
Higher Order Differential Attack
on Step-Reduced Variants of Luffa v1

Dai Watanabe1, Yasuo Hatano1, Tsuyoshi Yamada2, and Toshinobu Kaneko2

1 Systems Development Laboratory, Hitachi, Ltd.,
292 Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan

2 Science University of Tokyo,
2641 Yamazaki, Noda, Chiba, 278-8510, Japan

dai.watanabe.td@hitachi.com

Abstract. In this paper, a higher order differential attack on the hash
function Luffa v1 is discussed. We confirmed that the algebraic degree
of the permutation Qj which is an important non-linear component of
Luffa grows slower than an ideal case both by the theoretical and the
experimental approaches. According to our estimate, we can construct a
distinguisher for step-reduced variants of Luffa v1 up to 7 out of 8 steps
by using a block message. The attack for 7 steps requires 2216 messages.
As far as we know, this is the first report which investigates the algebraic
property of Luffa v1. Besides, this attack does not pose any threat to
the security of the full-step of Luffa v1 nor Luffa v2.

Keywords. Hash function, Luffa, Higher order differential attack, Non-
randomness

1 Introduction

A cryptographic hash function has a lot of application such as a digital signature
and a message authentication code. Recently, several important breakthroughs
have been made in the cryptanalysis against hash functions and they imply that
most of the currently used standard hash functions are vulnerable against new
attacks. In these circumstances, National Institute of Standards and Technology
(NIST) decided to organize Cryptographic Hash Algorithm Competition (The
SHA-3 competition) [13] and started to call for algorithms.

Luffa [6] is a family of hash functions submitted to the SHA-3 competition
and was selected as one of the second round candidates. Luffa modified its algo-
rithm at the beginning of the second round and the current algorithm is called
Luffa v2. Throughout this document, we discuss the algorithm submitted to
Round 1 (Luffa v1) and denote it Luffa. The self-security evaluations in the
supporting document for the Round 1 [7] mainly discuss generic attacks and
differential cryptanalysis. Besides, analyses based on algebraic approach is not
discussed seriously in the document. In this paper, we are going to investigate the
algebraic property of step-reduced variants of Luffa by a higher order differential
attack.

2

An application of a higher order difference to cryptanalysis was suggested
by Lai [11] and Knudsen firstly presented the higher order differential attack
to a block cipher [10]. The higher order differential attack is a tool to analyze
the algebraic property of the target function, especially its algebraic degree.
The application to stream ciphers was proposed by Dinur and Shamir [9] and
Aumasson et al. proposed a cube tester [1, 2] which intends to detect the non-
randomness of the target function. The cube tester has been applied not only
to stream ciphers, but also to several hash functions submitted to the SHA-3
competition such as MD6 and Hamsi. Recently, Aumasson and Meier proposed
the zero-sum attack which is an application of the higher order differential attack
[3].

In this paper, firstly we confirm that the algebraic degree of Qj grows slower
than an ideal case both by the theoretical estimate and the experiments. Ac-
cording to our estimate, we can construct a distinguisher for reduced step Luffa
up to 7 out of 8 steps by using a block message. The attack for 7 steps requires
2216 messages. As far as we know, this is the first report which investigates the
algebraic property of Luffa v1. Besides, this attack does not pose any threat to
the security of the full-step of Luffa v1 nor Luffa v2.

The rest of this paper is organized as follows: Firstly the specification of
Luffa is briefly introduced in Section 2. Secondly the definition of the higher
order difference and its basic property is introduced in Section 3. The increase
of the algebraic degree by the iteration of the step function is investigated in
Section 4. Then the higher order differential attack on step-reduced variant of
the permutation Qj and its extension to the hash function is given in Section 5.
We conclude the discussion in Section 6.

2 Specification of Luffa

In this section, we introduce a part of the specification of Luffa which is needed
to describe the attack. Please refer to [6] for the detail of the specification.

2.1 Chaining

The chaining of Luffa is a variant of a sponge function [4, 5]. Figure 1 shows
the basic structure of the chaining. The chaining of a hash function consists of
iterations of a round function. The message is padded by 10...0 in order to the
padded message length is divisible by 256.

Round Function The round function is a composition of a message injection
function MI and w permutations Qj of 256 bits input (See Figure 1). Let the
input of the i-th round be (H(i−1)

0 , . . . , H
(i−1)
w−1), then the output of the i-th round

is given by

H
(i)
j = Qj(Xj), 0 ≤ j < w,

X0|| · · · ||Xw−1 = MI(H(i−1)
0 , . . . , H

(i−1)
w−1 ,M (i)),

3

Q1

Qw - 1

Q0

Z0 Z1

H (N)
w - 1

H (N)
1

H (N)
0

0

MI

H (1)
0

0

R
o
u
n
d

f
u
n
c
t
i
o
n

R
o
u
n
d

f
u
n
c
t
i
o
n

H (1)
1

H (1)
w - 1 R

o
u
n
d

f
u
n
c
t
i
o
n

Round function

V0

V1

Vw - 1

if N>1

M (1) M (2)

Fig. 1. The Luffa construction

where H
(0)
j = Vj .

In the specification of Luffa, the input length of the sub-permutation Qj is
fixed to nb = 256 bits, and the number of the sub-permutations w is 3, 4 and 5
for the hash length 256, 384 and 512 bits respectively.

The message injection functions can be represented by a matrix over the ring
GF(28)32. The map from an 8 words value (a0, . . . , a7) to an element of the ring
is defined by (

∑
0≤k<8 ak,lx

k)0≤l<32. Note that the least significant word a7 is
the coefficient of the heading term x7 in the polynomial representation.

Finalization The finalization consists of iterations of an output function OF
and a round function with a fixed message 0x00...0. If the number of (padded)
message blocks is more than one, a blank round with a fixed message block
0x00...0 is applied at the beginning of the finalization.

The output function OF XORs all block values and outputs the resultant
256-bit value. Let the output at the i-th iteration be Zi, then the output function
is defined by

Zi =
w−1⊕

j=0

H
(N+i′)
j ,

where i′ = i if N = 1 and i′ = i + 1 otherwise. If the hash length is 256-bit, the
output is Zi. For longer hash lengths, more than one round outputs are used to
generate the hash values.

4

SubCrumb (bit slice) SubCrumb (bit slice)

MixWord MixWord MixWord MixWord

AddConstant

a (r - 1)
0 a (r - 1)

1 a (r - 1)
2 a (r - 1)

3 a (r - 1)
4 a (r - 1)

5 a (r - 1)
6 a (r - 1)

7

a (r)
0 a (r)

1 a (r)
2 a (r)

3 a (r)
4 a (r)

5 a (r)
6 a (r)

7

32 bits

Fig. 2. The step function

2.2 Non-Linear Permutation

The permutation Qj is defined as a composition of an input tweak and iterations
of a step function Step. The number of iterations of a step function is 8 and the
tweak is applied only once per a permutation.

At the beginning of the step function process, the 256 bits data stored in 8
32-bit registers is denoted by a

(r)
k for 0 ≤ k < 8. The data before applying the

permutation Qj is denoted by bk and the data after the tweak is denoted by a
(0)
k .

The step function consists of the following three functions; SubCrumb, MixWord,
AddConstant. The pseudo code for Qj is given by

Permute(a[8], j){ //Permutation Q_j
Tweak(a);
for (r = 0; r < 8; r++){

SubCrumb(a[0],a[1],[2],a[3]);
SubCrumb(a[4],a[5],[6],a[7]);
for (k = 0; k < 4; k++)

MixWord(a[k],a[k+4]);
AddConstant(a, j, r);

}
}

Each function is described below in turn and the tweaks are described in Sec-
tion 2.2. We omit the description of AddConstant because it is not needed in
this paper.

Substitution SubCrumb substitutes l-th bits of a0, a1, a2, a3 (or a4, a5, a6, a7)
by an Sbox S defined by

S[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}.

5

Let the output of SubCrumb be x0, x1, x2, x3 (or x4, x5, x6, x7). Then the substi-
tution by SubCrumb is given by

x3,l||x2,l||x1,l||x0,l = S[a3,l||a2,l||a1,l||a0,l], 0 ≤ l < 32,

x7,l||x6,l||x5,l||x4,l = S[a7,l||a6,l||a5,l||a4,l], 0 ≤ l < 32.

Linear Diffusion MixWord is a linear permutation of two words. Let the output
words be yk and yk+4 where 0 ≤ k < 4. Then MixWord is given by the following
equations:

yk+4 = xk+4 ⊕ xk,

yk = xk ≪ σ1,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ2,

yk+4 = yk+4 ⊕ yk,

yk = yk ≪ σ3,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ4.

The parameters σi are given by σ1 = 2, σ2 = 14, σ3 = 10, σ4 = 1.

Tweaks For each permutation Qj , the least significant four words of a 256-bit
input are rotated by j bits to the left in 32-bit registers. Let the j-th block, k-th
word input be bj,k and the tweaked word (namely the input to the first step
function) be a

(0)
j,k, then the tweak is defined by

a
(0)
j,k,l = bj,k,l, 0 ≤ k < 4,

a
(0)
j,k,l = bj,k,(l−j mod 32), 4 ≤ k < 8.

3 Higher Order Differential Attack

An application of a higher order difference to cryptanalysis was suggested by
Lai [11] and Knudsen firstly presented the higher order differential attack to a
block cipher [10]. The higher order differential attack is a tool to analyze the
algebraic property of the target function, especially its algebraic degree.

In this section, we give a definition of the higher order difference. In addition,
the meaning of the distinguishing attack on a hash function is discussed.

3.1 Higher Order Difference

Let Y = f(X) be a function where X ∈ GF(2)n, Y ∈ GF(2)m. Let {A1, . . . , Ai}
be a set of linearly independent vectors in GF(2)n and V (i) be the sub-space

6

spanned by these vectors. The i-th order difference is defined by

∆V (i)f(X) =
∑

A∈V (i)

f(X + A).

In the following, ∆(i) denotes ∆V (i) if the choice of V (i) does not matter in the
discussion. The basic fact of the higher order difference is that ∆(D+1)f(X) =
0 if the algebraic degree of f with respect to X is D. Therefore the higher
order difference is used as the tool to evaluate the algebraic degree of the target
function.

In addition to the original definition of the higher order difference, we import
some terms and notations from the Square attack. The Square attack was
proposed by Daemen et al. in 1997 as the dedicated attack on the block cipher
Square [8].

Let a Λ-set be a set consisting of 16 states such that their values in some
crumbs (4-bit inputs to an S-box) are all different (these crumbs are called active)
and their values are all equal in other crumbs (called passive). The basic idea
of Square attack is that a permutation preserves the status active or passive.
In the higher order differential attack, this observation is useful to choose V (i).
If V (i) consists of active crumbs and passive crumbs, the increase of algebraic
order at the first Sbox can be ignored by replacing the inputs of the Sboxes by
the corresponding outputs.

3.2 Distinguishing Attack on A Hash Function

We will clarify what the terminology distinguisher means in this paper.
A distinguisher for a family of functions F and a set of all functions which

maps {0, 1}m to {0, 1}n is defined as a program that, given a function f , deter-
mines if f belongs to F . Therefore, a discussion on distinguishing attack makes
sense only if the target function has a parameter. Besides, the naive definition
of a collision resistant hash function does not take secret key. Therefore the ap-
plication of the distinguishing attack in practice is limited to keyed applications
such as HMAC. Dealing the IVs as a parameter (as in the discussion of security
proof) is another possible situation.

Note that the distinguisher on a hash function (family) only detects a kind
of non-randomness property of the target, does not violate collision resistance,
second preimage resistance, nor preimage resistance. Even though distinguishing
attacks reveal only non-randomness, we believe that this can be a first step to
analyze the target function.

By the definition, it is possible to calculate the higher order differences of ar-
bitrary functions including hash functions. Let f be a randomly chosen function
whose input length is n-bit. Then the algebraic degree of f is expected n− 1 so
that the event that the i-th order difference ∆(i)f is rarely zero if i is not much
less than n. We use this property as a distinguisher and claim that the attack is
successful if such events are detected.

7

4 Algebraic Degree of Non-linear Permutation Qj

It is pointed out in [7] that the Boolean polynomial representations of the Sbox of
Luffa are sparse, especially at the highest degree. The first step of the theoretical
estimate is to observe how this property affects the increase of the algebraic
degree throughout the iterations of the step functions. In the following, the r

iterations of the step function is denoted by Q
(r)
j . The original permutation of

Luffa is given by Qj = Q
(8)
j .

4.1 Boolean Representations of Sbox

Let the inputs and outputs of the Sbox be x0,l, x1,l, x2,l, x3,l and y0,l, y1,l, y2,l, y3,l.
Then the polynomial representations of the relations between the input and
output bits are given by

y0,l = 1 + x2,l + x0,lx1,l+x1,lx3,l + x2,lx3,l + x0,lx1,lx3,l,

y1,l = 1 + x0,l + x2,l + x0,lx1,l + x0,lx2,l + x3,l+x1,lx3,l + x2,lx3,l + x0,lx1,lx3,l,

y2, l = 1 + x1,l+x1,lx3,l + x2,lx3,l + x0,lx1,lx3,l,

y3,l = x0,l + x1,l + x2,l + x0,lx1,l + x1,lx2,l + x0,lx1,lx2,l + x1,lx3,l.

4.2 Basic Facts

It is clear from the simple observation of the Boolean representations of the Sbox
that the terms whose degrees are more than one and which has monomial x3,l in
y0,l, y1,l, y2,l are equal. Let ηl · x3,l be the common part in y0,l, y1,l, y2,l and ξk,l

be the remainders (The strict definitions of ηl and ξk,l are given in Section 4.3).
Then the multiplication of yk,l and yk′,l for k 6= k′ is given by

yk,l · yk′,l = (ξk,l + ηlx3,l)(ξk′,l + ηlx3,l) = ξk,lξk′,l + (ξk,l + ξk′,l + 1)ηlx3,l. (1)

Therefore, we get deg yk,l · yk′,l < deg yk,l + deg yk′,l. This indicates that the
designer’s estimate of the algebraic degree of Q

(r)
j is too optimistic. We should

carefully estimate it.
On the other hand, MixWord() is the function which sums up yk,l over the

subscript l: zk,l = MixWord(yk, yk+4)k,l =
∑

ι∈Ωl
yk,ι +

∑
ι∈Ω′l

yk+4,ι. Then zk,l

are given by

zk,l =
∑

ι∈Ωl

ξk,ι +
∑

ι∈Ω′l

ξk+4,ι +
∑

ι∈Ωl

ηlx3,l +
∑

ι∈Ω′l

η′lx7,l (2)

for k = 0, 1, 2, where η′l is calculated in the same manner as ηl but differs at the
choice of the variables. η′l uses x4,l, x5,l, x6,l, x7,l instead of x0,l, x1,l, x2,l, x3,l. The
property, that the higher degree terms of y0,l, y1,l, y2,l are the same, is preserved
by MixWord(). AddConstant() has no influence on this property.

8

4.3 Recurrence Relations about Algebraic Degree

The observations in Section 4.2 indicates that only SubCrumb() contributes to
the increase of the algebraic degree. In the following, we identify the iterations
of the Sboxes (SubCrumb()) as the iterations of the step functions for the simple
discussion.

Let us denote the inputs to the l-th Sbox in the r-th step function by
(x(r−1)

0,l , x
(r−1)
1,l , x

(r−1)
2,l , x

(r−1)
3,l) and denote ηl, ξk,l by

η
(r)
l = ηl(x

(r)
0,l , x

(r)
1,l , x

(r)
2,l) = x

(r)
1,l + x

(r)
2,l + x

(r)
0,l x

(r)
1,l ,

ξ
(r)
0,l = ξ0,l(x

(r)
0,l , x

(r)
1,l , x

(r)
2,l) = 1 + x

(r)
2,l + x

(r)
0,l x

(r)
1,l ,

ξ
(r)
1,l = ξ1,l(x

(r)
0,l , x

(r)
1,l , x

(r)
2,l) = 1 + x

(r)
0,l + x

(r)
2,l + x

(r)
0,l x

(r)
1,l + x

(r)
0,l x

(r)
2,l ,

ξ
(r)
2,l = ξ2,l(x

(r)
0,l , x

(r)
1,l , x

(r)
2,l) = 1 + x

(r)
1,l ,

ξ
(r)
3,l = ξ3,l(x

(r)
0,l , x

(r)
1,l , x

(r)
2,l) = x

(r)
0,l + x

(r)
1,l + x

(r)
2,l + x

(r)
0,l x

(r)
1,l + x

(r)
1,l x

(r)
2,l + x

(r)
0,l x

(r)
1,l x

(r)
2,l .

In other words, ηl ·x3,l denotes the common terms of the polynomial representa-
tions and ξk,l denotes the different terms which do not have the variable x3,l. In
addition, we denote the terms of degree d in η

(r)
l , ξ

(r)
k,l by η

(r)
l,d , ξ

(r)
k,l,d respectively.

Now we are going to estimate the algebraic degree of x
(r)
k,l , η

(r)
l , ξ

(r)
k,l by the

recurrence relations. We approximate the relations in order to simplify their rep-
resentations and Equation 1 is applied once for each variable in the estimation.
Let us denote δ

(r)
l = deg η

(r−1)
l + deg x

(r−1)
3,l , ε

(r)
k,k′,l = deg ξ

(r)
k,l + deg ξ

(r)
k′,l. Then

we have the following relations:

deg η
(r)
l ∼ max(ε(r−1)

0,1,l , deg max(ξ(r−1)
0,l , ξ

(r−1)
1,l) + δ

(r−1)
l), (3)

deg ξ
(r)
0,l ∼ deg η

(r)
l , (4)

deg ξ
(r)
1,l ∼ max(deg ξ

(r−1)
1,l ,deg ξ

(r−1)
2,l) + max(deg ξ

(r−1)
0,l , δ

(r−1)
l), (5)

deg ξ
(r)
2,l ∼ max(deg ξ

(r−1)
1,l , δ

(r−1)
l), (6)

deg ξ3,l,2 = max(deg ξ
(r−1)
0,l ,deg ξ

(r−1)
2,l) + max(deg ξ

(r−1)
1,l , δ

(r−1)
l), (7)

deg ξ3,l,3 ∼ max(deg ξ
(r−1)
0,l + deg ξ

(r−1)
1,l + deg ξ

(r−1)
2,l ,

max(ε(r−1)
0,1,l , ε

(r−1)
0,2,l , ε

(r−1)
1,2,l) + δ

(r−1)
l), (8)

deg x
(r)
0,l ∼ max(ε(r−2)

0,1,l , δ
(r−1)
l), (9)

deg x
(r)
1,l ∼ max(ε(r−2)

0,1,l , ε
(r−2)
0,2,l , δ

(r−1)
l), (10)

deg x
(r)
2,l ∼ δ

(r−1)
l , (11)

deg x
(r)
3,l ∼ max(deg ξ

(r−2)
0,l + deg ξ

(r−2)
1,l + deg ξ

(r−2)
2,l ,

max(ε(r−2)
0,1,l , ε

(r−2)
0,2,l , ε

(r−2)
1,2,l , deg x

(r−2)
3,l) + δ

(r−2)
l ,

2 deg ξ
(r−2)
1,l + deg ξ

(r−2)
3,l). (12)

9

The detailed calculations to get the relations are given in Appendix A.

4.4 Theoretical Estimate of Algebraic Degrees

Table 1 shows the pace of increase of algebraic degrees of variables xk,l, ξk,l,
ηl from the recurrent relations 2 to 11 and the initial values at r = 0, 1. The
input/output length of the non-linear permutation Q

(r)
j is 256 bits so that the

algebraic degrees are at most 256. However we put the estimated degrees as it
is, even if it is more than 256, in order to clarify the pace of increase.

Table 1. Pace of increase of algebraic degrees (Theoretical estimate)

r x
(r)
0,l x

(r)
1,l x

(r)
2,l x

(r)
3,l ξ

(r)
0,l ξ

(r)
1,l ξ

(r)
2,l ξ

(r)
3,l η

(r)
l

0 1 1 1 1 2 2 1 2 2

1 3 3 3 3 5 5 3 7 5

2 8 8 8 7 13 13 8 18 13

3 20 20 20 18 33 33 20 46 33

4 51 51 51 46 84 84 51 117 84

5 130 130 130 117 214 214 130 298 214

6 331 331 331 298 545 545 331 759 545

7 843 843 843 759 1,388 1,388 843 1,933 1,388

8 2,147 2,147 2,147 1,933 3,535 3,535 2,147 4,923 3,535

5 Higher Order Differential Attack on Luffa

The designers of Luffa expected the algebraic degree of the permutation Q
(r)
j is

given by 3r [7]. However, as shown in the previous section, the degree increases
slower than the ideal case. In addition, the high order part η

(r−1)
l · x(r−1)

3,l of

the variables x
(r)
k,l are common for k = 0, 1, 2. We use this property to construct

a distinguisher for the permutation Q
(r)
j . Then we extend the attack to 7-step

Luffa.

5.1 Theoretical Estimate

Remind the definitions of ξk,l and ηl that x
(r)
k,l = ξ

(r−1)
k,l + η

(r−1)
l x

(r−1)
3,l . The high

order part η
(r−1)
l ·x(r−1)

3,l of the variables x
(r)
k,l are common for k = 0, 1, 2, so that

it can be eliminated by the addition (on the binary field) x
(r)
k,l +x

(r)
k′,l. We propose

to use a 32-bit value x
(r)
k +x

(r)
k′ as the higher order differential distinguisher. Now

it is clear that the important variables in this attack are ξ
(r−1)
0,l , ξ

(r−1)
1,l , ξ

(r−1)
2,l ,

not x
(r)
k,l .

10

These observations indicate that the number of steps r for which Q
(r)
j can

be attacked can be estimated by the maximum degree of ξ
(r−2)
k,l . In Table 1,

maxk deg ξ
(5)
k,l is 214 so that there is a distinguisher on Q

(6)
j , which calculates

214-th order difference. This distinguisher for 6 steps does not depend on the
choice of the input space V (i).

By the careful choice of the input space V (i), we can extend this distinguisher
to 7 steps. There are two known techniques to skip the increase of the algebraic
degree by applying SubCrumb() in the first step. The first one is to choose the
input space V (i) in which the inputs to the Sboxes are active or passive. For
example, if the V (i) takes all values in xk,l for 0 ≤ k < 8 and 0 ≤ l < t, we
can ignore the effect of SubCrumb() at the first step. The second technique is to
vary only a bit per an Sbox. This technique is applicable only if the algebraic
degree of the target function is small. Let us denote m1-th bit to m2-th bit of the
variable x by x[m1..m2]. The distinguisher for 7 steps takes xk[0..26] for all k as
variables. In other words, all possible values of xk,l for 0 ≤ k < 8 and 0 ≤ l < 27
appear once. This distinguisher requires 2216 messages. On the other hand, Q

(8)
j

is not expected to be distinguishable because max deg ξ
(6)
k,l = 545 > 256.

5.2 Experimental Inspection

By performing experiments, we check if the theoretical estimates summarized in
1 are reliable. We applied the “a bit per an Sbox” technique which is one of the
two techniques to ignore the effect of the first step, as mentioned in the previous
section. We did not apply the other technique. If we did, the active Sboxes are
relatively sparse, so that it would be possible to skip the SubCrumb() in the
second step by choosing a good alignment of the active Sboxes. However, our
purpose is not to optimize the attack, but to check if the theoretical estimates
summarized in Table 1 is reliable so that this kind of “unexpected” skip is
not desired. Therefore, we calculated t-th order differences by varying the least
significant t bits of the 32-bit variable x

(0)
0 for 1 ≤ t ≤ 32. We calculated each

higher order difference for 100 times by randomly generating the initial states.
The experimental results are summarized in Table 2 where the numerical

values show the ratio that one of the equations x
(r)
0 = x

(r)
1 , x

(r)
0 = x

(r)
2 , x

(r)
1 =

x
(r)
2 , x

(r)
4 = x

(r)
5 , x

(r)
4 = x

(r)
6 , x

(r)
5 = x

(r)
6 holds, where r means the number of

steps. In other words, the values mean the ratio of the distinguishing attack
being successful.

Table 3 shows the comparison between the theoretical estimates (See Table 1)
and the experimental results (See Table 2).

We calculated the algebraic degree of Q
(r)
j from the experimental results by

the order. Let t be the lowest number such that the t-th order differential of x
(r)
k

is equal to zero with probability one. The degree of Q
(r)
j is formally estimated at

t−1. This may cause the contradictions in Table 3 such that the degree of ξ
(r−2)
k,l

is larger than that of x
(r−1)
k,l for r = 1, 2. In other cases, the Table 3 indicates that

11

Table 2. The success rates of the distinguishing attacks on the permutation Q
(r)
j

(Experimental results)

Number of steps

Order 1 2 3 4 5

1 1.00 0.39 0.00 0.00 0.00

2 1.00 1.00 0.12 0.00 0.00

3 1.00 1.00 0.56 0.00 0.00

4 1.00 1.00 0.93 0.00 0.00

5 1.00 1.00 1.00 0.00 0.00

6 1.00 1.00 1.00 0.01 0.00

7 1.00 1.00 1.00 0.04 0.00

8 1.00 1.00 1.00 0.16 0.00

9 1.00 1.00 1.00 0.45 0.00

10 1.00 1.00 1.00 0.83 0.00

11 1.00 1.00 1.00 0.97 0.00

12 1.00 1.00 1.00 1.00 0.00

13 1.00 1.00 1.00 1.00 0.00

14 1.00 1.00 1.00 1.00 0.00

15 1.00 1.00 1.00 1.00 0.00

16 1.00 1.00 1.00 1.00 0.00

17 1.00 1.00 1.00 1.00 0.01

18 1.00 1.00 1.00 1.00 0.00

19 1.00 1.00 1.00 1.00 0.00

20 1.00 1.00 1.00 1.00 0.00

21 1.00 1.00 1.00 1.00 0.00

22 1.00 1.00 1.00 1.00 0.03

23 1.00 1.00 1.00 1.00 0.04

24 1.00 1.00 1.00 1.00 0.13

25 1.00 1.00 1.00 1.00 0.21

26 1.00 1.00 1.00 1.00 0.38

27 1.00 1.00 1.00 1.00 0.46

28 1.00 1.00 1.00 1.00 0.71

29 1.00 1.00 1.00 1.00 0.83

30 1.00 1.00 1.00 1.00 0.85

31 1.00 1.00 1.00 1.00 0.93

32 1.00 1.00 1.00 1.00 0.99

Table 3. The summary of the algebraic degrees

Number of steps 1 2 3 4 5 6 7 8

Algebraic degree Theoretical estimate 1 3 8 20 51 130 – –

(max0≤k≤2,l x
(r−1)
k,l) Experimental result 1 1 7 18 – – – –

Distinguisher’s degree Theoretical estimate – 2 5 13 33 84 214 –

(max0≤k≤2,l ξ
(r−2)
k,l) Experimental result – 2 5 12 ≥ 32 – – –

12

the theoretical estimates in Table 1 are very close to the experimental results in
Table 2 1.

5.3 Higher Order Differential Attack on The Hash Function

The higher order differential attack on a hash function does not violate the cen-
tral three requirements for a hash function, namely collision resistance, second
preimage resistance, preimage resistance. On the other hand, the distinguish-
ing attacks are useful to check whether or not the target function has pseudo-
randomness which is also required to a hash function. Here we consider the
higher order differential attack on the 7-step Luffa hash function.

Q1

Q0

Z0

MI

H (1)
0

H (1)
1

V0

V1

M (1)

2

2

2

V2 Q2

H (1)
2

Fig. 3. Luffa for a block message (w = 3)

The first point of Luffa is that there is no blank round if the message length
is less than 256 bits. In this case, the message is mixed by the message injection
function MI, permuted by non-linear permutation Qj , then the XORed 256-bit
value is output. Therefore, it might be possible to construct a distinguisher based
on a higher order difference if the algebraic degree of Qj is smaller than 256 for
all j. Because the only non-linear components in Luffa are Qjs which differ only
in their tweaks and their step constants. In order to extend the distinguisher for
Q

(7)
j to the one for the 7-step Luffa, we consider the influences by MI and the

tweaks. In the following, we show that neither MI nor the tweaks has influence,
which is not difficult.

Firstly, the message injection function MI consists of the constant multi-
plication over GF(28)32. This map stabilizes subspaces of GF(28)32 given by a
natural injection of GF(28)t where t ≤ 32. Therefore there is no influence of the
message injection function MI if the input space is the direct product of the
Λ-set. Secondly, the tweaks rotate the lower 4 words a4, a5, a6, a7 by j bits to
1 We append a note that the t − 1-th order differentials are rarely constants, so that

it might be better to estimate the degree of Q
(r)
j by t.

13

the left in a word. Obviously, the tweaks preserve the properties active and pas-
sive. Therefore the input space V (i) which cancels the influence of the message
injection function also cancels that of tweaks.

These two facts indicate that the distinguisher for Q
(7)
j is also applicable to

the reduced step hash function as it is.

5.4 Probabilistic Distinguisher

Table 2 shows that the behavior of the distinguisher is probabilistic if the order
is less than the expected algebraic degree. Here we discuss how to reduce the
complexity of the attack.

If the target function is sufficiently random, the probability to eventually find
a local collision xk = xk′ for any k, k′ is given by 6 · 2−(32+1)/2 ∼ 2−14 and it
is small2. Therefore xk + xk′ can be used as a distinguisher even if the event is
probabilistic. For example, Table 2 shows that 3 of 100 trials successfully found
the partial collision with the 22-th order difference for 5 steps. In this case,
the computational complexity is 222 × 100 ∼ 228.6, which is smaller than the
complexity of the attack with the deterministic distinguisher 233.

On the other hand, we have no idea to theoretically estimate the frequency
of this probabilistic event so that it is not clear how much the computational
complexity can be reduced in the case of larger number of steps. In addition, the
expected degree of the distinguisher for 8 steps is much larger than 256 so that
the distinguisher is expected to include many high order terms. We expect that
it is difficult to apply the higher order differential distinguisher to 8 steps if the
probabilistic event can be observed more often than the deterministic event.

5.5 Zero-sum Attack

Zero-sum attack was recently proposed by Aumasson and Meier [3] and it is an
application of higher order differential attack. The basic idea of the zero-sum
attack is to choose the Λ-set as the intermediate variables and estimate the
increases of the algebraic degrees at the input and output of the target function.
If the algebraic degrees (to both sides) are low, there is an certain set of inputs
such that (a) their xoring is zero, and (b) the xoring of their corresponding
outputs is also zero. This is a property which an ideal permutation does not
have, and the zero-sum attack uses this property as the distinguisher.

By intuition the zero-sum attack enables to attack double more rounds than
the original higher order differential attack. They claimed that the attack on the
permutation Qj of Luffa requires 281 inputs. It is obvious that the number of
required inputs can be reduced to 233 due to our evaluation result (See Table 1).
However, as they mentioned, it is not obvious problem to find an adequate set
of messages which satisfies zero-sum property for all Qj .
2 In [11] Lai pointed out that Prob(δVif(a) = b) is either 0 or at least 2i−n where f :

GF(2n) → GF(2n). But this is not our case because the domain of our distinguisher
is larger than the range. The probabilistic behavior of our distinguisher may be
caused by the terms of high degree of Q

(r)
j being sparsely distributed.

14

5.6 The Higher Order Differential Attack on Luffa v2

Luffa changed its algorithm at the beginning of the Round 2 and it is called
Luffa v2. We do not describe the changes in detail, but the most significant
change of Luffa v2 in terms of higher order differential attack is that a blank
round in the finalization process is applied even if the message length is less than
256 bits. Therefore 16 step functions are always applied for any message block
so that their algebraic degree is not likely to be less than 256.

6 Conclusion

In this paper, a higher order differential attack on the hash function Luffa is
discussed. We confirmed that the algebraic degree of the underlying non-linear
permutation Qj increases slower than expected both by the theoretical estimate
and the experiments. According to our estimate, we can construct a distinguisher
for reduced step Luffa up to 7 out of 8 steps by using a block message. The attack
for 7 steps requires 2216 messages. As far as we know, this is the first report which
investigates the algebraic property of Luffa v1. Besides, this attack does not pose
any threat to the security of the full-step of Luffa v1 nor Luffa v2.

7 Acknowledgements

The authors would like to thank Hirotaka Yoshida and the anonymous reviewers
of FSE 2010 for their helpful comments and suggestions.

References

1. J.-P. Aumasson, I. Dinur, W. Meier and A. Shamir “Cube Testers and Key Re-
covery Attacks On Reduced-Round MD6 and Trivium,” Fast Software Encryption,
FSE 2009, Lecture Notes in Computer Science, vol. 5665, Springer-Verlag, pp. 1–
22, 2009.

2. J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir, “Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-
128,” Special-purpose Hardware for Attacking Cryptographic Systems, SHARCS’09,
2009.

3. J.P. Aumasson and W. Meier, “Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi,” 2009. Available at http://www.131002.
net/data/papers/AM09.pdf.

4. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Functions,” Ecrypt
Hash Workshop 2007.

5. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On the Indifferentiability
of the Sponge Construction,” Advances in Cryptology, Eurocrypt 2008, pp. 181–
197, 2008.

6. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Specification,”
Submission to NIST SHA-3 Competition, 2008. Available at http://www.sdl.

hitachi.co.jp/crypto/luffa/.

15

7. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Supporting Docu-
ment,” Submission to NIST SHA-3 Competition, 2008. Available at http://www.

sdl.hitachi.co.jp/crypto/luffa/.
8. J. Daemen, L. Knudsen, V. Rijmen, “The Block Cipher Square,” Fast Software

Encryption, FSE’97,” Lecture Notes in Computer Science, LNCS 1267, Springer-
Verlag, pp. 149–165, 1997.

9. I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials,”
Cryptology ePrint Archive, Report 2008/385.

10. L. R. Knudsen, “Truncated and Higher Order Differentials,” Fast Software Encryp-
tion, FSE ’94, Lecture Note in Computer Science vol. 1008, pp. 196–211, Springer-
Verlag, 1994.

11. X. Lai, “Higher order derivatives and differential cryptanalysis,” Proc. Symposium
on Communication, Coding and Cryptography, pp. 227–233, Kluwer Academic Pub-
lishers, 1994.

12. National Institute of Standards and Technology, “Secure Hash Standard (SHS),”
FIPS 180-2, 2002.

13. National Institute of Standards and Technology, cryptographic hash project, http:
//csrc.nist.gov/groups/ST/hash/index.html.

A Recurrence Relations

The symbol “∼” means the simplification of the expression which (is considered)
preserves the algebraic degree.

A.1 Recurrence Relation of η
(r)
l

η
(r)
l = x

(r)
1,l + x

(r)
2,l + x

(r)
0,l x

(r)
1,l

∼ x
(r)
0,l x

(r)
1,l

= (ξ(r−1)
0,l + η

(r−1)
l x

(r−1)
3,l)(ξ(r−1)

1,l + η
(r−1)
l x

(r−1)
3,l)

= ξ
(r−1)
0,l ξ

(r−1)
1,l + (ξ(r−1)

0,l + ξ
(r−1)
1,l + 1)η(r−1)

l x
(r−1)
3,l

∼ ξ
(r−1)
0,l ξ

(r−1)
1,l + (ξ(r−1)

0,l + ξ
(r−1)
1,l)η(r−1)

l x
(r−1)
3,l . (13)

A.2 Recurrence Relation of ξ
(r)
k,l

ξ
(r)
0,l = ξ

(r)
0,0 + ξ

(r)
0,1 + ξ

(r)
0,2 ∼ ξ

(r)
0,2 = x

(r)
0,l x

(r)
1,l = η

(r)
l . (14)

ξ
(r)
1,l = ξ

(r)
1,0 + ξ

(r)
1,1 + ξ

(r)
1,2

∼ ξ
(r)
1,2

= x
(r)
0,l x

(r)
1,l + x

(r)
0,l x

(r)
2,l

= (ξ(r−1)
1,l + ξ

(r−1)
2,l)(ξ(r−1)

0,l + η
(r−1)
l x

(r−1)
3,l). (15)

16

ξ
(r)
2,l = ξ

(r)
2,0 + ξ

(r)
2,1 ∼ ξ

(r)
2,1 = x

(r)
1,l = ξ

(r−1)
1,l + η

(r−1)
l x

(r−1)
3,l . (16)

ξ
(r)
3,l,2 = (x(r)

0,l + x
(r)
2,l)x

(r)
1,l

= (ξ(r−1)
0,l + ξ

(r−1)
2,l)(ξ(r−1)

1,l + η
(r−1)
l x

(r−1)
3,l). (17)

ξ
(r)
3,l,3 = x

(r)
0,l x

(r)
1,l x

(r)
2,l

= (ξ(r−1)
0,l + η

(r−1)
l x

(r−1)
3,l)(ξ(r−1)

1,l + η
(r−1)
l x

(r−1)
3,l)(ξ(r−1)

2,l + η
(r−1)
l x

(r−1)
3,l)

∼ ξ
(r−1)
0,l ξ

(r−1)
1,l ξ

(r−1)
2,l

+(ξ(r−1)
0,l ξ

(r−1)
1,l + ξ

(r−1)
0,l ξ

(r−1)
2,l + ξ

(r−1)
1,l ξ

(r−1)
2,l)η(r−1)

l x
(r−1)
3,l . (18)

A.3 Recurrence Relation of x
(r)
k,l

x
(r)
0,l = ξ

(r−1)
0,0 + ξ

(r−1)
0,1 + ξ

(r−1)
0,2 + η

(r−1)
l x

(r−1)
3,l

∼ ξ
(r−1)
0,2 + η

(r−1)
l x

(r−1)
3,l

= x
(r−1)
0,l x

(r−1)
1,l + η

(r−1)
l x

(r−1)
3,l

= (ξ(r−2)
0,l + η

(r−2)
l x

(r−2)
3,l)(ξ(r−2)

1,l + η
(r−2)
l x

(r−2)
3,l) + η

(r−1)
l x

(r−1)
3,l

∼ ξ
(r−2)
0,l ξ

(r−2)
1,l + η

(r−1)
l x

(r−1)
3,l . (19)

x
(r)
1,l = ξ

(r−1)
1,0 + ξ

(r−1)
1,1 + ξ

(r−1)
1,2 + η

(r−1)
l x

(r−1)
3,l

∼ ξ
(r−1)
1,2 + η

(r−1)
l x

(r−1)
3,l

= x
(r−1)
0,l x

(r−1)
1,l + x

(r−1)
0,l x

(r−1)
2,l + η

(r−1)
l x

(r−1)
3,l

∼ ξ
(r−2)
0,l (ξ(r−2)

1,l + ξ
(r−2)
2,l) + η

(r−1)
l x

(r−1)
3,l . (20)

x
(r)
2,l = ξ

(r−1)
2,0 + ξ

(r−1)
2,1 + η

(r−1)
l x

(r−1)
3,l ∼ η

(r−1)
l x

(r−1)
3,l . (21)

17

x
(r)
3,l = ξ

(r−1)
3,1 + ξ

(r−1)
3,l,2 + ξ

(r−1)
3,l,3 + x

(r−1)
1 x

(r−1)
3,l

∼ ξ
(r−1)
3,l,3 + x

(r−1)
1,l x

(r−1)
3,l

= x
(r−1)
0,l x

(r−1)
1,l x

(r−1)
2,l + x

(r−1)
1,l x

(r−1)
3,l

= (ξ(r−2)
0,l + η

(r−2)
l x

(r−2)
3,l)(ξ(r−2)

1,l + η
(r−2)
l x

(r−2)
3,l)(ξ(r−2)

2,l + η
(r−2)
l x

(r−2)
3,l)

+(ξ(r−2)
1,l + η

(r−2)
l x

(r−2)
3,l)(ξ(r−2)

3,l,2 + ξ
(r−2)
3,l,3 + x

(r−2)
1,l x

(r−2)
3,l)

∼ ξ
(r−2)
0,l ξ

(r−2)
1,l ξ

(r−2)
2,l

+(ξ(r−2)
0,l ξ

(r−2)
1,l + ξ

(r−2)
0,l ξ

(r−2)
2,l + ξ

(r−2)
1,l ξ

(r−2)
2,l + ξ

(r−2)
3,l,3)η(r−2)

l x
(r−2)
3,l

ξ
(r−2)
1,l (ξ(r−2)

3,l,3 + x
(r−2)
1,l x

(r−2)
3,l). (22)

