return Rb

Let indif denote any element in Fm
2 . Steps 3 and 4 of Algorithm 3

perform the following operations:
{

cmp ← b ; Rb ← S(x)⊕ s1 ⊕ s2 if a = r1 ⊕ r2 ,
cmp ← b̄ ; Rb̄ ← indif otherwise.

We thus deduce that the value returned by Algorithm 3 is S(x)⊕ s1⊕ s2.

Complexity. The method involves 4 × 2n XOR operations, 2n memory
transfers and the generation of 1 random bit. Since it also involves 2n

compareb operations, the overall complexity relies on the compareb im-
plementation. As explained in the next paragraph, the implementation of
this function must satisfy certain security properties. We propose such a
secure implementation in [23, Appendix A] which – when applied to Al-
gorithm 3 – implies a significant timing overhead compared to Algorithm
2 but requires less RAM allocation.

Security Analysis. Let δ0 denote the Boolean function defined by
δ0(z) = 0 if and only if z = 0. For security reasons, compareb(x, y)
must be implemented in a way that prevents any first order leakage on
δ0(x ⊕ y) that is, on the result of the unmasked function compare(x, y)
(and more generally on x ⊕ y). Otherwise, Step 3 would provide a first
order leakage on δ0(r1 ⊕ r2 ⊕ a) and an attacker could target this leak-
age together with x̃⊕ a (Step 4) to recover information about x. Indeed,
the joint distribution of δ0(r1 ⊕ r2 ⊕ a) and x̃ ⊕ a depends on x which
can be illustrated by the following observation: x̃ ⊕ a = x if and only
if δ0(r1 ⊕ r2 ⊕ a) = 0. In particular, the straightforward implementa-
tion compareb(x, y) = compare(x, y) ⊕ b is not valid since it processes
compare(x, y) directly. A possible implementation of a secure function
compareb is given in [23, Appendix A]. With such a function, Algorithm
3 is secure against 2O-SCA as we prove hereafter.



Security Proof. As done in Sect. 3.1, we denote by I the set of inter-
mediate variables that are processed during an execution of Algorithm
3. Table 2 lists these variables. The primitive random values r1, r2, s1,
s2 and b are assumed to be uniformly distributed and mutually indepen-
dent together with the sensitive variable x. The following security proof
is quite similar to the one done in Sect. 3.1.

Table 2. Intermediate variables of Algorithm 3.

j Ij Steps

1 r1 0,3
2 r2 0,3
3 s1 0,4
4 s2 0,4
6 b 1,3
7 a 2-4
8 r1 ⊕ a 3
10 δ0(a⊕ r1 ⊕ r2)⊕ b 3

11 x⊕ r1 ⊕ r2 0,4
12 x⊕ r1 ⊕ r2 ⊕ a 4
13 S(x⊕ r1 ⊕ r2 ⊕ a) 4
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 4
15 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 4

16 S(x)⊕ s1 ⊕ s2 5

In order to prove that Algorithm 3 is secure against 2O-SCA, we need
to show that I × I is independent of x. As in Sect. 3.1 we split I into
three subsets E1 = I1 ∪ · · · ∪ I10, E2 = I11 ∪ · · · ∪ I15 and I16. First, we
show that E1×E1, E2×E2 and I16× I16 are independent of x and then,
we show that E1 ×E2, E1 × I16 and E2 × I16 are independent of x (thus
proving that I × I is independent of x).

As in Sect. 3.1, E1×E1 is straightforwardly independent of x and the
independency between x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2) and x implies,
by Lemma 1, that E2 ×E2 (resp. I16 × I16) is independent of x.

Since E1 is independent of r1 ⊕ r2 (resp. s1 ⊕ s2) and functionally
independent of x, Lemma 2 implies that E1 × {x ⊕ r1 ⊕ r2} (resp. E1 ×
{S(x) ⊕ s1 ⊕ s2}) is independent of x. Hence, since every element of E2

(resp. I16) can be written as a function of x⊕r1⊕r2 (resp. S(x)⊕s1⊕s2),
Lemma 1 implies that E1 × E2 (resp. E1 × I16) is independent of x.



Every pair in (E2\I15)×I16 can be expressed as a function of (x⊕r1⊕
r2, S(x)⊕s2) which is independent of x. Hence, by Lemma 1, (E2\I15)×I16

is independent of x. Finally, I15×I16 can be rewritten as {S(x)⊕ u2 ⊕ u1}×
{u1}, where u1 (= S(x)⊕ s1 ⊕ s2) and u2 (= S(x⊕ r1 ⊕ r2 ⊕ a)) are uni-
formly distributed, mutually independent and mutually independent of
x. This implies that I15 × I16 is independent of x. ¦

3.3 Improvement

This section aims at describing an improvement of the two previous meth-
ods which can be used when the device architecture allows the storage of
2w S-box outputs on one q-bit word (namely m, w and q satisfy 2wm ≤ q).
This situation may happen for 8-bit architectures when the S-boxes to im-
plement have small output dimensions (e.g. m = 4 and w = 1) or for q-bit
architectures when q ≥ 16 (and m ≤ 8).

In the following, we assume that the S-box is represented by a LUT
having 2n−w elements of bit-length 2wm (instead of 2n elements of bit-
length m). This LUT, denoted by LUT (S′), can then be seen as the
table representation of the (n − w, 2wm)-function S′ defined for every
y ∈ Fn−w

2 by: S′(y) = (S(y, 0), S(y, 1), · · · , S(y, 2w − 1)), where each i =
0, · · · , 2w−1 must be taken as the integer representation of a w-bit value.

For every x ∈ Fn
2 , let us denote by x[i] the i-th most significant bit of x

and by xH (resp. xL) the vector (x[1], · · · , x[n−w]) (resp. the vector (x[n−
w+1], · · · , x[n])). According to these notations, the S-box output S(x) is
the m-bit coordinate of S′(xH) whose index is the integer representation
of xL.

In order to securely compute the masked output S(x)⊕ s1 ⊕ s2 from
the 3-tuple (x̃, r1, r2), our improvement consists in the two following steps.
In the first step we securely compute the masked vector S′(xH)⊕ z1⊕ z2

(where z1 and z2 are (2wm)-bit random masks). Then, the second step
consists in securely extracting S(x)⊕ s1 ⊕ s2 from S′(xH)⊕ z1 ⊕ z2.

To securely compute the masked vector S′(xH)⊕ z1⊕ z2, we perform
Algorithm 2 (or 3) with as inputs the pair of dimensions (n−w, 2wm), the
3-tuple (x̃H , r1,H , r2,H), the pair of output masks (z1, z2) and the table
LUT (S′). This execution returns the value S′(xH) ⊕ z1 ⊕ z2. Moreover,
as proved in Sect. 3.1 (or Sect. 3.2), it is secure against 2O-SCA.

At this point, we need to securely extract S(x)⊕s1⊕s2 from S′(xH)⊕
z1 ⊕ z2 as well as s1 and s2 from z1 and z2. Namely, we need to extract
the m-bit coordinate of S′(xH) ⊕ z1 ⊕ z2, and of z1 and z2 whose index
corresponds to the integer representation of xL. For such a purpose, we
propose a process that selects the desired coordinate by dichotomy.



For every word y of even bit-length, let H0(y) and H1(y) denote the
most and the least significant half part of y. At each iteration our process
calls an algorithm Select that takes as inputs a dimension l, a 2O-masked
(2l)-bit word z0 = z ⊕ z1 ⊕ z2 (and the corresponding masking words z1

and z2) and a 2O-masked bit c0 = c ⊕ c1 ⊕ c2 (and the corresponding
masking bits c1 and c2). This algorithm returns a 3-tuple of l-bit words
(z′0, z

′
1, z

′
2) that satisfies z′0 ⊕ z′1 ⊕ z′2 = Hc(z). We detail hereafter the

global process that enables to extract the 3-tuple (S(x)⊕ s1 ⊕ s2, s1, s2)
from (S′(xH)⊕ z1 ⊕ z2, z1, z2).

1. z0 ← S′(xH)⊕ z1 ⊕ z2

2. for i = 0 to w − 1

3. (c0, c1, c2) ← (x̃L[w − i], r1,L[w − i], r2,L[w − i])

4. (z′0, z
′
1, z

′
2) ← Select

�
2wm/2i+1, (z0, z1, z2), (c0, c1, c2)

�

4. (z0, z1, z2) ← (z′0, z
′
1, z

′
2)

6. return (z0, z1, z2)

To be secure against 2O-SCA, this process requires that Select admits
no second order leakage on z nor on c. A solution for such a secure algo-
rithm is given hereafter (Algorithm 4). It requires three l-bit addressing
registers (A0, A1), (B0, B1) and (C0, C1).

Algorithm 4
Input: a dimension l, a masked word z0 = z ⊕ z1 ⊕ z2 ∈ F2l

2 , the pair of masks
(z1, z2) ∈ F2l

2 × F2l
2 , a masked bit c0 = c ⊕ c1 ⊕ c2 ∈ F2 and the pair of masking bits

(c1, c2) ∈ F2 × F2

Output: a 3-tuple (z′0, z
′
1, z

′
2) ∈ (Fl

2)
3 that satisfies z′0 ⊕ z′1 ⊕ z′2 = z[c]

1. t1, t2 ← rand(l)

2. b ← rand(1)

3. c3 ← (c1 ⊕ b)⊕ c2

4. Ac3 ← Hc0(z0)⊕ t1

5. Bc3 ← Hc0(z1)⊕ t2

6. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2

7. Ac3 ← Hc0(z0)⊕ t1

8. Bc3 ← Hc0(z1)⊕ t2

9. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2

10. return (Ab, Bb, Cb)

One can verify that Algorithm 4 performs the following operations for
every value of (c1, c2):

{
(Ab, Bb, Cb) ← (Hc(z0)⊕ t1,Hc(z1)⊕ t2,Hc(z2)⊕ t1 ⊕ t2)
(Ab, Bb, Cb) ← (Hc(z0)⊕ t1,Hc(z1)⊕ t2,Hc(z2)⊕ t1 ⊕ t2)

.



Thus the three returned variables satisfy Ab ⊕Bb ⊕ Cb = z[c].

Complexity. Algorithm 4 involves 10 XOR operations and the generation
of 2l + 1 random bits.

The improvement allows to divide the execution time of Algorithm 2
(or 3) by approximately 2w since it performs a loop of 2n−w iterations
instead of 2n. Additionally, the improvement involves w calls to Algorithm
4 which implies an overhead of approximately 10×w XOR operations and
the generation of 2m×(2w−1)+w random bits. For instance, for an 8×8
S-box on a 16-bit architecture, the improvement applied to Algorithm
2 allows to save 512 XOR operations and 128 memory transfers for an
overhead of 10 XOR operations and the generation of 33 random bits (16
more for (z1, z2) than for (s1, s2) and 16 + 1 for Algorithm 4).

Security Analysis. The random values t1 and t2 are introduced to
avoid any second order leakage on c. Otherwise, if the algorithm simply
returns (Hc(z0),Hc(z1),Hc(z2)), an inherent second order leakage (i.e.
independent of the algorithm operations) occurs. Indeed, by targeting one
of the inputs zi and one of the outputs Hc(zi), an attacker may recover
information on c since

(
zi,Hc(zi)

)
depends on c (even if zi is random).

The security proof of Algorithm 4 is given in the extended version of
this paper [23].

4 Conclusion

In this paper, we have detailed how to implement block ciphers in a way
that is provably protect against second order side channel analysis. We
have introduced two new methods to protect an S-box implementation
and we have proved their security in a strong and realistic security model.
Furthermore, we have introduced an improvement of our methods, that
can be used when several S-box outputs can be stored on one processor
word. Implementation results for an 8 × 8 S-box on 16-bit and 32-bit
architectures have demonstrated its practical interest [23].

Considering the today feasibility of second order attacks, our propos-
als constitute an interesting contribution in the field of provably secure
countermeasures, as being the sole alternative to Schramm and Paar’s
method [25] and achieving lower memory requirements and possibly bet-
ter efficiency [23].



Acknowledgements

The authors would like to thank Christophe Giraud for his valuable con-
tribution to this work.

References

1. M.-L. Akkar, R. Bévan, and L. Goubin. Two Power Analysis Attacks against
One-Mask Method. In FSE 2004, vol. 3017 of LNCS, pp. 332–347.

2. M.-L. Akkar and L. Goubin. A Generic Protection against High-Order Differential
Power Analysis. In FSE 2003, vol. 2887 of LNCS, pp. 192–205.

3. J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking of AES. In
SAC 2004, vol. 3357 of LNCS, pp. 69–83.

4. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, vol. 3156 of LNCS, pp. 16–29.

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In CRYPTO ’99, vol. 1666 of LNCS, pp. 398–412.

6. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In CHES 2002, vol. 2523 of
LNCS, pp. 13–29.

7. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In CHES 2007, vol. 4727 of LNCS, pp. 28–44.

8. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Re-
sults. In CHES 2001, vol. 2162 of LNCS, pp. 251–261.

9. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In CHES ’99, vol. 1717 of LNCS, pp. 158–172.

10. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In ANCS 2006, vol. 3989 of LNCS, pp.
239–252.

11. M. Joye, P. Paillier, and B. Schoenmakers. On Second-Order Differential Power
Analysis. In CHES 2005, vol. 3659 of LNCS, pp. 293–308.

12. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In CRYPTO ’96, vol. 1109 of LNCS, pp. 104–113.

13. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99, vol.
1666 of LNCS, pp. 388–397.

14. K. Lemke-Rust and C. Paar. Gaussian Mixture Models for Higher-Order Side
Channel Analysis. In CHES 2007, vol. 4727 of LNCS, pp. 14–27.

15. J. Lv and Y. Han. Enhanced DES Implementation Secure Against High-Order
Differential Power Analysis in Smartcards. In ACISP 2005, vol. 3574 of LNCS,
pp. 195–206.

16. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In CT-RSA 2005, vol. 3376 of LNCS, pp. 351–365.

17. E. Oswald and S. Mangard. Template Attacks on Masking–Resistance is Futile.
In CT-RSA 2007, vol. 4377 of LNCS, pp. 562–567.

18. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-Order DPA
Attacks for Masked Smart Card Implementations of Block Ciphers. In CT-RSA
2006, vol. 3860 of LNCS.

19. E. Peeters, F.-X. Standaert, N. Donckers, and J.-J. Quisquater. Improving Higher-
Order Side-Channel Attacks with FPGA Experiments. In CHES 2005, vol. 3659
of LNCS, pp. 309–321.



20. E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Power and Electromagnetic
Analysis: Improved Model, Consequences and Comparisons. Integration, 40(1):52–
60, 2007.

21. G. Piret and F.-X. Standaert. Security Analysis of Higher-Order Boolean Masking
Schemes for Block Ciphers (with Conditions of Perfect Masking). To Appear in
IET Information Security.

22. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation. In
WISA 2007, vol. 4867 of LNCS, pp. 227–244.

23. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive,
Report 2008/021. http://eprint.iacr.org/.

24. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In CHES 2005, vol. 3659 of LNCS.

25. K. Schramm and C. Paar. Higher Order Masking of the AES. In CT-RSA 2006,
vol. 3860 of LNCS, pp. 208–225.

26. F.-X. Standaert, E. Peeters, C. Archambeau, and J.-J. Quisquater. Towards
Security Limits of Side-Channel Attacks. In CHES 2006, vol. 4249 of LNCS, pp.
30–45.

27. D. Suzuki and M. Saeki. Security Evaluation of DPA Countermeasures Using
Dual-Rail Pre-charge Logic Style. In CHES 2006, vol. 4249 of LNCS, pp. 255–269.

28. J. Waddle and D. Wagner. Toward Efficient Second-order Power Analysis. In
CHES 2004, vol. 3156 of LNCS, pp. 1–15.


