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Abstract. We present a novel mode of operation which iterates a com-
pression function f : {0, 1}n+b → {0, 1}n meeting a condition b ≥ 2n.
Our construction can be viewed as a way of domain extension, applica-
ble to a fixed-input-length PRF (pseudo-random function) fk : {0, 1}b →
{0, 1}n meeting the condition b ≥ 2n, which yields an arbitrary-input-
length PRF Fk : {0, 1}∗ → {0, 1}n. Our construction accomplishes both
high security (beyond the birthday barrier) and high efficiency (one-
pass), with engineering considerations of being stateless, deterministic
and single-keyed.
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1 Introduction

Birthday Barrier. A message authentication code (MAC) is often constructed
of a compression function (e.g., HMAC [1]) via a mode of operation or a block
cipher (e.g., CBC-MAC [2]). The security of HMAC and CBC-MAC is based
on the fact that they are pseudo-random functions (PRFs), assuming that the
underlying primitives (i.e., the compression function and the block cipher) are
PRFs. Unfortunately, HMAC and CBC-MAC are inherently vulnerable to birth-
day attacks due to their naively-chained internal structure [3, 4]. That is, using
an n-bit-output compression function or block cipher, HMAC or CBC-MAC gets
forged after about 2n/2 (which is much smaller than the desired 2n) queries. This
generic principle is known as the birthday barrier.

For modern compression functions and block ciphers the above attacks re-
quire, for example, 2128 and 264 queries, which are unlikely to be a practical
threat in most scenarios. It is rather a theoretical challenge to construct a mode
with security beyond the birthday barrier at minimal costs over existing modes
of operation.



Two Already-Known Ways of Breaking the Barrier. It seems that there
exist roughly two approaches of breaking the barrier, and hence constructing
MACs whose security is beyond the birthday bound. One is to allow use of
either nonce elements or random salts. The other is to allow use of multiple
passes. Yet, neither of these two approaches is satisfactory, as explained below.

Nonce elements are often used in encryption (e.g., stream ciphers, the counter
mode of block ciphers, etc.), but their presence is sometimes unwelcome in prac-
tical MAC applications; if a nonce value is used in a MAC scheme, then the value
needs to be communicated, synchronized and maintained among all parties gen-
erating tags and/or verifying message-tag pairs. If instead a random salt is used,
then these constraints become somewhat relaxed, but it still leaves problematic
properties: the tag size gets enlarged, and the parties creating tags are required
to possess a random-number generator.

The use of multiple passes offers construction without counters nor coins but
results in inefficiency. Although usually parallelizable owing to their multi-pass
structure, these schemes require more numbers of invocations to the underlying
primitive, and the performance advantage due to the parallelism depends on
each implementation and is generally limited.

Our Contributions. In this paper we devise a novel approach of breaking the
birthday barrier. Namely, we utilize some techniques from the area of tweakable
block ciphers and combine them with “checksum construction.” The combination
enables us to provide a one-pass mode of operation that overcomes the birthday
limit without relying on the use of counters or coins.

Our starting primitive (i.e., building block) is a compression function f :
{0, 1}n+b → {0, 1}n. We require that b ≥ 2n. We emphasize that this requirement
is essential in our construction; we utilize this condition in two (completely)
different places.1 Then using this primitive f , we construct a PRF Fk : {0, 1}∗ →
{0, 1}n that satisfies the following seven properties:

1. The security of F is beyond the birthday barrier,
2. F is one-pass, that is, to process a message M ∈ {0, 1}∗ only requires |M |/b

plus a small constant number of invocations to f ,
3. Workings outside f consist of only simple machine operations,
4. F is stateless, avoiding use of nonce values or counters,
5. F is deterministic, avoiding use of random salts,
6. F is single-keyed, invoking f only with a fixed key k ∈ {0, 1}n via fk(m) def=

f(k‖m) for a message block m ∈ {0, 1}b, and
7. The security of F is based on the sole assumption that fk is a PRF.

It appears that no prior mode of operation, iterating either a compression func-
tion f : {0, 1}n+b → {0, 1}n or a block cipher fk : {0, 1}n → {0, 1}n, accom-
plishes the above features concurrently.
1 We remark that the condition b ≥ 2n is not severe limitation in practice. In fact,

off-the-shelf compression functions, such as sha1 : {0, 1}160+512 → {0, 1}160 and
sha256 : {0, 1}256+512 → {0, 1}256, satisfy this requirement.



Organization of the Paper. Section 2 goes through previous work in this
field. We then review necessary notions from the area of tweakable block ciphers
in Sect. 3. We introduce our mode of operation in Sect. 4. The security proofs of
our mode are given in Sect. 5. A couple of techniques to improve the performance
of our mode are discussed in Sect. 6. We mention some open problems regarding
the domain extension of PRFs in Sect. 7, prior to concluding the paper in Sect. 8.

2 Previous Work

In this section we briefly look over previous constructs that break the birthday
barrier, including the ones that take the two approaches mentioned in Sect. 1.
Other known results, which have some relevance to the techniques used in the
paper, are also cited in Sect. 3, 7 and 8.

Stateful or Randomized Construction. XOR MAC [5] is a parallelizable
MAC that is based on a compression function. RMAC [6] is a serial MAC that
is based on a block cipher. Both of these MACs guarantee security beyond the
birthday barrier, yet XOR MAC is nonce-based and RMAC is a randomized
algorithm.

Multiple-Pass-Based Construction. The idea of using two (or more) passes
of data processing dates back to the design of RIPEMD and its application
to Two-Track MAC [7]. A similar approach appears in the context of keyless
hash functions as “Double-Pipe” hash [8]. These constructs effectively preclude
birthday attacks, but the problem is that they are twice or more slower than
their “single-pass” versions (even though they are somewhat parallelizable). The
L-Lane scheme [9] performs better than a naively-doubled construction, but it
is still less efficient as compared to a truly-single-pass construction.

Universal-Hash-Based Construction. A similar situation applies to MACs
based on universal hash functions. UMAC [10] and MACRX [11] achieve secu-
rity beyond the birthday barrier, but UMAC is nonce-based and MACRX is
randomized. Once these MACs are made deterministic (in the obvious way), the
security of such MACs gets degraded behind the birthday barrier immediately.

“Wide-Pipe” and Others. If we used a “wide-pipe” compression function
f : {0, 1}2n+b → {0, 1}2n or a “wide” universal hashing with a collision proba-
bility ε ≈ 2−2n (in a deterministic MAC), then we could certainly preclude the
birthday attacks (in a provably secure way). However, such a method does not
solve our problem at hand in nature; such a function deserves 2n-bit security,
not n-bit, or not to mention the fact that schemes based on wide functions would
become inefficient.

Yet another approach is to construct a PRF f ′k′ : {0, 1}2n → {0, 1}2n from
a PRF fk : {0, 1}n → {0, 1}n in a birthday-resistant way. Examples include



Benes [12], Ωt [13] and Feistel-6 [14]. These constructs however require too many
(4 or more) invocations to f , and consequently schemes based on such an f ′

would be inefficient.
Lastly, we mention the Sum construction [15] which gives a way to construct

a PRF from PRPs. The security of the resulting PRF is shown to be beyond the
birthday limit, but the construction requires at least two invocations to f when
instantiated with a single PRP f .

3 Preliminaries

In this section we first review the notion of pseudo-random functions (PRFs)
and that of quasi-random functions (QRFs). We then give an overview of the
theory of tweakable PRFs. Notice that such a theory is usually based on the
framework of block ciphers, but we carefully restate the theory in the language
of compression functions (rather than block ciphers). Some parts of the theory
are directly translated into the new setting, while other parts need to receive
local treatment in the context of compression functions.

Pseudo-random Functions (PRFs). Let {fk : X → Y } be a family of
functions with keys k ∈ K. Informally, we say that f is pseudo-random if fk

with a key k
$← K randomly chosen is indistinguishable from a truly random

function ϕ : X → Y (i.e., ϕ
$← Func(X, Y ) where Func(X, Y ) denotes the set of

all functions from X to Y ), by computationally-bounded adversaries.
To be more precise, let A denote an adversary trying to distinguish between

f and ϕ. That is, A is given access to either the “real” oracle f or the “random”
oracle ϕ. The f -oracle picks a random key k

$← K at the beginning of each
experiment and, upon a query x ∈ X made by A, returns the value y = fk(x) to
A. On the other hand, the ϕ-oracle picks a random function ϕ

$← Func(X,Y ) at
the beginning of each experiment and returns the value y = ϕ(x) upon a query
x ∈ X. Then the advantage of adversary A is defined by

Advprf
f (A) def= Pr

[
Af ⇒ 1

]− Pr
[
Aϕ ⇒ 1

]
,

where by the notation AO ⇒ 1 we denote the event that A, given access to
oracle O, outputs value 1.

In order for the advantage function to be well-defined, the resources of ad-
versary A need to be bounded. We define

Advprf
f (t, q, `) def= max

A
Advprf

f (A),

where max runs over all adversaries, whose time complexity is at most t, making
at most q oracle queries, each query being at most length ` (in some appropriate
units). In order to measure the time complexity t, we fix some model of com-
putation. The time complexity includes the maximum time for adversary A to
execute each overlying experiment, including the time consumed by oracles, plus
the code size of A. If f accepts only fixed-length inputs, then the quantity ` is
simply omitted from the notation.



Quasi-random Functions (QRFs). The notion of QRFs is an information-
theoretic version of that of PRFs [16]. A QRF ψ is a family of functions, indexed
not by a key but by smaller random function(s). An adversary A attacking ψ is
computationally unbounded. The advantage function is defined similarly:

Advqrf
ψ (A) def= Pr

[
Aψ ⇒ 1

]− Pr
[
Aϕ ⇒ 1

]
,

and we also define
Advqrf

ψ (q, `) def= max
A

Advqrf
ψ (A),

where again, ` may be omitted from the notation if irrelevant.

Tweaking Pseudo-random Functions. Here we recast the theory of tweak-
able block ciphers in the context of compression functions. In fact, developing
the theory in the style of compression function is easier, because block ciphers
are permutations, whilst compression functions are functions, which in particu-
lar means that we do not need to exercise the PRP ↔ PRF Switching Lemma.
Also, we utilize the condition b ≥ 2n here, which is something impossible with
block ciphers where there exists an innate relation b = n.

The purpose of tweaking a PRF fk is to construct many functions f1, f2, . . .
from f which are indistinguishable from a collection of (truly) random functions
ϕ1, ϕ2, . . .. In order to do this, we begin with defining an initial value ∆0 of
masks to be the leftmost b bits of

fk

(
1
) ∥∥ fk

(
2
) ∥∥ · · · ∥∥ fk

(db/ne),
where integers 1, 2, . . . , db/ne are represented as b-bit strings by some canonical
encoding. We then modify this value ∆0 sequentially, by “incrementing” as

∆1 , ∆2 , . . . , ∆`,

up until about ` ≈ 2n. It is essential here that the values ∆1,∆2, . . . , ∆` are all
distinct. In addition, we also need a “special” set of offsets

∆̄L,1 , ∆̄L,2 , ∆̄L,3,

for each L ∈ {1, 2, . . . , `}. All of these values need to be distinct among them-
selves and from the above list of `-many values.

In our construction a message M ∈ {0, 1}∗ needs to be padded so that the
length becomes a multiple of b bits, before being processed. This would cause
the length to increase by b bits in case |M | is already a multiple of b. If one
wants to avoid the extra block of computation when |M | happens to be exactly
equal to a multiple of b bits, then one needs another special set of offsets

¯̄∆L,1 , ¯̄∆L,2 , ¯̄∆L,3,

for performance optimization (saving one block of computation). For the sake of
simplicity, we do not make use of such masks ¯̄∆1,

¯̄∆2,
¯̄∆3 and do contend our-

selves with the trivial padding M‖10∗. Our construction always requires three



blocks of extra computation in any event, so the effectiveness of such optimiza-
tion is limited. All the proofs carry over with such optimization but only become
more complicated.

Incrementing Masks. It remains to describe the ways of “incrementing” the
masks. There are several known methods [17–20], and some of them can be trans-
formed into the context of compression functions. In the following we modify the
method in [20] so that it becomes compatible with our construction.

The basic framework of [20] is to let ∆i
def= αi ·∆0, where the multiplication is

done in the finite field F2b , and α ∈ F×
2b is a non-zero element whose multiplicative

order is large enough (say ≥ 2n). The functions fi are created via fi(m) def=
fk(m ⊕ ∆i). The special offsets are created via ∆̄L,j

def= αL · βj · ∆0, where
β ∈ F×

2b is an element such that αLβj can be guaranteed to be distinct from αis.
A preferred choice of α, β is usually α = 2 and β = 3.

The finite field needs to be represented by an irreducible polynomial g(x) ∈
F2[x] of degree b, with α = x(= “2”) being a generator of F×

2b (so that its
multiplicative order is 2b−1). Then we compute logx(x+1) in this field and verify
that it is huge, which enables us to choose β = x + 1(= “3”). Computing such
discrete logarithms for block ciphers has been feasible owing to small parameters
such as b = 64 and b = 128 [20].

Yet, now we are dealing with a compression function with a parameter such
as b = 512, which most likely stops us from computing such discrete logarithms.
So instead we choose an irreducible polynomial g(x) so that α = 2 generates
only a subgroup of F×

2b but its order being large enough (≥ 2n). Then we merely
need to verify that β = 3 generates the subgroup “missed” by α = 2.

For example, consider the case b = 512 and n = 128. We are then working in
the multiplicative group F×2512 of the field with 2512 elements, and the order of the
group 2512−1 can be factored as 2512−1 = (21+1)(22+1) · · · (2128+1)(2256+1).
In particular, the term 2128 + 1 can be further factored as [21]:

2128 + 1 = 59649589127497217× 5704689200685129054721.

It can be directly verified that these two prime factors appear nowhere else in
the factorization of 2512 − 1.

Now we choose x512 + x12 + x7 + x2 + 1 ∈ F2[x] as an irreducible polynomial
to represent the field F2512 and verify that x(2512−1)/59649589127497217 6= 1 and
x(2512−1)/5704689200685129054721 6= 1 in this field, which ensures that the multi-
plicative order of the element x is at least 2128 + 1. On the contrary, notice that
x(2512−1)/17 = 1, where 17 = 24 + 1 appears only once in the factorization of
2512− 1, from which we deduce that the element x does not “generate” the sub-
group of order 17 in the multiplicative group F×2512 . On the other hand, observe
that (x+1)(2

512−1)/17 6= 1, which implies that the group generated by x+1 does
contain the subgroup of order 17.

After the above verification we are able to set

∆i
def= xi∆0 and ∆̄L,j

def= xL(x + 1)j∆0



for i, L ∈ {1, 2, . . . , 2128} and j ∈ {1, 2, 3}. These masks are all distinct because
of the following three reasons: (1) We have ∆i 6= ∆i′ if i 6= i′, owing to the
high order of the element x; (2) We have ∆i 6= ∆̄L,j for any i, L, j in the above
ranges, because xL(x+1)j generates a group that contains the subgroup of order
17 while xi does not; (3) We have ∆̄L,j 6= ∆̄L′,j′ as long as (L, j) 6= (L′, j′), for
if the equality xL(x+1)j∆0 = xL′(x+1)j′∆0 holds in the field with i, L, j being
in the above ranges, then by looking at the subgroup of order 17 we see that
j = j′, which immediately implies that L = L′.

Lemma 1. If f is a PRF and the masks ∆1,∆2, . . . ,∆` ∈ {0, 1}b are all dis-
tinct, created via ∆i

def= γi · ∆0 ∈ F2b with γi being some (public) function
of i independent of the value ∆0, then the functions f1, f2, . . . , f` defined by
fi(m) def= fk(m⊕∆i) are indistinguishable from random functions ϕ1, ϕ2, . . . , ϕ`,
by an adversary having time complexity at most t and making at most q ≥ db/ne
queries to each fi (or ϕi), except for the probability at most

Advprf
f (t, q′) +

q2

22n−1
,

where q′ = (` + 1)q.

Proof. The proof is done via hybrid argument. Consider an intermediate oracle
ρ which chooses a random function ρ : {0, 1}b → {0, 1}n at the beginning of
each experiment and upon a query m to fi returns ρi(m) def= ρ(m⊕∆i) instead.
Here, ∆0 is computed as the leftmost b bits of

ρ
(
1
) ∥∥ ρ

(
2
) ∥∥ · · ·

∥∥ ρ
(db/ne),

and the masks ∆1,∆2, . . . , ∆` are generated accordingly, which are all distinct
as long as ∆0 6= 0b.

Now let A be an adversary trying to distinguish between f1, f2, . . . , f` and
ϕ1, ϕ2, . . . , ϕ`. Assume that A has time complexity at most t and makes at most
q queries to each fi (or ϕi). It is straightforward to see that the probability that
A distinguish between f1, f2, . . . , f` and ρ1, ρ2, . . . , ρ` is at most

Advprf
f (t, q′),

where q′ def= (` + 1)q ≥ `q + db/ne.
We next show that ρ is quasi-random. Observe that functions ρ1, ρ2, . . . , ρ`

behave just like random functions ϕ1, ϕ2, . . . , ϕ` unless one of the following
events occurs: (1) ∆0 = 0b, or (2) A “collision” occurs among the inputs to ρ and
ρi. The probability for event (1) to occur is exactly 2−b ≤ 2−2n. For (2), if a colli-
sion occurs between inputs to ρ and ρi, then it means that j = m⊕∆i = m⊕γi∆0

for some j ∈ {1, 2, . . . , db/ne}. This yields (j⊕m)/γi = ∆0, and for a fixed (j, i)
the probability of such an event is 2−b ≤ 2−2n. On the other hand, if a collision
occurs between an input to ρi and an input to ρj for some 1 ≤ i < j ≤ `, then it
means that we have m⊕∆i = m′ ⊕∆j , or equivalently m⊕ γi∆0 = m′ ⊕ γj∆0.



This yields (m ⊕m′)/(γi ⊕ γj) = ∆0, and for a fixed (i, j) the probability that
such an event occurs is 2−b ≤ 2−2n.

Since the values returned by ρ are random, adversary A learns nothing from
them to bring about a collision. That is, we can assume that A is non-adaptive
and outputs a sequence of fixed values (i1,m1), (i2,m2), . . . , (iq,mq), hoping that
a collision occurs among them [16]. Now for the first type of collision there are at
most db/ne·q possible pairs, while for the second type there are at most

(
q
2

)
pairs.

Thus the advantage that A distinguish between ρ1, ρ2, . . . , ρ` and ϕ1, ϕ2, . . . , ϕ`

is at most
1

22n
+ db/ne · q · 1

22n
+

(
q

2

)
· 1
22n

≤ q2

22n−1
.

ut

4 Description of the Proposed Mode

In this section we give the definition of our algorithm. Recall that our start-
ing primitive is a compression function f : {0, 1}n+b → {0, 1}n. We key it via
fk(m) def= f(k‖m) and tweak it via fi(m) def= fk(m⊕∆i), obtaining

f1 , f2 , . . . , f` , f̄1 , f̄2 , f̄3,

which should be (computationally) indistinguishable from random functions
ϕ1, ϕ2, . . . , ϕ`, ϕ̄1, ϕ̄2, ϕ̄3 (Recall that fi depends on the choice of key k, while f̄i

depends on the message length L, and so does ϕ̄i).
Now with these tweaked functions in hand, we first define a function (which

depends on the choice of L)

f̄123 : {0, 1}b+2n → {0, 1}n,

from the three functions f̄1, f̄2 and f̄3. This function is used at the end of
processing a message in our mode of operation

Fk : {0, 1}∗ → {0, 1}n.

See Fig. 1 for precise definitions, as well as Fig. 2 for a pictorial description.
The construction of f̄123 may look unnatural at first glance. We note that

this is not the only one that works. For example, the roles of S and vL‖s may
be switched, or Two-Lane construction [9] may be used in the place. Our choice
of f̄123 simply comes from considerations of efficiency.

The major feature of our mode of operation is the usage of message checksum
S =

⊕L
i=1 mi and intermediate-value checksum s =

⊕L
i=1 vi. The checksum

construction is effectively combined with the tweaked compression functions,
yielding security beyond the birthday barrier.



Algorithm f̄123(S‖vL‖s) // S ∈ {0, 1}b, vL, s ∈ {0, 1}n

Set u ← vL‖s
Compute Σ1 ← f̄1(S) and Σ2 ← f̄2(S)
Set w ← (Σ1‖Σ2)⊕ u

Output τ ← f̄3(w‖0b−2n)

Algorithm Fk(M) // M ∈ {0, 1}∗
Pad M ← M‖10∗

Divide M = m1‖m2‖ · · · ‖mL so that mi ∈ {0, 1}b

Compute checksum S ←LL
i=1 mi

Initialize v0 ← 0n

Iterate vi ← fi

`
mi ⊕ (vi−1‖0b−n)

´
for i = 1, 2, . . . , L

Compute checksum s ←LL
i=1 vi

Output τ ← f̄123(S‖vL‖s)

Fig. 1. Definitions of f̄123 and Fk

5 Proofs of Security beyond the Birthday Barrier

We want to prove that our mode of operation Fk is (computationally) indistin-
guishable from a truly random function Ψ : {0, 1}∗ → {0, 1}n in such a way as
its security is still guaranteed when q ≈ 2n/2. Succinctly, we prove the following
theorem:

Theorem 1. Let Fk : {0, 1}∗ → {0, 1}n be the mode of operation as defined in
Sect. 4. It is a PRF without the birthday barrier if the underlying compression
function is a PRF. Concretely, we have

Advprf
F (t, q, `) ≤ Advprf

f (t, q′) +
3q2

22n
,

where q ≥ db/ne and q′ = (` + 4)q.

The proof is based on hybrid argument. In order to prove that Fk is a PRF via
hybrid argument, we construct intermediate QRFs Φ and Φψ as below.

The QRF Φ : {0, 1}∗ → {0, 1}n is constructed as follows. In the definition
of Fk, we replace functions f1, f2, . . . , f` with random functions ϕ1, ϕ2, . . . , ϕ`,
where ϕi : {0, 1}b → {0, 1}n is drawn independently at random. We also replace
f̄1, f̄2, f̄3 with random functions ϕ̄1, ϕ̄2, ϕ̄3 (The choice of these random functions
depends on the value L). This gives us a (to-be-proven) QRF Φ. See Fig. 3 for
an illustration of Φ.

The other QRF Φψ is obtained by modifying the last component in Φ. In
the definition of Φ, note that we have a (to-be-proven) QRF

ϕ̄123 : {0, 1}b+2n → {0, 1}n,

which is constructed of ϕ̄1, ϕ̄2, ϕ̄3 (Needless to say, ϕ̄123 in Φ corresponds to
f̄123 in Fk). We replace this QRF ϕ̄123 with a truly random function

ψ : {0, 1}b+2n → {0, 1}n.
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Fig. 2. Proposed mode of operation Fk (the lower half corresponding to f̄123)

That is to say, for each value of L, the function ϕ̄123 is replaced with a new
random function ψ = ψL. We name the resulting scheme as Φψ : {0, 1}∗ →
{0, 1}n.

Now the hybrid argument works as follows. Let A be an adversary trying to
distinguish between Fk and Ψ . Then

Advprf
F (A) def= Pr

[
AF ⇒ 1

]− Pr
[
AΨ ⇒ 1

]

= Pr
[
AF ⇒ 1

]− Pr
[
AΦ ⇒ 1

]

+ Pr
[
AΦ ⇒ 1

]− Pr
[
AΦψ ⇒ 1

]

+ Pr
[
AΦψ ⇒ 1

]− Pr
[
AΨ ⇒ 1

]
.

We bound the three differences in the rest of this section.
To evaluate the first difference, we note that it is rather straightforward to

see that

Pr
[
AF ⇒ 1

]− Pr
[
AΦ ⇒ 1

] ≤ Advprf
f (t, q′) +

q2

22n−1
,

where q′ def= (` + 4)q. This is because distinguishing between F and Φ essentially
amounts to the security of tweaked functions f1, f2, . . . , f`, f̄1, f̄2, f̄3, where each
f̄i may vary upon each query (of varying length). So the above inequality follows
from Lemma 1.

We next bound the second difference. It is again easy to see that

Pr
[
AΦ ⇒ 1

]− Pr
[
AΦψ ⇒ 1

] ≤ Advqrf
ϕ̄123

(q).
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Fig. 3. Description of ˘ (the lower half corresponding to ’̄123)

This is because any adversary trying to distinguish between Φ and Φψ essentially
amounts to distinguishing between ϕ̄123 and ψ. So it remains to evaluate the
quantity Advqrf

ϕ̄123
(q). We do this in the following lemma:

Lemma 2. Fix L. Then the function ϕ̄123 is a quasi-random function. More
concretely, we have

Advqrf
ϕ̄123

(q) ≤ q2

22n+1
.

Proof. Let B be an adversary trying to distinguish between ϕ̄123 and a truly
random function ψ : {0, 1}b+2n → {0, 1}n. Since ϕ̄3 is a random function, ϕ̄123

behaves just like a truly random function unless a collision occurs among the
inputs to ϕ̄3. By a “collision” we mean an event w = w′ for distinct inputs
S‖u 6= S′‖u′ (We carry over the symbols such as w,S, u from the definition of
f̄123 in Fig. 1). We want to evaluate the probability that such an event occurs.

Since the values returned by ϕ̄123 are random, and B learns nothing from
the values in order to bring about a collision, without loss of generality we can
assume that B is non-adaptive [16]. That is to say, B just queries a sequence of
fixed values S1‖u1, S2‖u2, . . . , Sq‖uq, hoping that a “collision” occurs between
wi and wj for some 1 ≤ i < j ≤ q.

So suppose S‖u 6= S′‖u′ and w = w′. We claim that the probability that
such an event occurs is at most 2−2n. To see this, we first observe that S 6= S′,
for if S = S′, then Σ1‖Σ2 = Σ′

1‖Σ′
2 and u 6= u′, which implies w 6= w′ and hence

never a collision. Thus we are looking at an event such that Σ1 ⊕ vL = Σ′
1 ⊕ v′L



and Σ2 ⊕ s = Σ′
2 ⊕ s′ for some fixed S, S′, vL, v′L, s, s′. Since ϕ̄1 and ϕ̄2 are

random functions, the probability that each event occurs is 2−n. Moreover, since
ϕ̄1 and ϕ̄2 are independently random, the probability that both events occur is
2−n · 2−n = 2−2n.

We have seen that the probability that Si‖ui 6= Sj‖uj and wi = wj is at
most 2−2n. Since there are at most

(
q
2

)
choices of values (i, j), we conclude that

Advqrf
ϕ̄123

(q) ≤
(

q

2

)
· 1
22n

≤ q2

22n+1
.

ut

Now note that A’s varying lengths L of its queries does not contribute to in-
creasing the collision probability. So we obtain

Pr
[
AΦ ⇒ 1

]− Pr
[
AΦψ ⇒ 1

] ≤ q2

22n+1
.

Lastly, we bound the third difference. This is nothing but the quantity

Advqrf
Φψ

(A) def= Pr
[
AΦψ ⇒ 1

]− Pr
[
AΨ ⇒ 1

]
,

by definition. Hence in the next lemma we show that Φψ is indeed quasi-random:

Lemma 3. The function Φψ is quasi-random. More concretely, we have

Advqrf
Φψ

(q, `) ≤ q2

22n+1
.

Note that the quantity ` vanishes on the right-hand side.2

Proof. Since ψ : {0, 1}b+2n → {0, 1}n is a random function, Φψ behaves just
like a truly random function except when a collision occurs among the inputs
to ψ. Here by a “collision” we mean an event that for two distinct queries M =
m1‖m2‖ · · · ‖mL and M ′ = m′

1‖m′
2‖ · · · ‖m′

L′ the equality S‖vL‖s = S′‖v′L′‖s′
holds.

We want to evaluate the probability that such a collision occurs. We divide
our proof into two cases, depending on the lengths L,L′ of two messages.
Case A: L 6= L′. There is nothing to prove in this case. That is, since the choice
of ψ changes for different values of L, two independently random functions, say
ψL and ψL′ , are used for messages of different lengths. So there is no “collision”
to consider here; the two outputs are truly random.
Case B: L = L′. Observe that from the condition M 6= M ′ there exists a unique
a ∈ {1, 2, . . . , L} such that (va−1,ma) 6= (v′a−1,m

′
a) and (vi−1,mi) = (v′i−1,m

′
i)

holds for i = a + 1, a + 2, . . . , L.
2 An implicit assumption here is that upto ` ≈ 2n we have `-many random functions

for the place of ψ; cf. [22].



Case B-1: (va−1‖0b−n) ⊕ ma = (v′
a−1‖0b−n) ⊕ m′

a. In this case we note
that the rightmost b − n bits of ma and m′

a must be identical, and with
the condition (va−1,ma) 6= (v′a−1, m

′
a) we see that va−1 6= v′a−1 and ma 6=

m′
a. Since va−1 6= v′a−1, the two inputs to the random function ϕa−1 must

differ, implying that va−1 and v′a−1 are two independently random values. It
means that the equality (va−1‖0b−n) ⊕ma = (v′a−1‖0b−n) ⊕m′

a holds with
a probability of 2−n. Moreover, observe that since s = s′ and vi = v′i for
a ≤ i ≤ L we must have

⊕a−1
i=1 vi =

⊕a−1
i=1 v′i. The condition va−1 6= v′a−1

also tells us that
⊕a−2

i=1 vi 6=
⊕a−2

i=1 v′i. Now put sa−2
def=

⊕a−2
i=1 vi and s′a−2

def=⊕a−2
i=1 v′i. Then the values sa−2 and s′a−2 are created using random functions

ϕ1, ϕ2, . . . , ϕa−2, which are all independent from the random function ϕa−1.
Therefore, the equality sa−2 ⊕ va−1 = s′a−2 ⊕ v′a−1 holds with a probability
of 2−n. This event is clearly independent from the previous equality, so this
case occurs with a probability at most 2−n · 2−n = 2−2n.

Case B-2: (va−1‖0b−n) ⊕ ma 6= (v′
a−1‖0b−n) ⊕ m′

a. In this case the in-
puts to the random function ϕa are different, but their outputs are colliding
(i.e., va = v′a). Clearly, the probability that such an event occurs is exactly
2−n.
Case B-2-(i): va−1 6= v′

a−1. In this case we do an analysis similar to
Case B-1. The condition va−1 6= v′a−1 tells us that

⊕a−2
i=1 vi 6=

⊕a−2
i=1 v′i.

Put sa−2
def=

⊕a−2
i=1 vi and s′a−2

def=
⊕a−2

i=1 v′i. Then we have sa−2 6= s′a−2,
and the equality sa−2 ⊕ va−1 = s′a−2 ⊕ v′a−1 holds with a probability of
2−n.

Case B-2-(ii): va−1 = v′
a−1. In this case we have sa−1 = s′a−1. Since

M 6= M ′ and S =
⊕L

i=1 mi = S′ =
⊕L′

i=1 m′
i, there must exist at least

two values of i ∈ {1, 2, . . . , L} such that mi 6= m′
i. One of such values

may be equal to the value a, but it still guarantees that there exists a
b ∈ {1, 2, . . . , a−1} such that (vb−1,mb) 6= (v′b−1,m

′
b) and vi = v′i, si = s′i

for i = b, b + 1, . . . , a − 1 and mi = m′
i for i = b + 1, b + 2, . . . , a − 1.

Then we do an analysis at block b similar to Case B-1 and B-2 as done
at block a, in order to prove that such an event happens at block b with
a probability at most 2−n.

In all events we see that the collision probability in Case B-2 is at most
2−n · 2−n = 2−2n.

We have shown that in all cases the collision probability is at most 2−2n.
Since the values returned by ψ are random, and A learns nothing from these
values in bringing about a collision, we can assume that A is non-adaptive. So
assume that A makes a fixed sequence of queries M1,M2, . . . , Mq, hoping that
a collision occurs at some 1 ≤ i < j ≤ q. We have just seen that for a pair
(Mi,Mj) the probability that the two messages collide is at most 2−2n. Since
there are at most

(
q
2

)
pairs, we conclude that

Advqrf
Φψ

(q, `) ≤
(

q

2

)
· 1
22n

<
q2

22n+1
.



ut
Now we go back to proving our main theorem. We have

Advprf
F (A) def= Pr

[
AF ⇒ 1

]− Pr
[
AΨ ⇒ 1

]

= Pr
[
AF ⇒ 1

]− Pr
[
AΦ ⇒ 1

]

+ Pr
[
AΦ ⇒ 1

]− Pr
[
AΦψ ⇒ 1

]

+ Pr
[
AΦψ ⇒ 1

]− Pr
[
AΨ ⇒ 1

]

≤ Advprf
f (t, q′) +

q2

22n−1
+

q2

22n+1
+

q2

22n+1

= Advprf
f (t, q′) +

3q2

22n
,

where q′ = (` + 4)q. This proves our main theorem.

6 Optimization for Better Performance

In this section we introduce a couple of techniques to improve the performance
of our mode. One is associated with the methods of setting up the masks, and
the other is related to the ways of keying the compression function.

Mask Partition. The performance of our mode should be essentially as good
as that of a naively-chained construction such as the Merkle-Damg̊ard iteration
(HMAC), except for the computational costs of workings outside the underlying
primitive f . These include concatenation, XOR, mask setup (initialization) and
its incrementation. The last calculation can be realized with a 1-bit (left-)shift
operation plus a conditional XOR, because an incrementation corresponds to
multiplying x to the mask in the field F2b (multiplication by x + 1 requires
slightly more operations).

The 1-bit shift operation may be costly in software implementations, because
we need to perform the operation on a long mask, say b = 512 bits, while the
available size of registers may be much smaller, say 32 bits. The long-size mask
causes another problem that we may be forced to store data outside registers,
further lowering performance. These difficulties can be relaxed by dividing the
b-bit mask into copies of a 2n-bit mask. For example, consider the case b = 512
and n = 128. Then we can use ∆i‖∆i as the mask, where ∆i is a 256-bit mask
(using for example x256 +x16 +x3 +x2 +1 ∈ F2[x] as an irreducible polynomial).
Note that our proofs work with such a construction without significant changes.

Key-Length Flexibility. Our mode does not require re-keying, presenting a
contrast to the classical Merkle-Damg̊ard iteration that re-keys at every step.
This does not have an impact on performance with compression functions such as
sha1 and sha256, but the situation would be quite different with block-cipher-like
primitives equipped with heavy key-schedule algorithms.



We remark that our construction has no restriction on the key space, though
so far we have assumed k ∈ {0, 1}n. In fact, our construction works with any
finite PRF fk : {0, 1}b → {0, 1}n with k ∈ K, where K can be an arbitrary type
of key space, as long as f is a secure PRF. Hence using a key k shorter than n
bits speeds up performance (i.e., each invocation to f processes more bits of a
message). This sort of situation may occur when the desired key length does not
match the value n of a compression function in hand.

7 Open Problems

Case b < 2n and Block-Cipher-Based Construction. Our construction
requires that the underlying compression function f : {0, 1}n+b → {0, 1}n should
meet the condition b ≥ 2n. We leave it as an open problem whether we can
construct a mode of operation, meeting our goals, with a compression function
f with b < 2n. Since we utilize this condition essentially in two different places,
our method does not seem to be feasible with such compression functions. In
particular, the last process with f̄123 may be constructed by methods such as [12–
14], but using the condition in tweaking f seems to face a hard problem.

A possibly more challenging problem is to construct a mode of operation
using an fk with b = n and each fk being a permutation, rather than a function
(i.e., a block cipher). This introduces the difficulty in handling the PRP ↔ PRF
Switching Lemma that causes the birthday security degradation.

Parallelizable Construction. Our construction is inherently serial, and thus
not parallelizable. Parallelizability is one of the desirable properties in construct-
ing a mode of operation.

Recall that PMAC [18] is a mode of operation for message authentication,
which is fully parallelizable. Although usually constructed of a block cipher,
PMAC can be based on a compression function f : {0, 1}n+b → {0, 1}n meeting
the condition b ≥ 2n. We can then modify such PMAC as “multilaned” in the
ways described in [9]. This would yield a parallelizable construction (which would
resist birthday attacks). The only problem with this construction is that it is
not truly one-pass. We leave it as an open problem whether we can construct
a mode of operation that enjoys all the seven properties in our construction as
well as parallelizability.

Reducing the State Size. Our mode is based on three data flows, summing
up to b + n + n = b + 2n bits of state size. This is larger than 2n, the number of
bits we expect to be necessary to preclude birthday attacks. It is an interesting
problem to see how many of b + 2n bits we can reduce down to 2n bits with a
new construction in future work.



8 Concluding Remarks

Remarks on Checksum Construction. The idea of message checksum and
that of intermediate-value checksum appear in various scenarios, including CBC
with Checksum [23, 24], 3GPP f9 [25] and O-NMAC [26]. The same techniques
are also used in the context of keyless hash functions, the purpose being, among
other things, to preclude multi-collision attacks [27]. However, many of these
hash functions are broken subsequently after their introduction [28, 29].

On the other hand, checksum techniques are proven to be effective (among
other things) for extending a distribution property of a compression function to
the whole hash function [30]. Our construction presents another positive appli-
cation of the techniques—providing a secure PRF without the birthday barrier.

Remarks on Masking Technique. The masking technique used in the present
work might be contrasted to that in constructing target-collision-resistant (TCR)
hash functions [31]. The difference lies in the number of necessary “randomness.”
In the case of TCR hash functions the construction requires fresh masks as many
as logarithmic of the message length (for each message), whereas in our case all
the masks are derived from a single mask (which is also derived from a single
key) for all messages. Having or not having a “secret” key seems to be essential
to making the difference here.
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