
Cryptanalysis of ESSENCE∗

Maŕıa Naya-Plasencia1, Andrea Röck2,†, Jean-Philippe Aumasson3,‡, Yann
Laigle-Chapuy1, Gaëtan Leurent4, Willi Meier5,§, and Thomas Peyrin6

1 INRIA project-team SECRET, France
2 Aalto University School of Science and Technology, Finland

3 Nagravision SA, Cheseaux, Switzerland
4 École Normale Supérieure, Paris, France

5 FHNW, Windisch, Switzerland
6 Ingenico, France

Abstract. ESSENCE is a hash function submitted to the NIST Hash
Competition that stands out as a hardware-friendly and highly paral-
lelizable design. Previous analysis showed some non-randomness in the
compression function which could not be extended to an attack on the
hash function and ESSENCE remained unbroken. Preliminary analysis in
its documentation argues that it resists standard differential cryptanal-
ysis. This paper disproves this claim, showing that advanced techniques
can be used to significantly reduce the cost of such attacks: using a man-
ually found differential characteristic and an advanced search algorithm,
we obtain collision attacks on the full ESSENCE-256 and ESSENCE-
512, with respective complexities 267.4 and 2134.7. In addition, we show
how to use these attacks to forge valid (message, MAC) pairs for HMAC-
ESSENCE-256 and HMAC-ESSENCE-512, essentially at the same cost
as a collision.

Keywords: cryptanalysis, hash functions, SHA-3

1 Introduction

Since the results [1–4] on the two most deployed hash functions, MD5 and SHA-
1, recent years have seen a surge of research on cryptographic hashing. The
consequent lack of confidence in the current NIST standard SHA-2 [5], stemming
from its similarity with those algorithms, motivated NIST to launch the NIST
Hash Competition, a public competition to develop a new hash standard, which
will be called SHA-3 and announced by 2012 [6, 7]. NIST received 64 submissions,

∗This work is supported in part by European Commission through the ICT pro-
gramme under contract ICT-2007-216676 ECRYPT II and by the French Agence Na-
tionale de la Recherche under contract ANR-06-SETI-013-RAPIDE.

†The work was started during my PhD at INRIA project-team SECRET, France.
‡Work done while this author was with FHNW, Switzerland, and supported by the

Swiss National Science Foundation under project no. 113329.
§Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.



accepted 51 as first round candidates, and in July 2009, selected 14 second round
candidates [7, 8]. That competition catches the attention not only from many
academics, but also from industry—with candidates from IBM, Hitachi, Intel,
Sony—and from governmental organizations.

ESSENCE [9, 10] was a first round candidate in the NIST Hash Competi-
tion that like many others has two main instances, operating on 32- and 64-bit
words, respectively: ESSENCE-256 and ESSENCE-512. These functions process
messages using a binary tree structure, and use a simple compression algorithm
based on two nonlinear feedback shift registers (NFSR’s).

This paper presents collision attacks on the full hash functions ESSENCE-256
and ESSENCE-512. At the heart of our attacks is a single differential charac-
teristic, found manually. Our main technical achievement is an original method
for searching inputs conforming to this characteristic at a reduced cost. Supple-
mentary, we describe how to use these attacks for forging valid message/MAC
pairs for HMAC-ESSENCE-256 and HMAC-ESSENCE-512 in far fewer than
2n/2 trials. These findings show that ESSENCE does not satisfy the security
requirements set by NIST for the future SHA-3.

In a parallel work, Mouha et al. [11] presented results on reduced versions of
ESSENCE, including a pseudo-collision attack on ESSENCE-512 reduced to 31
steps. They exploited a differential characteristic of a different type than ours,
and also use different techniques to search for conforming inputs. Preprints of [11]
and of the present paper were published simultaneously in June 2009, and in July
ESSENCE was not selected as a second round candidate by NIST.

The rest of the paper is organized as follows: §2 briefly introduces ESSENCE;
§3 describes our method for searching collisions and its complexity analysis; §4
shows how to attack the HMAC construction when instantiated with ESSENCE,
and finally §5 concludes.

2 Brief description of ESSENCE

We give a brief description of the ESSENCE hash functions, which should be
sufficient to understand our attacks. A complete specification can be found
in [9, 10]. Henceforth statements of (non) linearity are with respect to the field
GF(2) = {0, 1} and its extensions.

2.1 Structure

ESSENCE processes a message by constructing a balanced binary tree of bounded
depth whose leaves correspond to calls to a compression function with message
chunks as input. The size of the message chunks and the height of the tree are
tunable parameters. More precisely, each leaf corresponds to a hash done by a
Merkle Damg̊ard (MD) construction [12, 13] and a unique initial value for each
leaf that depends on several parameters of the hash function. Likewise, nodes
correspond to a combination by a MD construction of the childrens chaning
value and a unique IV.



After creation of all tree roots, one appends a final block to the data to
be hashed. This block contains parameters of the function as well as message-
dependent information, and it potentially assists to prevent near-collision at-
tacks.

2.2 Compression Function

The compression function of ESSENCE takes as input an eight-word chaining
value and an eight-word message block. Words are 32-bit for ESSENCE-256 and
64-bit for ESSENCE-512, so blocks are respectively 256- and 512-bit. Versions
of ESSENCE with 224- and 384-bit digests are derived from the main instances
by tweaking parameters and truncation of the final digest.

The compression function uses two NFSR’s, each operating on a register of
eight words:

• r = (r0, . . . , r7) is initialized with the chaining value, and
• k = (k0, . . . , k7) is initialized with the message block.

At each step of the compression algorithm, the mechanism in Fig. 1 is clocked
using a nonlinear bitwise function F (see Fig. 2), and a linear function L that
provides diffusion across word slices.

Let us consider the feedback in more details for the example of the register
handling the message. The word k7 is combined by XOR with F (k6, k5, k4, k3, k2, k1, k0)
and L(k0). Thus, the nonlinear function F is influenced by the seven words
k0, . . . , k6, any difference in k7 is forwarded directly and any difference δ in k0
is transformed into a difference L(δ). The register initialized by the chaining
value employes almost the same feedback function. The only difference is that
at each step we combine in addition the word k7 from the second register.

The documentation of ESSENCE recommends at least 24 steps, and sets 32
steps in the actual submission for extra precaution [10, §4]. The whole mechanism
defines a permutation and the compression function returns as new chaining
value the XOR of the r register with its initial value, as in the Davies-Meyer
scheme.

Fig. 1. Overview of the ESSENCE compression function logic.



Table 1. Differential characteristic for finding collisions on (both versions of)
ESSENCE; α, β and γ are differences such that β = L(α), γ = L(β) and α∨β∨γ = α∨β.
A “·” denotes an absence of difference. Values in the column “Pr” are heuristic approx-
imations of the probability to reach the next difference (exact probabilities significantly
differ, and can be estimated empirically, cf. §3.3).

Pr. Chaining value part Message part Pr.

r7 r6 r5 r4 r3 r2 r1 r0 k7 k6 k5 k4 k3 k2 k1 k0

1 · · · · · · · · 0 α β · · · · · · 2−|β|

2−|α| · · · · · · · α 1 β · · · · · · α 2−|α|

2−|α| · · · · · · α · 2 · · · · · · α · 2−|α|

2−|α| · · · · · α · · 3 · · · · · α · · 2−|α|

2−|α| · · · · α · · · 4 · · · · α · · · 2−|α|

2−|α| · · · α · · · · 5 · · · α · · · · 2−|α|

2−|α| · · α · · · · · 6 · · α · · · · · 2−|α|

2−|α| · α · · · · · · 7 · α · · · · · · 2−|α|

1 α · · · · · · · 8 α · · · · · · · 1

1 · · · · · · · · 9 · · · · · · · α 2−|α|

1 · · · · · · · · 10 · · · · · · α β 2−|α∨β|

1 · · · · · · · · 11 · · · · · α β · 2−|α∨β|

1 · · · · · · · · 12 · · · · α β · · 2−|α∨β|

1 · · · · · · · · 13 · · · α β · · · 2−|α∨β|

1 · · · · · · · · 14 · · α β · · · · 2−|α∨β|

1 · · · · · · · · 15 · α β · · · · · 2−|α∨β|

1 · · · · · · · · 16 α β · · · · · · 2−|β|

2−|α| · · · · · · · α 17 β · · · · · · α 2−|α|

2−|α| · · · · · · α · 18 · · · · · · α · 2−|α|

2−|α| · · · · · α · · 19 · · · · · α · · 2−|α|

2−|α| · · · · α · · · 20 · · · · α · · · 2−|α|

2−|α| · · · α · · · · 21 · · · α · · · · 2−|α|

2−|α| · · α · · · · · 22 · · α · · · · · 2−|α|

2−|α| · α · · · · · · 23 · α · · · · · · 2−|α|

1 α · · · · · · · 24 α · · · · · · · 1
1 · · · · · · · · 25 · · · · · · · α 1
1 · · · · · · · · 26 · · · · · · α ? 1
1 · · · · · · · · 27 · · · · · α ? ? 1
1 · · · · · · · · 28 · · · · α ? ? ? 1
1 · · · · · · · · 29 · · · α ? ? ? ? 1
1 · · · · · · · · 30 · · α ? ? ? ? ? 1
1 · · · · · · · · 31 · α ? ? ? ? ? ? 1
1 · · · · · · · · 32 α ? ? ? ? ? ? ? 1



F (a, b, c, d, e, f, g) = abcdefg + abcdef + abcefg + acdefg + abceg +

abdef + abdeg + abefg + acdef + acdfg + acefg +

adefg + bcdfg + bdefg + cdefg + abcf + abcg +

abdg + acdf + adef + adeg + adfg + bcde +

bceg + bdeg + cdef + abc + abe + abf + abg +

acg + adf + adg + aef + aeg + bcf + bcg + bde +

bdf + beg + bfg + cde + cdf + def + deg + dfg +

ad + ae + bc + bd + cd + ce + df + dg + ef + fg +

a + b + c + f + 1

Fig. 2. The F function of ESSENCE, which takes seven words as input and operates
in a bit sliced way (that is, the i-th bit of the output word only depends on the i-th
bits of the input words).

3 Collision Attacks on ESSENCE

Table 1 presents a differential characteristic for finding collisions on the compres-
sion function of ESSENCE. It is used for both ESSENCE-256 and ESSENCE-
512. We found this characteristic manually, i.e., without the assistance of any
automated search. Because it has no input difference in the chaining value, it
can directly be used for searching colliding message blocks with respect to the
same chaining value. The collision attack will then consist of

1. Finding one message block that fulfills the characteristic on the right part.
2. Trying chaining values until one conforms to the characteristic on the left

part.

For the second phase of the attack, distinct pseudorandom chaining values are
obtained by picking a first pseudorandom (sequence of) message block(s), and
then checking differences after the insertion of the next message block. This
allows us to find a collision for the full hash function.

The subsequent sections work out the details of the attack as follows:

• §3.1 explains how the characteristic works.
• §3.2 presents an efficient method for finding a message block that con-

forms to the characteristic.
• §3.3 discusses computation of the complexity; contrary to many similar

differential attacks, an approximation solely based on Hamming weights
is insufficient to obtain accurate probability estimates. Actually such
heuristics underestimate the actual complexity of the basic attack, as we
will see later.

Thereafter we use the following notations: ∨ for logical OR between two bits
(or two words); ∧ for logical AND; ¬ for bitwise negation; |w| for the Hamming
weight of word w; wi for the i-th bit of word w, 0 ≤ i < 32 for ESSENCE-256,
and 0 ≤ i < 64 for ESSENCE-512.



3.1 The Differential Characteristic

The differential characteristic in Table 1 starts with a difference in the mes-
sage block, and no difference in the chaining value. To follow the characteristic,
the only assumption that we make is that the function F will “absorb” certain
differences (actually most of them) and “preserve” some others (at step 11).
Therefore, the probability that a randomly chosen input conforms to the dif-
ferential characteristic essentially depends on the Hamming weight of the word
wise differences α and β = L(α). Critical steps are listed below:

• Step 0: α is fed back to r0 via an XOR and it does not enter F , unlike
β. To ensure that no difference appears in the output of F , we need all
the |β| bit differences be absorbed, which is expected to occur with prob-
ability 2−|β| (such heuristic estimates should not be used systematically,
as discussed later).

• Step 1: the relation β = L(α) makes differences introduced in r0 vanish.
This always works, but we also need that α adds no difference, that is,
F needs to absorb |α| bit differences, thus the probability 2−|α| on both
parts.

• Steps 2 to 7: we assume again that the |α| differences introduced in F
are absorbed.

• Step 8: the two α differences cancel out in the middle of the mechanism,
but α is also fed back to k0.

• Step 9: unlike as in step 1, α introduces a difference L(α) = β in k0,
which propagates during steps 11 to 17.

• Step 10: to avoid the introduction of new differences, we need the output
of F to have differences L(β) = γ, in order for the differences to vanish
in the feedback operation. This is only possible if α ∨ β ∨ γ = α ∨ β. As
we will see later, to avoid impossibilities in the differential characteristic,
we also have to add the condition γ ∧ α ∧ ¬β = 0.

• Steps 16 to 24: the characteristic is the same as in steps 0 to 8.
• Steps 25 to 32: note that differences in the right side do not affect the

value returned by the compression function after 32 steps. We thus put
no condition on those particular differences.

After finding this generic characteristic, it remains to search for an α that min-
imizes the cost of the attack. But before that, we present a generic method for
finding a message block conforming to the right part of the characteristic.

3.2 Efficient Search for a Conforming Block

Once we have found low-weight α, β = L(α) and γ = L(β) such that

α ∨ β ∨ γ = α ∨ β and γ ∧ α ∧ ¬β = 0 ,

the complexity of finding a conforming block by repeated trials is heuristically

215|α|+2|β|+6|α∨β| .



This complexity is well above the birthday bound 2n/2 for all differences we
found, let alone the fact that it underestimates the real complexity. For example,
for the difference that we use to attack ESSENCE-256, the above expression
yields a complexity 2210, whereas a birthday attack needs only 2128 trials.

Strategy. To find a conforming block at a reduced cost, we use an “inside-out”
strategy similar in spirit to that of the rebound attack [14], namely, we start by
finding conforming values for the low-probability characteristic in the middle,
then we check that they follow the simpler characteristic in both directions.
What we call the middle part corresponds to steps 8 to 17, inclusive. More
precisely, we

1. Find many values that conform to the middle part (i.e., steps 8 to 17);
2. Search, among those values, one that conforms to the differential characteris-

tic in steps 0 to 8, and 17 to 24 (any such value then follows the characteristic
up to step 32).

We need to find approximately 214|α|+|β| messages in the first phase, in order
to have a conforming one with high probability in the second phase. Below
we expose our strategy for efficiently finding many values conforming to the
characteristic between steps 8 and 17.

Notations. To describe the state during the middle part: in Table 2 each xj

corresponds to a 32 or 64-bit word, depending on the version used. We write S
the set of all indices where α ∨ β is nonzero, that is,

S = {i, 0 ≤ i < 32, αi ∨ βi = 1} for ESSENCE-256,
S = {i, 0 ≤ i < 64, αi ∨ βi = 1} for ESSENCE-512.

We write s = |α ∨ β| = |S| the cardinality of S. For example, if α = 80000000
and β = 00000004, then α31 = β2 = 1, and so S = {2, 31} and s = 2. We also
write ` for the word bit length (32 or 64, depending on the version of ESSENCE).

Table 2. Message part in steps 8-17

8 x0 ⊕ α x1 x2 x3 x4 x5 x6 x7

9 x1 x2 x3 x4 x5 x6 x7 x8 ⊕ α
10 x2 x3 x4 x5 x6 x7 x8 ⊕ α x9 ⊕ β
11 x3 x4 x5 x6 x7 x8 ⊕ α x9 ⊕ β x10

12 x4 x5 x6 x7 x8 ⊕ α x9 ⊕ β x10 x11

13 x5 x6 x7 x8 ⊕ α x9 ⊕ β x10 x11 x12

14 x6 x7 x8 ⊕ α x9 ⊕ β x10 x11 x12 x13

15 x7 x8 ⊕ α x9 ⊕ β x10 x11 x12 x13 x14

16 x8 ⊕ α x9 ⊕ β x10 x11 x12 x13 x14 x15

17 x9 ⊕ β x10 x11 x12 x13 x14 x15 x16 ⊕ α



Efficient Search. To search for values conforming to the middle part, we
first look at an arbitrary slice i, and we count the number of possible tuples
(x1, . . . , x15)i that fulfill the characteristic between steps 8 and 17. This corre-
sponds to all tuples that satisfy the following equations:

F (x1, x2, x3, x4, x5, x6, x7 )i = F (x1, x2, x3, x4, x5, x6, x7 )i

F (x2, x3, x4, x5, x6, x7, x8 )i = F (x2, x3, x4, x5, x6, x7, x8 ⊕ α )i

F (x3, x4, x5, x6, x7, x8, x9 )i = F (x3, x4, x5, x6, x7, x8 ⊕ α, x9 ⊕ β )i ⊕ γi

F (x4, x5, x6, x7, x8, x9, x10)i = F (x4, x5, x6, x7, x8 ⊕ α, x9 ⊕ β, x10)i

F (x5, x6, x7, x8, x9, x10, x11)i = F (x5, x6, x7, x8 ⊕ α, x9 ⊕ β, x10, x11)i

F (x6, x7, x8, x9, x10, x11, x12)i = F (x6, x7, x8 ⊕ α, x9 ⊕ β, x10, x11, x12)i

F (x7, x8, x9, x10, x11, x12, x13)i = F (x7, x8 ⊕ α, x9 ⊕ β, x10, x11, x12, x13)i

F (x8, x9, x10, x11, x12, x13, x14)i = F (x8 ⊕ α, x9 ⊕ β, x10, x11, x12, x13, x14)i

F (x9, x10, x11, x12, x13, x14, x15)i = F (x9 ⊕ β, x10, x11, x12, x13, x14, x15)i

This property is only interesting for i ∈ S, since for i 6∈ S there are no differences.

For slices such that γi = 1, we need to have a difference in F as well, to erase
γi. Table 3 reports the number of solutions for the xi’s depending on (αi, βi, γi).
As we will see later (Tab. 4), in the case (1, 0, 1) there is no tuple satisfying the
whole differential characteristic, thus this case will not be used.

Table 3. Number of solutions for the (x1, . . . , x15) depending on the input differences.

γi
(αi, βi)

(0, 1) (1, 0) (1, 1)

0 96 96 96
1 128 120 176

Then, for each slice i ∈ S we fix one of these tuples and try to compute the
missing bits. The number of possibilities to choose the tuples for i ∈ S is

Nα = 96|α∧¬β∧¬γ| × 96|α∧β∧¬γ| × 96|¬α∧β∧¬γ| × 176|α∧β∧γ| × 128|¬α∧β∧γ| .



Note that to follow the characteristic, the equations below (directly derived from
the ESSENCE mechanism) must hold:

L(
s bits fixed︷︸︸︷

x7 ) = x0 ⊕
s bits fixed︷ ︸︸ ︷

x8 ⊕ F (x1, x2, x3, x4, x5, x6, x7 ) (1)

L(
s bits fixed︷︸︸︷

x8 ) =

s bits fixed︷ ︸︸ ︷
x1 ⊕ x9 ⊕ F (x2, x3, x4, x5, x6, x7, x8 ⊕ α ) (2)

L(
s bits fixed︷︸︸︷

x9 ) =

s bits fixed︷ ︸︸ ︷
x2 ⊕ x10 ⊕ F (x3, x4, x5, x6, x7, x8 ⊕ α, x9 ⊕ β )⊕ γ (3)

L(
s bits fixed︷︸︸︷

x10 ) =

s bits fixed︷ ︸︸ ︷
x3 ⊕ x11 ⊕ F (x4, x5, x6, x7, x8 ⊕ α, x9 ⊕ β, x10) (4)

L(
s bits fixed︷︸︸︷

x11 ) =

s bits fixed︷ ︸︸ ︷
x4 ⊕ x12 ⊕ F (x5, x6, x7, x8 ⊕ α, x9 ⊕ β, x10, x11) (5)

L(
s bits fixed︷︸︸︷

x12 ) =

s bits fixed︷ ︸︸ ︷
x5 ⊕ x13 ⊕ F (x6, x7, x8 ⊕ α, x9 ⊕ β, x10, x11, x12) (6)

L(
s bits fixed︷︸︸︷

x13 ) =

s bits fixed︷ ︸︸ ︷
x6 ⊕ x14 ⊕ F (x7, x8 ⊕ α, x9 ⊕ β, x10, x11, x12, x13) (7)

L(
s bits fixed︷︸︸︷

x14 ) =

s bits fixed︷ ︸︸ ︷
x7 ⊕ x15 ⊕ F (x8 ⊕ α, x9 ⊕ β, x10, x11, x12, x13, x14) (8)

L(
s bits fixed︷︸︸︷

x15 ) = x16 ⊕
s bits fixed︷ ︸︸ ︷

x8 ⊕ F (x9 ⊕ β, x10, x11, x12, x13, x14, x15) (9)

The bits fixed in x1, . . . , x15 are those in slices i ∈ S. Consider new interme-
diate variables R8,R9,. . . ,R14 corresponding to the value of the right hand sides
of Eq. (2)-(8). Each of these equations corresponds to a linear system

L(xj) = Rj ,

for j in {8, . . . , 14}. These are systems of ` equations between bits, wherein 2s
variables are fixed and 2(` − s) variables are free. Due to the linearity, we can
rewrite them as

L(xj,S)⊕Rj,S = L(xj,S)⊕Rj,S , (10)

where S is the complement of the set S and xj,T is the vector (xj,i) with values
0 for i not in T ∈ {S,S}, thus xj,S = xj ∧ (α ∨ β) and xj,S = xj ∧ ¬(α ∨ β).
The position of the free variables depends only on S. We can therefore perform
a Gaussian elimination once for all on the left hand side of Equation (10).

We have more equations than free variables, so if the system is of maximal
rank, we obtain 2s − ` equations which must be satisfied by the fixed variables
in order for solutions to exist. For our seven linear systems we have in total
7(2s− `) equations. Thus for any choice of (x1, . . . , x15) fixed at i ∈ S we have
a probability 2−7(2s−`) of finding a valid solution for all the 7 systems.



Once we know that our choice corresponds to a solution, we can compute
efficiently the remaining bits of xj , Rj , j ∈ {8, . . . , 14} by the other 7(2` − 2s)
equations of the Gaussian elimination. To find a solution x0, . . . , x16 which sat-
isfies the middle part, one thus proceeds as follows:

1. Fix the s bits in x1, . . . , x15 to one of the Nα admissible values;
2. Try to solve the linear systems

L(xj) = Rj ,

for j in {8, . . . , 14}. If there is no solution, go back to step 1. Once a solu-
tion to the seven systems is found, we have all bits of xj , Rj fixed for j in
{8, . . . , 14}. In x1, . . . , x7, x15 we only have the s bit fixed from the previous
step, and in x0, x16 no bits at all are fixed.

3. Freely choose the value of the (` − s) remaining bits in x7 since modifying
those bits does not affect the previous steps.

4. We have now to consider the system

R8 = x1 ⊕ x9 ⊕ F (x2, x3, x4, x 5, x6, x7, x8 ) (11)
R9 = x2 ⊕ x10 ⊕ F (x3, x4, x5, x6, x7, x8, x9 ) (12)
R10 = x3 ⊕ x11 ⊕ F (x4, x5, x6, x7, x8, x9, x10) (13)
R11 = x4 ⊕ x12 ⊕ F (x5, x6, x7, x8, x9, x10, x11) (14)
R12 = x5 ⊕ x13 ⊕ F (x6, x7, x8, x9, x10, x11, x12) (15)
R13 = x6 ⊕ x14 ⊕ F (x7, x8, x9, x10, x11, x12, x13) (16)
R14 = x7 ⊕ x15 ⊕ F (x8, x9, x10, x11, x12, x13, x14) (17)

where the Rj ’s are fixed. In these equations, we can skip α, β and γ since we
chose admissible values for (x1, . . . , x15). This system is almost in triangular
form : Eq. (17) fixes x15; Eq. (16) fixes x6; Eq. (15) fixes x5; Eq. (14) fixes
x4; Eq. (13) fixes x3; Eq. (12) fixes x2; Eq. (11) fixes x1. Finally, Eq. (1)
fixes x0 and Eq. (9) fixes x16.

Each valid solution in step 2 gives us 2`−s results, by exploiting the extra degrees
of freedom in step 3. We obtain in total about Nα · 27(`−2s) · 2`−s · 2−1 possible
pairs that satisfy the characteristic from step 8 to 17. The factor 2−1 comes from
the fact that we counted each possible pair twice.

We can improve this general method in two ways.

• First, we can do better than trying 27(2s−`) tuples to find a solution in
step 2. This is based on a Gaussian elimination on the 2s− ` equations
allowing us to explore the set of all candidate tuples by a depth-first
search procedure. For the sake of simplicity, we will explain the details
later on the example of ESSENCE-256 in §3.4. Without this method we
would need 27(2s−`) trials to find one solution, which would increase the
complexity a lot.



• Secondly, we can improve the choice of (x1, . . . , x15)i, i ∈ S. This time
we only consider a tuple (x1, . . . , x15)i admissible if it can be extended to
a whole characteristic from 0 to 24. This reduces the values in Table 3 to
the following ones. We can see that the case (αi, βi, γi) = (1, 0, 1) leads
to an impossibility.

Table 4. Number of solutions for the (x1, . . . , x15) which can be extended to satisfy
the whole characteristic.

γi
(αi, βi)

(0, 1) (1, 0) (1, 1)

0 96 2 4
1 128 0 2

Finally, for each slice i ∈ S we fix one of these tuples and try to compute the
missing bits. The number of possibilities to choose the tuples for i ∈ S is

Ñα = 2|α∧¬β∧¬γ| × 4|α∧β∧¬γ| × 96|¬α∧β∧¬γ| × 2|α∧β∧γ| × 128|¬α∧β∧γ| .

This method increases the probability of passing the rest of the characteristic as
we will see in §3.3. The choice of rounds 8− 17 for the middle part was done to
get the lowest possible value for Ñα, see Appendix A.

The subsequent sections discuss the complexity of performing the search of
the rest of the characteristic, and give concrete complexity estimates for each
instance of ESSENCE.

3.3 Finding Accurate Probabilities

Relying only on the Hamming weight to approximate the probability of the dif-
ferential characteristic gives unacceptably inaccurate approximations. Indeed,
for a given word slice, probabilities of differences to be absorbed at each step are
not independent, and neglecting this leads to estimates far from actual values.
For example, a single bit difference is absorbed during seven steps with proba-
bility 2−8.4, which is significantly lower than the heuristic estimate 2−7 based on
the one bit difference. However, for the characteristic considered, the dependency
between word slices seems negligible. We thus give complexities with respect to
empirical estimates, computed independently for each word slice. That is, we
compute the probability of the differential characteristic as 32 (or 64) indepen-
dent differential characteristics, i.e., one for each slice.

We could estimate the real probability of our characteristic for any given
difference α. We found that having αi = 1, βi = 0 and γi = 1 leads to an
impossibility (the differential cannot be satisfied for that α). This is why we
need the condition

γ ∧ α ∧ ¬β = 0 .



When considering the middle part, we also computed the real probability of
verifying the sliced characteristic once this part of the characteristic is satisfied.
The complexities given in the next section were computed with respect to those
empirical estimates, not with the heuristic values based only on the Hamming
weight.

Reusing our notation α, β, γ, we give in Tab. 5(a) the probabilities for a given
slice i to follow the complete characteristic on 32 steps (the impossible cases—of
probability zero—are not included), depending on (αi, βi, γi) ∈ {0, 1}3. To com-
pute the probability for a given difference (αi, βi, γi) we count the number of
possible bit sequences following the whole differential characteristic. The prob-
ability that a random input follows the characteristic is the product of those
probabilities, with each raised to a power that equals the number of slices cor-
responding to this case. For the α’s used in our attacks and the exact values
of the probabilities, we obtain probabilities 2−240.6 and 2−478.9, respectively for
ESSENCE-256 and ESSENCE-512.

Taking into account our basic technique in §3.2 for solving the middle part at
a reduced cost, we obtain the probabilities in Tab. 5(b). If we consider only those
tuples (x1, . . . , x15) where there is at least one possibility of verifying the whole
characteristic we get the values in Tab. 5(c). In both cases, we count for every
difference (αi, βi, γi) the number of extensions of the valid tuples (x1, . . . , x15)
satisfying the whole characteristic and compare it to the number of arbitrary
extensions.

Given those numbers, we find that the probability that a value conforming to
the middle part follows the rest of the characteristic is 2−87.1 for ESSENCE-256
and 2−158.7 for ESSENCE-512 with the basic method and respectively 2−62.2

and 2−116.1 for the improved one.

Table 5. Probability of passing the differential characteristic depending on the input
differences.

(αi, βi, γi) (0, 0, 0) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(a) complete characteristic 1 2−9.5 2−9.1 2−24.4 2−23 2−26

(b) basic method 1 2−1.1 2−1.1 2−16 2−14.6 2−18.5

(c) improved method 1 2−1.1 2−1.1 2−10.4 2−10 2−12

There are at least two ways to compute the total number of message pairs
that is going to satisfy the whole characteristic. As we will obtain nearly the same
result with both of them, we can verify the soundness of the probabilities after
solving the middle characteristic. First, some additional notations are required:
we let ρ0, . . . , ρ`−1 denote the probabilities for each slice in 0, . . . , ` − 1 of con-
forming to the differential, i.e., each ρi lies in {1, 2−9.5, 2−9.1, 2−24.4, 2−23, 2−26};
and we let τ0, . . . , τ`−1 be the conditional probabilities for each slice to follow
the differential characteristic, assuming that the middle part is satisfied. Now,
the two equivalent ways to express the number of conforming messages are:



1. The probability of the whole characteristic is
∏`−1

i=0 ρi, hence the number of
pairs of conforming messages is

28` ·
`−1∏

i=0

ρi ,

where 8` is the digest bit length.
2. The probability of the characteristic once the middle part is satisfied is∏`−1

i=0 τi; calling N the number of pairs conforming to the middle part, the
number of conforming message pairs is then

N ·
`−1∏

i=0

τi .

In both cases we find each possible message pair twice. We verified that these
two ways of computing the total number yield similar values (up to rounding
approximations), which shows that the probabilities of verifying the whole char-
acteristic and the characteristic after solving the middle part correspond to each
other.

For example for our α: for ESSENCE-256 we find 2256·2−240.6 = 215.4 message
pairs considering the whole characteristic. With our improved version we have
Ñα = 2106.5; a probability of 2−42 of solving the seven linear systems; 213 times
more solutions for free and thus N = 277.5. Using the probability 2−62.1 of
passing the rest of the characteristic we again get 215.4 message pairs.

3.4 Collisions for ESSENCE-256

For ESSENCE-256, we could perform an exhaustive search over all 232 possible
differences α and found as optimal value α = 80102040, for which |α| = 4,
|β| = 18, and |α ∨ β| = s = 19. Heuristic estimates based on Hamming weights
suggest that we need about 214×4+18 = 274 messages that conform to the middle
part to find at least one conforming to the differential characteristic on the right
side. However, the empirical complexity is (cf. §3.3) approximately 287.1 for the
basic method and 262.2 for the improved one.

In the following, we focus on the improved version.

Solving the Right Side. For that α, we have in total

Ñα = 966 × 21 × 1289 × 23 ≈ 2106.5

possibilities to set the bits in S. We have a probability 27(32−2×19) = 2−42 of
finding a solution to the seven systems defined by Eq. (3) to (9). Following our
assumption in §3.2, we get about 264.5 solutions. For each solution, we obtain
213 additional solutions by varying the bits (x7)j for j not in S, yielding in total
up to 277.5 solutions.



For each message pair found, we must check that it satisfies the rest of the
characteristic. As found in §3.3, we need about 262.2 values conforming to the
middle part to find one value following the rest of the characteristic. Below we
detail the cost of finding those messages.

We look for solutions of systems (2) to (8). The linear systems L(xj) = Rj

consist each of 32 equations and 26 free variables and has full rank. We have
thus 6 linear equations which the fixed bits must fulfill to guarantee that there
exists a solution of the linear system.

We can choose those equations such that:

• choosing the values of the bit slices 0, 1, 2, 3, 5, 6, 9, 10, 12, 16, 18 fixes the
parity of the first equation. This does not change with the choice of the
remaining slices;

• if we choose in addition the values of the bit slices 7, 11, 13, we fix the
second equation;

• if we choose in addition the values of the bit slices 4, 17, we fix the third
equation;

• if we choose in addition the values of the bit slices 14, 15, we fix the
fourth equation;

• finally, choosing the value for the last slice, the eighth one, fixes the
parity of the remaining two equations.

This allows us to explore the set of candidate tuples efficiently by a depth-
first search. Moreover, we can precompute the parity corresponding to the last
three equations for any 3-tuple of choices for slices 8, 14, and 15. That way, we
do not even need to test the different tuples, but only to enumerate the ones
giving us a valid solution. The cost to find a solution is therefore very low.

Using the degree of freedom coming from step 3 of the solving procedure,
our implementation is able to generate solutions for the middle part systems
and to test the rest of the characteristic at a rate of approximately 650 cycles
per candidate on an Intel Core 2 processor, against about 1600 cycles for hashing
256 bits7.

Solving the Left Side. Once a conforming pair of message blocks is found,
we just need to try approximately 267.4 distinct random chaining values to find
a collision (for comparison, the heuristic estimate based on Hamming weights is
214×4 = 256). This value limits our attack. Since there is no α with a hamming
weight of 3, which verifies the characteristic on the right side, we cannot improve
this value. Note that our attack can be carried out with negligible memory (the
262.2 messages that satisfy the middle part don’t have to be stored: we test
repeatedly each candidate message, and discard it if it does not conform to the
full characteristic).

If we only search for a semi-free-start collision we can reduce the complexity
of the left side to 233.7, which makes again the right side the limiting part. We
apply the same techniques as for the right side to compute IV pairs that passes

7See eBASH: http://bench.cr.yp.to/ebash.html.



from step 1 to step 8. We have to compute about 233.7 IV pairs to find one
satisfying the whole characteristic. This method was applied in Appendix C.

3.5 Collisions for ESSENCE-512

For ESSENCE-512, the best difference is α = 8408400000480082, giving |α| = 8,
|β| = 35, and |α∨ β| = s = 39. We tested all 64-bit differences with a Hamming
weight of up to 10. Since the weight of α is the limiting property on the left
side and thus for the whole attack, we are sure to have found the best value
for the whole attack. For our α, the matrix of the linear system has again full
rank, thus we can directly apply the same techniques as for ESSENCE-256. As
discussed in §3.3, with the basic method we need about 2158.7 solutions of the
middle part to find one solution for the right side of the characteristic (against
2147 with heuristic estimates based on Hamming weights). With the improved
method we only need 2116.1 solutions. In the following, we consider only the
improved method.

Solving the Right Side. For our α we have

Ñα = 9614 × 24 × 43 × 12817 × 21× ≈ 2222.2

possibilities for the tuples at the indices i ∈ S and a probability of about 2−98

to find a solution for all the systems of Eq. (2)-(8). Thus, we expect about 2124.2

solutions. Using the free bits, we get for each solution 264−39 = 225 additional
solutions. In total, there are thus about 2149.2 solutions, which is high enough
for finding one conforming to the full characteristic (trying 2116.1 is sufficient).

Solving the Left Side. Now, we have a pair of messages that verify the dif-
ferential characteristic. The probability for a random chaining value of verifying
the differential characteristic is approximately 2−134.7. Again, this value is the
limiting part of our attack.

4 Attacking HMAC-ESSENCE

HMAC [15] is a widely used construction for building message authentication
codes out of hash functions. Proposed in 1996 by Bellare, Canetti, and Krawczyk,
HMAC has been standardized by NIST in 2002 [16] and requirements for SHA-3
include compatibility with HMAC.

The results in §3, can directly be turned into a distinguisher for ESSENCE-
256 and ESSENCE-512 when used in keyed mode, be it with an unknown prefix
message, or within HMAC. More precisely, we use the property that we can pre-
compute a conforming message block once, and then separately seek a conforming
chaining value. We just make the standard assumption that we can query an or-
acle (non-adaptively) with messages, and that this returns the digests produced
by the keyed ESSENCE with this message as input, for a randomly preselected
key.

A distinguisher then works as follows:



1. Find a pair of blocks (x, y) that conforms to the message part differential.
2. Repeat until a collision is found:
3. Pick a unique prefix m.
4. Query for oracle with m‖x and m‖y.

Ideally 2128 trials are expected before a collision for ESSENCE-256, but here
we’ll make only 267.4 trials in average, after a precomputation of complexity
262.2. For ESSENCE-512, we have a complexity 2134.7 instead of 2256 ideally.

We can also mount an existential forgery attack by making one additional
adaptive query:

1. Run the distinguisher above to obtain blocks m, x, y such that m‖x and m‖y
collide by HMAC-ESSENCE.

2. Pick an arbitrary block m′.
3. Query the oracle for the MAC of m‖x‖m′, obtain a value z.
4. Return z as forgery of m‖y‖m′.

The complexity of this attack is essentially the same as that of the simple dis-
tinguisher.

5 Conclusion

We presented collision attacks on ESSENCE-256 and ESSENCE-512 of respec-
tive complexities 267.4 and 2134.7. More precisely, these values are upper bounds
on the cost of running our attacks, in terms of compression-equivalent units.
Implementations of our attacks need only negligible memory, and in particular
avoid expensive memory accesses. We combine several methods to achieve our
goal: separate treatment of message and chaining value, exact estimation of the
probabilities, computation of the low probability part, efficient solution finding
for linear systems and reduction of the search space by considering the whole
characteristic. The attacks were experimentally verified on reduced versions of
ESSENCE, and also apply to the versions of ESSENCE with 224- and 384-bit
digests. An example of a practical free-start-collision on 29 out of 32 rounds can
be found in Appendix C.

Attacks to the HMAC are usually much harder than collision attacks, as we
can see at the examples of MD4 [17], MD5 [17, 18] or SHA-1 [19]. However, we
could show direct applications of our collision attack to the HMAC construction
instantiated with ESSENCE, giving a distinguisher and an existential forgery
attack with same complexity as the collision attacks.

Our results reveal significant weaknesses in the version of ESSENCE submit-
ted to NIST.

Acknowledgments We would like to thank for their help: Anne Canteaut,
Stéphane Jacob, Nicky Mouha, Gautham Sekar, and Fabien Viger.



References

1. Wang, X., Yu, H.: How to break MD5 and other hash functions. In Cramer, R.,
ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science., Springer
(2005) 19–35

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In Shoup, V., ed.:
CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

3. Cannière, C.D., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture
Notes in Computer Science., Springer (2006) 1–20

4. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In Naor, M., ed.: EUROCRYPT.
Volume 4515 of Lecture Notes in Computer Science., Springer (2007) 1–22

5. NIST: FIPS 180-2 – secure hash standard (2002)
6. NIST: Announcing request for candidate algorithm nominations for a new crypto-

graphic hash algorithm (sha-3) family. In: Federal Register. (Nov. 2007) Vol. 72,
No. 212.

7. NIST: Cryptographic hash algorithm competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

8. ECRYPT II: The sha-3 zoo. http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo
9. Martin, J.W.: ESSENCE: A candidate hashing algorithm for the NIST competi-

tion. Submission to NIST (2008)
10. Martin, J.W.: ESSENCE: A family of cryptographic hashing algorithms. Submis-

sion to NIST (2008)
11. Mouha, N., Sekar, G., Aumasson, J.P., Peyrin, T., Thomsen, S.S., Turan, M.S.,

Preneel, B.: Cryptanalysis of the ESSENCE family of hash functions. In: Informa-
tion Security and Cryptology - Inscrypt 2009. LNCS, Springer (2009) to appear.

12. Merkle, R.C.: One way hash functions and DES. In: Advances in Cryptology -
CRYPTO’89. Volume 435 of Lecture Notes in Computer Science., Springer (1989)
428–446

13. Damg̊ard, I.: A Design Principle for Hash Functions. In Brassard, G., ed.: Advances
in Cryptology - CRYPTO’89. Volume 435 of Lecture Notes in Computer Science.,
Springer (1989) 416–427

14. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In Dunkelman, O., ed.: FSE.
Volume 5665 of Lecture Notes in Computer Science., Springer (2009) 260–276

15. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In Koblitz, N., ed.: CRYPTO. Volume 1109 of Lecture Notes in Computer
Science., Springer (1996) 1–15

16. NIST: FIPS 198 – the keyed-hash message authentication code (HMAC) (2002)
17. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-

MD4 and NMAC-MD5. In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lec-
ture Notes in Computer Science., Springer (2008) 237–253

18. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In Joux, A., ed.: EUROCRYPT. Volume
5479 of Lecture Notes in Computer Science., Springer (2009) 121–133

19. Rechberger, C., Rijmen, V.: New results on NMAC/HMAC when instantiated
with popular hash functions. Journal of Universal Computer Science 14(3) (2008)
347–376



A Choice of the Position of the Middle Part

We can see in Table 6 that the choice of rounds 8 to 17 minimizes the number of
solutions for the middle part (x1, . . . , x15). Since the total number of solutions
is always the same, a smaller number of solutions in the middle part means that
we have a higher probability of passing the rest of the characteristic.

Table 6. Number of solutions for the (x1, . . . , x15) which can be extended to satisfy
the whole characteristic, depending on the input differences and on the rounds.

Rounds
(αi, βi, γi)

(1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 1, 1) (1, 1, 1)

0-9 12 3968 8 4960 4
1-10 12 1984 8 2480 4
2-11 8 3072 8 3840 4
3-12 8 2160 8 2640 4
4-13 4 1152 4 1408 4
5-14 4 576 4 704 4
6-15 4 288 8 352 4
7-16 4 192 8 224 4
8-17 2 96 4 128 2
9-18 4 96 8 128 4
10-19 4 96 12 128 4
11-20 4 176 12 208 4
12-21 4 352 12 384 4
13-22 4 512 12 640 4
14-23 4 1024 16 1280 4

B Probabilities of the Right Side of the Characteristic

Table 7 compares heuristic probability estimates based on Hamming weights
with actual, empirically verified, probabilities. The empirically verified values are
taken from the improved method, considering only values (x1, . . . , x15)i, i ∈ S,
which are able to satisfy the rest of the characteristic. Therefore, the overall
probability is higher than the heuristic approximation.

C Practical Semi-Free-Start Collision on 29 out of the 32
rounds

Once we have a message passing the right side, we can apply the same techniques
that we used to compute from step 8 to step 17, to get a semi-free start collision.
We compute IV pairs that passes from step 1 to 8 on the left side and test if
they pass the rest of the characteristic. With our α for ESSENCE-256 we have
to test about 233.7 IV pairs. Together with a message pair we found passing 29
out of the 32 rounds we got the semi-free-start collision presented in Table 8.



Table 7. Comparison between the heuristic approximations of the probability to reach
the next difference and the real probabilities, empirically estimated.

Message part Heuristic approximation Empirical estimate of improved method

k7 k6 k5 k4 k3 k2 k1 k0

0 α β · · · · · · 2−18 2−21.3

1 β · · · · · · α 2−4 2−4

2 · · · · · · α · 2−4 2−1.7

3 · · · · · α · · 2−4 2−4

4 · · · · α · · · 2−4 2−4

5 · · · α · · · · 2−4 1
6 · · α · · · · · 2−4 2−4

7 · α · · · · · · 2−4 1
8 α · · · · · · · — —
9 · · · · · · · α — —
10 · · · · · · α β — —
11 · · · · · α β · — —
12 · · · · α β · · — —
13 · · · α β · · · — —
14 · · α β · · · · — —
15 · α β · · · · · — —
16 α β · · · · · · — —
17 β · · · · · · α 2−4 1
18 · · · · · · α · 2−4 2−3

19 · · · · · α · · 2−4 2−1

20 · · · · α · · · 2−4 2−4

21 · · · α · · · · 2−4 2−3

22 · · α · · · · · 2−4 2−8

23 · α · · · · · · 2−4 2−4

24 α · · · · · · · 1 1
25 · · · · · · · α 1 1
26 · · · · · · α ? 1 1
27 · · · · · α ? ? 1 1
28 · · · · α ? ? ? 1 1
29 · · · α ? ? ? ? 1 1
30 · · α ? ? ? ? ? 1 1
31 · α ? ? ? ? ? ? 1 1
32 α ? ? ? ? ? ? ? 1 1

Total 2−74 2−62



T
a
b
le

8
.
E

x
a
m

p
le

o
f
sem

i-free-sta
rt

co
llisio

n
o
n

2
9

o
f
th

e
3
2

ro
u
n
d
s
o
f
th

e
d
iff

eren
tia

l
ch

a
ra

cteristic,
fo

r
α

=
8
0
1
0
2
0
4
0

a
n
d

β
=

5
3
7
8
7
4
E
B
.

In
itia

l
v
a
lu

e
s

fo
r

r
In

itia
l
v
a
lu

e
s

fo
r

k
r
7

r
6

r
5

r
4

r
3

r
2

r
1

r
0

k
7

k
6

k
5

k
4

k
3

k
2

k
1

k
0

B
0
7
4
1
7
6
9
B
A
2
B
A
1
A
1
3
4
9
A
4
D
C
8
5
4
2
0
4
D
8
2
2
9
2
0
0
6
B
1
8
0
0
9
6
1
9
4
D
2
3
0
2
0
E
1
9
0
9
8
A
7
E
A

4
C
D
3
5
8
0
6
4
7
5
9
F
B
6
D
3
E
D
2
6
7
E
5
1
7
6
4
1
5
3
6
B
E
1
F
3
5
E
D
6
8
8
B
0
C
3
C
D
F
1
2
6
5
4
9
5
F
A
E
0
8
2
7

ro
u
n
d

d
iff

e
re

n
c
e
s

ro
u
n
d

d
iff

e
re

n
c
e
s

ro
u
n
d

0
0

0
0

0
0

0
0

0
0

8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
8
0
1
0
2
0
4
0

1
5
3
7
8
7
4
E
B

0
0

0
0

0
0

8
0
1
0
2
0
4
0

1
2

0
0

0
0

0
0

8
0
1
0
2
0
4
0

0
2

0
0

0
0

0
0

8
0
1
0
2
0
4
0

0
2

3
0

0
0

0
0

8
0
1
0
2
0
4
0

0
0

3
0

0
0

0
0

8
0
1
0
2
0
4
0

0
0

3
4

0
0

0
0

8
0
1
0
2
0
4
0

0
0

0
4

0
0

0
0

8
0
1
0
2
0
4
0

0
0

0
4

5
0

0
0

8
0
1
0
2
0
4
0

0
0

0
0

5
0

0
0

8
0
1
0
2
0
4
0

0
0

0
0

5
6

0
0

8
0
1
0
2
0
4
0

0
0

0
0

0
6

0
0

8
0
1
0
2
0
4
0

0
0

0
0

0
6

7
0

8
0
1
0
2
0
4
0

0
0

0
0

0
0

7
0

8
0
1
0
2
0
4
0

0
0

0
0

0
0

7
8

8
0
1
0
2
0
4
0

0
0

0
0

0
0

0
8

8
0
1
0
2
0
4
0

0
0

0
0

0
0

0
8

9
0

0
0

0
0

0
0

0
9

0
0

0
0

0
0

0
8
0
1
0
2
0
4
0

9
1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

1
0

1
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
1
1

1
2

0
0

0
0

0
0

0
0

1
2

0
0

0
0

8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

1
2

1
3

0
0

0
0

0
0

0
0

1
3

0
0

0
8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

0
1
3

1
4

0
0

0
0

0
0

0
0

1
4

0
0

8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

0
0

1
4

1
5

0
0

0
0

0
0

0
0

1
5

0
8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

0
0

0
1
5

1
6

0
0

0
0

0
0

0
0

1
6

8
0
1
0
2
0
4
0
5
3
7
8
7
4
E
B

0
0

0
0

0
0

1
6

1
7

0
0

0
0

0
0

0
8
0
1
0
2
0
4
0

1
7

5
3
7
8
7
4
E
B

0
0

0
0

0
0

8
0
1
0
2
0
4
0

1
7

1
8

0
0

0
0

0
0

8
0
1
0
2
0
4
0

0
1
8

0
0

0
0

0
0

8
0
1
0
2
0
4
0

0
1
8

1
9

0
0

0
0

0
8
0
1
0
2
0
4
0

0
0

1
9

0
0

0
0

0
8
0
1
0
2
0
4
0

0
0

1
9

2
0

0
0

0
0

8
0
1
0
2
0
4
0

0
0

0
2
0

0
0

0
0

8
0
1
0
2
0
4
0

0
0

0
2
0

2
1

0
0

0
8
0
1
0
2
0
4
0

0
0

0
0

2
1

0
0

0
8
0
1
0
2
0
4
0

0
0

0
0

2
1

2
2

0
0

8
0
1
0
2
0
4
0

0
0

0
0

0
2
2

0
0

8
0
1
0
2
0
4
0

0
0

0
0

8
0
0
0
0
0
4
0

2
2

2
3

0
8
0
1
0
2
0
4
0

0
0

0
0

0
0

2
3

0
8
0
1
0
2
0
4
0

0
0

0
0

8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9

2
3

2
4

8
0
1
0
2
0
4
0

0
0

0
0

0
0

0
2
4

8
0
1
0
2
0
4
0

0
0

0
0

8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F

2
4

2
5

0
0

0
0

0
0

0
0

2
5

0
0

0
0

8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8

2
5

2
6

0
0

0
0

0
0

0
0

2
6

0
0

0
8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4

2
6

2
7

0
0

0
0

0
0

0
0

2
7

0
0

8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0

2
7

2
8

0
0

0
0

0
0

0
0

2
8

0
8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0
8
1
9
9
3
7
4
F

2
8

2
9

0
0

0
0

0
0

0
0

2
9

8
0
0
0
0
0
4
0
3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0
8
1
9
9
3
7
4
F
1
B
9
B
9
9
7
C

2
9

3
0

0
0

0
0

0
0

0
8
0
0
0
0
0
4
0

3
0

3
8
C
3
2
4
1
9
3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0
8
1
9
9
3
7
4
F
1
B
9
B
9
9
7
C
A
7
E
F
9
1
F
9

3
0

3
1

0
0

0
0

0
0

8
0
0
0
0
0
4
0

1
0
2
0
4
0

3
1

3
B
5
0
E
A
E
F
E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0
8
1
9
9
3
7
4
F
1
B
9
B
9
9
7
C
A
7
E
F
9
1
F
9

2
1
E
1
C
7
0

3
1

3
2

0
0

0
0

0
8
0
0
0
0
0
4
0

1
0
2
0
4
0

3
3
3
6
D
A
C
E

3
2

E
9
F
7
3
8
F
8
D
5
9
E
6
B
C
4
5
1
9
E
C
D
9
0
8
1
9
9
3
7
4
F
1
B
9
B
9
9
7
C
A
7
E
F
9
1
F
9

2
1
E
1
C
7
0

1
B
7
1
5
D
5
F

3
2


