SQUASH - A New MAC With Provable
Security Properties for Highly Constrained
Devices Such As RFID Tags

Adi Shamir

Computer Science department, The Weizmann Institute, Rehovot 76100, Israel
Adi.Shamir@weizmann.ac.il

Abstract. We describe a new function called SQUASH (which is short
for SQUare-hASH), which is ideally suited to challenge-response MAC
applications in highly constrained devices such as RFID tags. It is excep-
tionally simple, requires no source of random bits, and can be efficiently
implemented on processors with arbitrary word sizes. Unlike other ad-hoc
proposals which have no security analysis, SQUASH is provably at least
as secure as Rabin’s public key encryption scheme in this application.

Keywords: Hash function, MAC, RFID, provable security, SQUASH

1 Introduction

Passive RFID tags are very simple computational devices (costing a few cents
each). They obtain their power from and communicate with a reader using a
magnetic or electromagnetic field at a distance of several centimeters to several
meters. They have many applications, including warehouse inventory control,
supermarket checkout counters, public transportation passes, anti-counterfeiting
tags for medicines, pet identification, secure passports, etc. They are already
widely deployed, and many more applications are likely to be found in the near
future.

The basic requirement in most of these applications is that a tag should be
able to interactively authenticate itself securely to a reader. We assume that the
tag contains some nonsecret identity I and some secret information S associated
with it. When challenged by the reader, the tag sends I in the clear, and convinces
the reader that it knows S, without enabling rogue eavesdroppers to extract S
or to convince another reader that they know .S when in fact they do not.

The classical solution for such a problem is to use zero knowledge interactive
proofs, which prevent any leakage of information about S. However, such proofs
are too complicated for RFID tags which have tiny memories and very limited
computing power. In addition, in many applications the legitimate reader already
knows the secret S, and thus we do not care about the potential leakage of
information from the real prover to the real verifier. We can thus use the much
simpler protocol of challenge-response authentication, in which the reader issues

a random challenge R, and the tag responds with the value H(S, R) where H
is some publicly known hash function. This value, which can be viewed as a
message authentication code (MAC), is independently computed by the reader,
which accepts the authentication if and only if the computed and received values
are the same.

Most of the literature on the construction of MAC’s (which deals with chain-
ing and padding techniques for multiblock inputs) is irrelevant in our challenge-
response application, since we always apply H to a single block input of fixed
size. The main requirement from H is that it should protect the secrecy of S even
after an eavesdropper or a rogue reader gets H (S, R;) for many (known or cho-
sen) challenges R;. In particular, it should make it difficult for the adversary to
compute the correct response of the tag to a new random challenge which had not
been seen before. The function H should thus be a one-way hash function, hiding
all information about .S, but not necessarily a collision-resistant hash function
since the discovery of a collision is not a security threat in challenge-response
authentication.

Unfortunately, standard hash functions (such as SHA-1) are primarily de-
signed to be collision resistant in order to prevent forgery of digitally signed
documents. This is a very difficult requirement, which adds a lot of unnecessary
complexity to their design in our application, and makes them too complicated
for RFID tags. This was recognized by the RFID research community, and over
the last few years there was a major effort to develop dedicated one way hash
functions which are not necessarily collision resistant, and which are more suit-
able for RFID applications.

The best known schemes of this type belong to the HB family of schemes
originally proposed by Hopper and Blum in 2001, which now includes the schemes
HB [6], HB+ [7], HB++ [3], and HB-MP [11]. The security of these schemes is
based on the difficulty of solving the parity with noise problem, which is known
to be NP-complete in general, and was investigated in several recent papers [4]
[8]. These schemes are much simpler than SHA-1, but they suffer from several
serious problems:

1. The tag needs an internal source of random bits. Real randomness is diffi-
cult to find and can be externally manipulated by the adversary, while pseudo-
randomness requires a large nonvolatile memory and lots of computations.

2. Since the proof of authenticity in these schemes is probabilistic, there is a
small chance that a tag will fail to convince a reader that it is valid even when
both of them are honest and there are no adversaries.

3. There are several parameters involved (the length of the secret, the number
of repetitions, the probability of the additive noise, etc) and there is considerable
debate about which values of these parameters will make the scheme sufficiently
secure.

4. Over the last few years, a large number of attacks were developed against
most of these schemes, and the various members of the HB family were developed
in response to these attacks. For example, HB is known to be insecure against
active adversaries. HB+ was claimed to be secure against such adversaries, but

it had been recently shown in [9] that it can be attacked by a man-in-the-middle
adversary who can modify the challenges and observe the reaction of the real
reader to the modified responses. With each modification, the scheme became
more complicated, requiring larger keys and more computations, and it is not
clear that even the latest version is completely secure.

2 The New Approach

In this paper we introduce a new function called SQUASH (which is a squashed
form of SQUare-hASH), which is ideally suited to RFID-based challenge-response
authentication. Unlike the HB schemes it is completely deterministic, and thus
it does not need any internal source of randomness and there is no way in which
a legitimate tag will fail to convince a legitimate reader that it is authentic. It is
exceptionally simple, and yet it is provably at least as secure as the Rabin scheme
(which had been extensively studied over the last 30 years) in this application.

The basic idea of SQUASH is to mimic the operation of the Rabin encryption
scheme [12], in which a message m is encrypted under key n (where the publicly
known modulus n is the product of at least two unknown prime factors) by
computing the ciphertext ¢ = m? (mod n). This is an excellent one way function,
but definitely not a collision resistant function, since m, —m, and m +n all hash
to the same c. To make the Rabin scheme secure, the binary length & of n must
be at least 1000 bits long, the length of m should not be much smaller than k,
and thus just to store n m and ¢ we need at least 3000 bits. Clearly we can not
perform a general modular squaring operation on a severely limited RFID tag
which can store less than 300 bits. Our game plan in this paper is to use the
Rabin scheme as a secure starting point, and to change it in multiple ways which
make it much more efficient but with provably equivalent security properties.

There were several previous attempts to simplify the implementation of mod-
ular squaring on constrained devices. At Eurocrypt 1994 [13], I proposed to re-
place the modular squaring operation m? (mod n) by a randomized squaring
operation m? + rn where r is a random number which is at least 100 bits longer
than n. This scheme is provably as strong as the original Rabin scheme, and
has the advantage that it can be computed with a very small memory since the
successive bits of m? and rn can be computed on the fly from LSB to MSB.
This scheme can be used in low end smart cards, but it requires a lot of time
and power to compute all the bits of the output (which is twice as long as in the
original Rabin scheme), and is not suitable for the weaker processors contained
in RFID tag.

In any challenge-response application, the secret S (which is typically 64 to
128 bits long) and the challenge R (which is typically 32 to 64 bits long) should
be securely mixed and extended into a message m in the same way that keys and
IV’s are mixed and extended into initial states in stream ciphers. In a Rabin-
based scheme, the noninvertibility of the mapping should be primarily provided
by the squaring operation, and we would like to use the simplest mixing function
M (S, R) which addresses the known weaknesses of modular squaring, such as its

easy invertibility on small inputs, its multiplicativity, and its algebraic nature
(which makes it easy, for example, to compute S from (S + R1)? (mod n) and
(S + R2)? (mod n) when the challenge R is numerically added to the secret S).

Studying various choices of simple mixing functions M (S, R) is likely to lead
to many interesting attacks and countermeasures. For example, Serge Vaudenay
(in a private communication) had already developed a very clever polynomial-
time attack on the case in which the short mixed value S @ R is expanded by a
linear feedback shift register, and then squared modulo n = pq.

The best choice of M also leads to a delicate theoretical dilemma: if we make
it too strong (e.g., use a provably secure pseudo-random function) there is no
point in squaring its result, and if we make it too weak (e.g., use a constant
function) we cannot prove the formal security of the combined construction.
To address this difficulty, we proceed in the rest of this paper in two different
directions.

In Section 3 we assume that the choice of M is not part of the generic
SQUASH construction (just as the choice of hash function for long messages is
not part of the generic RSA signature scheme). We prove a relative security result
which shows that for any choice of M, the combination SQUASH (M (S, R)) is
at least as secure as the combination Rabin(M (S, R)), even though SQUASH is
much simpler and faster than Rabin. More formally, we claim:

Theorem 1. Let (S) be any predicate of S, which can be computed with non-
negligible advantage by using a known or chosen message attack on a MAC
based on the mixing function M and the SQUASH function using modulus n.
Then (S) can be computed with at least the same advantage by the same type
of attack when SQUASH is replaced by the original Rabin function with the same
modulus n.

The security of the challenge-response authentication scheme can be viewed
as a special case of this theorem, in which ¢(S5) is defined as the value of some
bit in H(S, R) for a new challenge R which had not been seen before by the
attacker.

In this approach, it is the responsibility of each designer to pick a particular
mixing function M that he would be happy with if it would be followed by the
Rabin encryption scheme, and then we give him the assurance that he would
not go wrong by combining the same M with SQUASH.

Since this approach makes it difficult to evaluate the precise security and
efficiency of SQUASH and to compare it to other MAC’s designed for RFID
applications, we propose in Section 4 a particular choice of M. Since the com-
bined scheme has no formal proof of security, we optimize it very aggressively
but we still believe that in practice it provides a high level of security at very
low cost. It uses the nonlinear part of GRAIN-128[5], which is a well studied
stream cipher with an extremely small footprint. Our concrete proposal (which
we call SQUASH-128) is even smaller than GRAIN-128, requiring only half the
number of gates to implement both M and SQUASH.

3 The Generic SQUASH Proposal

We will now describe how to simplify and speed up the Rabin encryption scheme
without affecting its well studied one-wayness. The basic idea of SQUASH is to
compute an excellent numerical approximation for a short window of bits in the
middle of the ciphertext produced by the Rabin encryption function which uses
a modulus of a particular form. We will now describe how to gradually transform
Rabin to SQUASH by a series of simple observations and modifications.

Our first observation is that in the challenge-response MAC application, no
one has to invert the mapping in order to recover the plaintext from the cipher-
text, since both the tag and the reader compute the hash function only in the
forward direction. Since we do not need a trapdoor in this application, no par-
ticipant in the protocol needs to know the factorization of n, and thus everyone
can use the same universal modulus n as long as no one knows how to factor it.

Our second observation is that the Rabin scheme cannot be efficiently in-
verted (and many of its bits can be proven secure) for any modulus n with
unknown factorization. If a universal n with unknown factorization can be com-
pactly represented by a small number of bits, we can save a lot of storage on the
RFID tag. In particular, we recommend using a composite Mersenne number of
the form n = 2¥ — 1, which can be stored very compactly since its binary rep-
resentation is just a sequence of k£ 1’s. Other recommended choices of n which
have very compact representations, such as the Cunningham project numbers of
the form n = a* (b°) £ d for small values of a, b, ¢, and d, will be discussed later
in the paper.

A lot of effort was devoted over the last decade to determine which Mersenne
numbers are prime, and to factorize those Mersenne numbers which are compos-
ite. A table summarizing the current status of these efforts is maintained by
Paul Leyland [10], and the most recent success in factorizing such numbers was
the complete factorization of 2'93% — 1 in 2007 by a large distributed computa-
tion [1]. Since such numbers are a little easier to factor (by the special number
field sieve) than general numbers (which require the general number field sieve),
we recommend using numbers of the form n = 2¥ — 1 with 1200 < k& < 1300.
The currently known factors of all the “interesting” numbers in this range are
summarized below. For example, 2127 — 1 is a 386 digit prime number denoted
by P386, whereas 2'2°1 — 1 has four known prime factors which are relatively
small, plus a 314 decimal digit cofactor denoted by €314 which is known to be
composite but has no known factors.

1201: 57649.1967239.8510287.2830858618432184648159211485423. C314
1213: 327511. C360

1217: 1045741327. C358

1223: 2447.31799.439191833149903. P346

1229: 36871.46703.10543179280661916121033. C339

1231: 531793.5684759.18207494497.63919078363121681207. C329

1237: C373

1249: 97423.52358081.2379005273.9345276045907272726364012481. C326

1259: 875965965904153. C365

1277: C385

1279: P386

1283: 4824675346114250541198242904214396192319. C347

1289: 15856636079.108817410937.827446666316953.9580889333063599
.16055826953448199975207. P314

1291: 998943080897 .84051400422953302189544581841. C348

1297: 12097392013313.64873964199444497. C361

The most interesting number in this range (and the one we recommend as the
universal modulus of SQUASH) is n = 2'277 — 1, which is a 385 digit composite
number with a completely unknown factorization. Another number of this type
is the slightly smaller n = 2'237 — 1. Both numbers are on the “most wanted”
list of computational number theorists, and a lot of effort was devoted so far
to their factorization, without any success. However, there is no guarantee that
these numbers will remain unfactored forever, and thus we have to consider the
potential impact of either a partial or a complete factorization of the recom-
mended modulus. As will be shown later, SQUASH is surprisingly resilient to
such future events: partial factorization of n = 21277 — 1 will have no impact on
the scheme or on its formal proof of security, and even full factorization of this
n will only eliminate the formal proof of security but not necessarily the real
security of SQUASH. In this sense, SQUASH is much better than the original
Rabin scheme, whose security will be devastated by either a partial or a full
factorization of its modulus.

Our third observation is that Mersenne moduli are not only easy to store,
but they also make the computation of m? (mod n = 2¥ — 1) particularly simple:
Since 2% = 1 (mod n), we just compute the double sized m?, and then numerically
add the top half to the bottom half. More precisely, if m? = m1 x 2* +m2, then
m? = ml+ m2 (mod n). Note that this sum could be bigger than n, creating a
new wraparound carry of 1, but the effect of this carry will almost certainly be
limited to a few LSB bits in the result.

Our fourth observation is that there is no need to send the full 1000+ bit
ciphertext ¢ in response to the challenge R. In general, when no information
about the expected response ¢ can be computed by the adversary, the probability
that the reader will accept a random t-bit answer from an adversary is 27%. In
most cases, a sufficiently secure authentication of an RFID tag will be achieved
if it sends ¢ = 32 bits (with a cheating probability of about one in 4 billion).
Low security applications can even use t = 16, and high security applications can
either use a larger t such as 64, or repeat a low security authentication procedure
several times with different challenges. The tag can thus send only a small subset
of ¢ bits from ¢, and as we will see shortly, sending a window of consecutive bits
makes the tag’s computation particularly simple. Since arithmetic modulo 2% —1
has cyclic symmetry (in which rotation of the bits is equivalent to multiplication
by 2), the exact location of this window within ¢ is not important, but for the
sake of concreteness in the rest of this paper we place it close to the center of
c. The crucial point is that the difficulty of computing some useful predicate of

the secret S (such as computing one of the bits of its expected response to some
new challenge R) is monotonically decreasing with ¢ since any computational
task can only become easier when more information is provided in the input.
In particular, if we assume that it was difficult in the original Rabin scheme
then it will certainly be difficult when only ¢ out of the k bits from each Rabin
ciphertext are made available by the tag to the adversary in each response.

Our fifth observation is that if we want to be sure that a particular bit
we compute in m? is correct, we have to compute in the worst case all the
earlier bits in order to be certain about the effect of the carry entering this bit
position (addition carries propagate only from LSB to MSB, so we do not have
to compute higher order bits in m?). However, we can get an excellent numeric
approximation of the carry into the t bits we would actually like to compute if
we compute a longer window of ¢+ bits with u additional low order bits (which
we call guard bits), assuming that no carry entered into the LSB of this extended
window, and providing only the top ¢ out of the ¢ + u bits as an answer. For k
between 1024 and 2048, it is easy to show that the carry into each bit position
in the computation of m? can be at most 11 bits long, and thus if we add u = 16
guard bits to the computed window we have only a small probability of less than
211 /216 = 1/32 of computing an incorrect carry into the 17-th bit we compute.
If we add u = 64 guard bits, then this error probability becomes negligible. Note
that we can easily determine when a mistake is possible (a necessary condition is
that all the top u — 11 guard bits above the 11 LSB bits in the extended window
are 1 so that the unknown carry can propagate through them). We can thus start
the computation with a small u such as 16, and only in the small fraction of the
cases in which all the u — 11 guard bits are 1, we can rerun the computation
with a larger u such as 32 or 64. This can guarantee an extremely small error
probability while keeping the average running time only slightly higher than
always computing t 4 16 bits.

With this relaxation, what we gain is the ability to compute the small number
of relevant bits in m? in linear rather than quadratic time, which is in practice
one to two orders of magnitude faster than a full computation of m?. What we
lose is that the value we produce is only an approximation of the real value
produced by Rabin’s encryption scheme, and thus it is conceivable that by using
our protocol we will reveal more information about the secret S than by using
Rabin’s scheme. However, the two results differ only in a negligible fraction of
executions, and thus neither the reader nor the adversary is ever expected to see
an incorrectly computed answer, and thus the formal security proof (based on
the assumption that the Rabin scheme is secure) remains unaffected.

Our sixth observation is that if the successive bits of m = M (S, R) can be
efficiently generated in both the forward and backward order, we can compute
the successive bits in m? without storing the long m explicitly, by convolving
these two streams of bits. When we want to compute bit j in the lower half of
m?2, we compute it by summing all the products m,, * mj_, forv=0,1,2,..., 7,
and add to this sum the carry from the computation of the previous bit. When
we want to compute bit j+ k in the upper half of m?, we compute it by summing

all the products m, * mjyp—, for v =7341,...,k — 1, and add to this sum the
carry from the computation of the previous bit. When we want to compute m?
(mod n) for n = 2F — 1, we want to sum the upper half and lower half of m?, and
thus the j-th bit ¢; of ¢ = m? (mod n) can be computed by adding bits j and
j+k in m?, along with their carries. It is easy to verify that the sum of the two
linear convolutions defining bits j and j + k is exactly the circular convolution
defined as the sum of all the products m, * m;_y(mod r) for v=0,1,2,....k — 1.
The final SQUASH algorithm is thus extremely simple:

1. Start with 7 which is the index at lower end of the desired extended window
of t + u bits, and set carry to 0.

2. Numerically add to the current carry (over the integers, not modulo 2) the
k products of the form my * m;_y(mod k) for v=0,1,2,....k — 1.

3. Define bit c; as the least significant bit of the carry, set the new carry to
the current carry right-shifted by one bit position, and increment j by one.

4. Repeat steps 2 and 3 t + u times, throw away the first u bits, and provide
the last t bits as the response to the challenge.

To implement this algorithm, we can use a simple stream cipher such as
a nonlinear feedback shift register (NFSR) with a reversible state transition
function, initialize it with S and R, and run it back and forth to generate all
the bits of m which are used in the convolution. This requires time proportional
to k? x (t + u) which is too high for k& = 1277. A much faster implementation
uses two copies of the stream cipher in order to compute the two sequences of
bits we want to circularly convolve. However, whenever the state has to wrap
around (e.g., to go from the first state to the last state) it has to do so in k
clock cycles. The total running time is thus proportional to 2k(t 4+ u). To save
an extra factor of two in the running time, we can keep one additional state in
an auxiliary register. We initially load both copies of the stream cipher with the
initial state, clock the second copy to the desired middle state j, and load the
auxiliary register with the last state kK — 1. We run the first copy upwards all
the way from state 0 to state kK — 1, and the second copy downwards from state
j. When it reaches state 0, we exchange its state with the auxiliary register,
so that now the second copy will contain state £ — 1 and the auxiliary register
will contain state 0. We continue to run the second copy downwards from state
k —1 to state j + 1. This completes the computation of the first c;. We can now
exchange the states of the first copy and the auxiliary register, and clock the
second copy once, in order to bring all the components to the desired states for
computing the next bit. Note that it is possible to exchange the values of two
registers Y and Z without using additional storage by computing Y =Y & Z,
Z=Y®Z,andY =Y ® 7.

Note that due to the associativity of addition, we can compute the sum of
products either upwards or downwards and get the same value, which makes it
possible to run the algorithm in many different ways. For example, the first copy
of the stream cipher can alternately run forwards and backwards through states
0,1,....,k — 1, the second copy can alternately run backwards and forwards in
a cyclic order (mod k), incrementing its state once after each round, and the

Convolution Convolution Convolution
| 11 11

State of shift
register |

State of shift
register 11

Time

Fig. 1. The sequence of indices of the bits we have to multiply in the two streams to
generate the successive output bits

auxiliary register can alternately keep states £ — 1 and 0 in order to help the
second copy jump between these cyclically adjacent (but computationally wide
apart) extreme states.

An important comment is that the SQUASH function is "one size fits all”,
and can be implemented efficiently on microprocessors with arbitrary word sizes.
If the processor can multiply b-bit values in a single instruction, it can compute
the same type of circular convolution b times faster by working with words rather
than bits. Future RFID tags might contain simple 4-bit multipliers, which will
speed up this algorithm by a factor of 4. In addition, the powerful microproces-
sors in the readers (which also have to carry out this computation to compare
the expected and received responses) are likely to have 32-bit or even 64-bit
multipliers, which will make the SQUASH algorithm extremely fast.

So far we described how to compute the SQUASH function when the under-
lying modulus is a composite Mersenne number of the form 2% — 1. It is very
easy to modify the scheme to composite numbers of the form 2% 4 1. The Rabin
ciphertext in this case is defined by subtracting (instead of adding) the top half
of m? from the bottom half. Consequently, when we compute the circular con-

volution we have to add to the carry all the products of the form m, * m;_, for
v=0,1,2,...,7, and to subtract from the carry all the other products of the form
My * Mjyp—y for v = j+1,...,k — 1. Except for this minor change, everything
else remains the same.

We can also consider more complicated moduli such as n = a * 2 — d where
a and d are small positive integers. since a * 2* is congruent to d, we have to
add to the bottom half of m? the top half divided by a and multiplied by d.
To avoid the complicated division operation, we can change the definition of
the output we are trying to compute to be a window of ¢ consecutive bits in
a*m? (mod n). Note that the security of Rabin’s encryption scheme cannot be
changed if all its ciphertexts are multiplied by a known constant a, and thus
we can not lose security by computing windows of bits in such modified Rabin
ciphertexts instead of in the original ciphertexts. Since a multiplies both the top
and the bottom parts of m?2, this implies that the algorithm now has to add to
the carry all the products of the form a * m, * m;_, for v = 0,1,2,...,j, and
then to add to the carry all the other products of the form d * m,, * m;,_, for
v=j+1,...k—1 If nis of the form a * 2™ 4 d, then the algorithm has to
subtract (rather than add) from the carry all the products of the second type.
When n is of the general form a % b & d for small a, b, ¢ and d, the algorithm
can perform the same type of computations in base b instead of base 2, but this
will probably make the scheme too complicated for a typical RFID.

Our seventh observation is that we can retain the formal proof of security
even if n has some known small factors, provided that it has at least two large
unknown factors. This can greatly extend the set of moduli which we can use,
since most of the composite Mersenne numbers for 1000 < k£ < 2000 have some
small known factors. Consider, for example, the case of n = 21213 — 1, which has
a known prime factor of 327511 and a composite cofactor of 360 decimal digits
whose factorization is completely unknown. If we use Rabin’s encryption scheme
with this n, the value of the ciphertexts modulo 327511 actually leaks the values
of the plaintexts modulo this prime. We can completely stop this partial leakage
of information by adding to each Rabin ciphertext a freshly selected random
number between 0 and 327510, which randomizes the value of the ciphertexts
modulo 327511. Since these added random values are small and we compute a
window of bits near the middle of each Rabin ciphertext, we can pretend that
such a randomizing value was indeed added to the ciphertext without changing
anything in the definition of SQUASH - the only effect of such a randomiza-
tion is that our numerical approximation of the middle windows in the Rabin
ciphertexts will deteriorate in a negligible way!. An interesting corollary of this
observation is that SQUASH will remain provably secure even if someone will
partially factorize n in the future: Since we do not have to modify anything in
the definition of SQUASH in order to use a modulus with a small known factor,
we do not actually have to know its value when we use the scheme. Consequently,
our formal proof of security will not be affected by a future discovery of some

! This proof can be easily modified to deal with window locations which are closer to
the low end of ¢

of the factors of the recommended modulus n = 2277 — 1, provided that the
factorization is partial and n has a sufficiently long cofactor whose factorization
remains unknown.

Let us now assume that next year someone will find the complete factoriza-
tion of n = 2'277 — 1. This will devastate the security of the Rabin encryption
scheme which uses this modulus, since it will make it possible to decrypt all
the previously produced ciphertexts. It will also eliminate the formal proof of
security of SQUASH, but will not necessarily make it insecure in practice: Even
when an attacker can extract arbitrary modular square roots mod n, it is not
clear how to apply this operation when only a short window of bits in the middle
of each Rabin ciphertext is available. In this sense, SQUASH is provably at least
as secure as Rabin, but in practice it can be much more secure.

Our final observation deals with the relationship between SQUASH and some
of the other proposed hash functions for RFID tags. The formal security of
SQUASH is based on the difficulty of factoring the modulus n, but its imple-
mentation has the form of a cyclic convolution of a secret vector m with itself,
which does not use n in an explicit way. It can thus be viewed as a scheme
whose security is based on the difficulty of solving a system of quadratic equa-
tions of a very specific type. This is not entirely accurate, since the convolution
is defined over the integers rather than over GF(2), and the carries are defined
by expressions with degrees higher than 2. In addition, the mixing function M
can create complex dependencies between the bits of m. The QUAD scheme[2]
is another attempt to construct a cryptographic primitive whose security is di-
rectly based on the NP-completeness of the general problem of solving systems
of quadratic equations with k variables over GF(2). However, the implementa-
tion complexity of QUAD is much higher than that of SQUASH since QUAD
must use a dense system of quadratic equations with O(k?) randomly chosen co-
efficients per equation, whereas the convolution-based SQUASH has only O(k)
coefficients per equation defined in a very regular way. Consequently, SQUASH
is much more suitable than QUAD for tiny RFID tags. Finally, HB+ also has
the overall structure of convolving two vectors (S and R), but in this case R is
known, and thus its security has to be based on the different problem of solving
a large system of linear equations corrupted by noise.

These comparisons raise a number of interesting open problems about the
security of other SQUASH-like functions. For example, SQUASH is typically
implemented with two copies of the stream cipher M initialized with the same
secret value and run in opposite directions. Can we initialize the two copies of M
with different secret values? This can halve the number of state bits needed to
get the same security against exhaustive search, but leads to bilinear rather than
quadratic equations, and we have no formal argument which supports its security.
Another modification is to run the two copies of M in the same direction rather
than in opposite directions, and compute the dot product (with carries) of the
generated sequence with various small shifts of itself. When M is implemented
by a shift register, we can use only one copy of M, and get the t + u shifted
versions of its output by tapping various bits within this register. This can again

halve the hardware complexity of the implementation, but there is no formal
argument why the specific system of quadratic equations generated in such a
way should be secure.

4 The Concrete SQUASH-128 Proposal

In this section we describe a fully specified MAC proposal, in order to make
it possible to study its exact security and efficiency. It differs from the generic
SQUASH construction in two important ways:

1. It uses a particular choice of mixing function My (S, R), which is based on
a single nonlinear feedback shift register. It shares this register with SQUASH,
and thus the only additional hardware required (beyond the register itself) are
a few gates to implement the feedback function and the carry adder.

2. Since the combined mapping SQU ASH (My(S, R)) has no formal proof
of security, we also simplify the SQUASH part in a very aggressive way by
eliminating all the elements which were required by the security proof but which
are not believed to contribute to the real security of the scheme. For example, we
use only 8 guard bits instead of a variable number up to 64, which were needed
only in order to claim that the windows of bits provided by SQUASH and Rabin
are indistinguishable.

The most radical optimization step in our concrete proposal is to use a smaller
modulus n. We can view the proof that SQUASH is at least as secure as Rabin
as a safety net in order to show that the general structure of SQUASH can
not be broken in polynomial time. This safety net is relatively weak (since the
complexity of factoring is only subexponential in the size of n) and very erratic:
it is applicable to n = 2!277 — 1 which has no known factors, but inapplicable to
n = 22 — 1 which is a prime number. However, SQUASH seems to be much
more secure than Rabin since there is no known attack on it even when the
complete factorization of n is given. We believe that in fact the best attack on
SQUASH requires exponential time and grows monotonically with the size of n,
and thus we propose as a challenge to the reader to try to break an extremely
reduced version of SQUASH which uses n = 2'2® — 1 as the universal modulus,
even though it is very easy to factor. We call this version SQUASH-128, and
emphasize that its successful cryptanalysis will just indicate that we were too
aggressive in our optimizations. The relationship between SQUASH-128 and the
generic SQUASH construction is similar to the relationship between DES and
the Luby-Rackoff theory of Feistel structures upon which it is loosely based.

The reduction in the size of n increases the speed of the scheme by a factor of
10, and makes it possible to halve its footprint: Since m is short, we can generate
it with a single copy of M (instead of two copies which operate in opposite
directions), store it in a single 128-bit register, and perform the convolutions
directly on this register.

Our concrete proposal of SQUASH-128 uses a 64-bit key S and a 64-bit
challenge R, and produces a 32-bit response. Our choice of M is the nonlinear
half of GRAIN-128 (we do not need the linear half since in this application we

do not need any guaranteed lower bound on the cycle length of the generated
sequence). It initializes a single 128-bit shift register denoted by (bo, . .., b127) by
storing S in its low half and S'@ R in its high half. It mixes them by clocking the
register 512 times (this is twice the number of initialization steps in GRAIN-
128, which is still small compared to the time required by the convolutions),
using no inputs and producing no outputs. The resultant 128-bit state is the
value m which is squared modulo 2'?® — 1. The 32-bit response consists of bits
48 to 79 in the cyclically convolved result, using the 8 bits at positions 40 to
47 as guard bits. The clocking of the shift register uses the following nonlinear
feedback function:

bit128 = b; + bit26 + biyse + bitor + bitos + biysbiyer + bip11bit13 +
bit17bit1s + bitorbits9 4 biyaobiyas + bite1bite5 + bitesbitsa

This function is the sum modulo 2 of a linear function and a quadratic bent
function. It has the nice property that it can be applied up to 32 times faster
by duplicating the feedback function and running these copies in parallel. Note
that the zero state is a fixedpoint, and thus S = 0 should be excluded as a weak
key.

Our choice of My shares the same 128-bit shift register with SQUASH, and
the only additional gates needed are an AND gate and an 8-bit carry register
for the convolutions, a few AND and XOR gates for the feedback function, and
two 7-bit counters for the indices v and j. Consequently, we expect the total
number of gates needed by the complete SQUASH-128 scheme to be about half
the number of gates in GRAIN-128, which is itself one of the smallest hardware-
oriented cryptographic primitives.

This completes the description of SQUASH-128, and we encourage the reader
to try to break the security of this scheme with a chosen challenge attack which
requires less than 264 time and space. As pointed out by Henri Gilbert and
Helena Handschuh (in a private communication), this is the highest possible
security level for any MAC which has a 128-bit internal state.

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, D. A. Osvik, Research announce-
ment at http://actualites.epfl.ch/presseinfo-com?id=441

2. Come Berbain, Henri Gilbert, and Jacques Patarin, ”QUAD: A Practical Stream
Cipher with Provable Security”, proceedings of Eurocrypt 2006, pages 109-128.

3. Julien Bringer and Hervé Chabanne and Emmanuelle Dottax, "HB++: a
Lightweight Authentication Protocol Secure Against Some Attacks”, Workshop
on Security, Privacy and Trust in pervasive and Ubiquitous Computing - SecPerU,
2006.

4. Marc P. C. Fossorier and Miodrag J. Mihaljevi¢ and Hideki Imai and Yang Cui and
Kanta Matsuura, ” An Algorithm for Solving the LPN Problem and Its Application
to Security Evaluation of the HB Protocols for RFID Authentication”, Progress in
Cryptology - INDOCRYPT 2006, pages 48—62.

10.

11.

12.

13.

Martin Hell, Thomas Johansson, Alexander Maximov, and Willie Meier, ” A Stream
Cipher Proposal: Grain-128”, http://www.it.1lth.se/martin/Grain128.pdf.
Nicholas J. Hopper and Manuel Blum, ” A Secure Human-Computer Authentica-
tion Scheme”, CMU-CS-00-139, 2000.

Arie Juels and Stephen A. Weis, ” Authenticating Pervasive Devices with Human
Protocols”, CRYPTO 2005, pages 293—-308.

Eric Levieil and Pierre-Alain Fouque, ”An Improved LPN Algorithm”, Security
and Cryptography for Networks, 2006.

Henri Gilbert and Matthew Robshaw and Hervé Silbert, ” An active attack against
HB+ — a provable secure lightweight authentication protocol”, Cryptology ePrint
Archive number 2005/237.

Paul Leyland, http://www.leyland.vispa.com/numth/factorization/cunningham/2-
txt

J. Munilla and A. Peinado, ”HB-MP: A further step in the HB-family of lightweight
authentication protocols”, Computer Networks, volume 51, 2007, pages 2262—2267.
M. O. Rabin, "DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNCTIONS
AS INTRACTABLE AS FACTORIZATION”, MIT LCS/TR-212, 1979.

Adi Shamir, "Memory Efficient Variants of Public-Key Schemes for Smart Card
Applications”, Eurocrypt 1994, pages 445-449.

