
Rebound Attack on Reduced-Round Versions of
JH

Vincent Rijmen1,2, Deniz Toz1 and Kerem Varıcı1,∗

1 Katholieke Universiteit Leuven
Department of Electronical Engineering ESAT SCD-COSIC,

and Interdisciplinary Institute for BroadBand Technology (IBBT)
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

2 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
{vincent.rijmen,deniz.toz,kerem.varici}@esat.kuleuven.be

Abstract. JH, designed by Wu, is one of the 14 second-round candidates
in the NIST Hash Competition. This paper presents the first analysis
results of JH by using rebound attack. We first investigate a variant of
the JH hash function family for d = 4 and describe how the attack works.
Then, we apply the attack for d = 8, which is the version submitted to
the competition. As a result, we obtain a semi-free-start collision for 16
rounds (out of 35.5) of JH for all hash sizes with 2179.24 compression
function calls. We then extend our attack to 19 (and 22) rounds and
present a 1008-bit (and 896-bit) semi-free-start near-collision on the JH
compression function with 2156.77 (2156.56) compression function calls,
2152.28 memory access and 2143.70-bytes of memory.

1 Introduction

Recent years witnessed the continuous works on analysis of hash functions which
reveal that most of them are not as secure as claimed. Wang et al. presented
collisions on the MD family [1–3] using an attack technique on hash functions
which is based on differential cryptanalysis. This idea was further developed and
used in the analysis of other famous and widely used hash functions SHA-1 and
SHA-2 [4–6]. In response, the National Institute of Standards and Technology
(NIST) announced a public competition for designing a new hash function which
will be chosen as the hash function standard: Secure Hash Algorithm 3 (SHA-
3) [7].

JH [8] is the submission of Hongjun Wu to the NIST Hash Competition
and it is one of the 14 second-round candidates. According to the designer, the

∗This work was sponsored by the Research Fund K.U.Leuven, by the IAP Pro-
gramme P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by the
European Commission through the ICT Programme under Contract ICT-2007-216676
(ECRYPT II). The information in this paper is provided as is, and no warranty is given
or implied that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.

Table 1. Summary of results for JH (CFC = Compression Function Call)

Function Rnds Time
Complexity

Memory
Complexity

Collision Type Sec.

Hash 16 2178.24 CFC 2101.12 byte semi-free-start collision §3.2
Comp. 19 2156.77 CFC 2143.70 byte semi-free-start near-collision §4.2

(1008 bits)
Comp. 22 2156.56 CFC 2143.70 byte semi-free-start near-collision §4.2

(768 bits)

hash algorithm is very simple and efficient in both software and hardware. JH
supports four different hash sizes (224, 256, 384 and 512-bit), and is among the
fastest contestants.

The rebound attack [9], a new technique for cryptanalysis of hash functions,
has been introduced by Mendel et al. in FSE 2009. It is applicable to both
block cipher based and permutation based hash constructions. Later, it has been
improved by Mendel et al. [10] and Matusiewicz et al. [11]. In this work, we bring
all these ideas together to analyze the JH hash function. First, we implement
the rebound attack to the small scale variant of JH by choosing d = 4. Then, we
adapt the method to the submitted version of JH (d = 8). In order to improve
the complexity of the attack, we use three inbound phases rather than one, which
provides us to use freedom more efficiently. The results can be seen in Table 1.

This paper is organized as follows: In Sec. 2, we give a brief description of
the JH hash function, its properties and an overview of the rebound attack. In
Sec. 3, we first describe the main idea of our attack on small scale version of
JH and then give the results on submitted version of JH. In Sec. 4, we follow
the same outline for the improved version of the rebound attack. Finally, we
conclude this paper and summarize our results in Sec. 5.

2 Preliminaries

2.1 Notation

Throughout this paper, we will use the following notation:

word 4-bit
mi,j the jth word of the ith round value

d dimension of a block of bits
i.e. a d-dimensional block of bits consists of 2d words

JH-X the member of the family whose message digest is X bits
|| concatenation operation
× cross-product: an operation on two arrays that results in another

array whose elements are obtained by combining each element in
the first array with every element in the second array

2

(i)

M
(i)

M
(i)

Ed

H
(i−1)

H

Fig. 1. The compression function Fd

2.2 The JH Hash Function

The hash function JH is an iterative hash function that accepts message blocks
of 512 bits and produces a hash value of 224, 256, 384 and 512 bits. The message
is padded to be a multiple of 512 bits. The bit ‘1’ is appended to the end of the
message, followed by 384−1+(−l mod 512) zero bits. Finally, a 128-bit block is
appended which is the length of the message, l, represented in big endian form.
Note that this scheme guarantees that at least 512 additional bits are padded.
In each iteration, the compression function Fd, given in Fig.1, is used to update
the 2d+2 bits as follows:

Hi = Fd(Hi−1,Mi)

where Hi−1 is the previous chaining value and Mi is the current message block.
The compression function Fd is defined as follows:

Fd(Hi−1,Mi) = Ed(Hi−1 ⊕ (Mi||02d+1
))⊕ (02d+1

||Mi)

Here, Ed is a permutation and is composed of an initial grouping of bits followed
by 5(d − 1) rounds, plus an additional S-Box layer and a final degrouping of
bits. The grouping operation arranges bits in a way that the input to each
S-Box has two bits from the message and two bits from the chaining value.
In each round, the input is divided into 2d words and then each word passes
through an S-Box. JH uses two 4-bit-to-4-bit S-Boxes (S0 and S1) and every
round constant bit selects which S-Boxes are used. Then two consecutive words
pass through the linear transformation L, which is based on a [4, 2, 3] Maximum
Distance Separable (MDS) code over GF (24). Finally all words are permuted
by the permutation Pd. After the degrouping operation each bit returns to its
original position. The round function for d = 4 is shown in Fig. 2 and d = 8 is the
submitted version. For a more detailed information we refer to the specification
of JH [8].

3

m

LLLLLLL

SS S S S S S S S SS S S S S S S

i−1,0 i−1,1 i−1,3i−1,2 i−1,5i−1,4 i−1,6 i−1,7 i−1,8 i−1,9 i−1,10 i−1,11 i−1,12 i−1,13 i−1,14 i−1,15

i,0 i,1 i,2 i,3 i,4 i,5 i,6 i,7 i,9i,8 i,10 i,11 i,12 i,13 i,14 i,15

m mm m m m m m mm m m m mmm

m m m m m m m m m m m m m m m

L

Fig. 2. Round Function for d = 4

The initial hash value H0 is set depending on the message digest size. The
first two bytes of H−1 are set as the message digest size, and the rest of the
bytes of H−1 are set as 0. Then, H0 = Fd(H−1, 0). Finally, the message digest
is generated by truncating HN where N is the number of blocks in the padded
message, i.e, the last X bits of HN are given as the message digest of JH-X for
X = 224, 256, 384, 512.

2.3 Properties of the Linear Transformation L

Since the linear transformation L implements a (4, 2, 3) MDS matrix, any dif-
ference in one of the words of the input (output) will result in a difference in
two words of the output (input). For a fixed L transformation, if one tries all
possible 216 pairs, the number of pairs satisfying the condition 2→ 1 or 1→ 2 is
3840, which gives a probability of 3840/65536 ≈ 2−4.09. Note that, if the words
are arranged in a way that they will be both active this probability increases to
3840/57600 ≈ 2−3.91. For the latter case, if both words remain active (2 → 2),
the probability is 49920/57600 ≈ 2−0.21.

2.4 Observations on the Compression Function

The grouping of bits at the beginning of the compression function assures that
the input of every first layer S-Box is xor-ed with two message bits. Similarly,
the output of each S-Box is xor-ed with two message bits. Therefore, for a ran-
dom non-zero 4-bit difference, the probability that this difference is related to a
message is 3/15 ≈ 2−2.32.

The bit-slice implementation of Fd uses d − 1 different round function de-
scriptions. The main difference between these round functions is the permutation
function. In each round permutation, the odd bits are swapped by 2r mod (d−1)
where r is the round number. Therefore, for the same input passing through mul-
tiple rounds, the output is identical to the output of the original round function

4

for the α · (d−1)-th round where α is any integer. Three rounds of the bit-sliced
representation can be seen in Fig. 3 between rounds 1 and 4.

2.5 The Rebound Attack

The rebound attack is introduced by Mendel et al. [9]. The two main steps of
the attack are called inbound phase and outbound phase. In the inbound phase,
the freedom is used to connect the middle rounds by using the match-in-the-
middle technique and in the outbound phase connected truncated differentials
are calculated in both forward and backward direction.

This attack has been first used for the cryptanalysis of reduced versions of
Whirlpool and Grøstl, and then extended to obtain distinguishers for the full
Whirlpool compression function [12]. Later, linearized match-in-the-middle and
start-from-the-middle techniques are introduced by Mendel et al. [10] to improve
the rebound attack. Moreover, a sparse truncated differential path and state is
recently used in the attack on LANE by Matusiewicz et al. [11] rather than an
all active state in the matching part of the attack.

In our work, we first apply the start-from-the-middle technique with an all
active state, then we improve our results by using three inbound phases with
partially active states rather than one all active one. This allows us to decrease
the complexity requirements of the attack.

3 The Start-From-The-Middle Attack on JH

We use the available freedom in the middle by a start-from-the-middle-technique.
We begin by guessing the middle values and then proceed forwards and back-
wards using the filtering conditions to reduce the number of active S-Boxes in
each round.

In this section, we describe the steps of our attack on JH in detail. We will
first describe the attack on smaller version of JH, i.e., d = 4 in detail, and then
give the algorithm and analysis for d = 8.

3.1 Attack on 8 Rounds of JH for d = 4

Attack Procedure: The inbound phase of the attack described in this section
is composed of 8 rounds, and the number of active S-Boxes in each round is:

1← 2← 4← 8← 16→ 8→ 4→ 2→ 1

The bit-slice implementation allows us to analyze the algorithm easily. The
truncated differential path is given in Fig. 3. The attack can be summarized as
follows:

• Step 1: Try all possible 216 values for the middle values m4,j ||m4,j+1 and
m′

4,j ||m′
4,j+1 in round 4 for each of the four sets (shown with colors and

different shapes in Fig. 3), and keep only those that satisfy the desired
pattern (2← 4→ 2). Therefore, the expected number of remaining pairs
is 216 · 216/[(24.09)2 · (23.91)2] = 216 for each set.

5

����

����

����

����

������

������

������������������

������������������

���������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������

������������������

�������������� ����

������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����

����

����������������

���������
���������
���������
���������

���������
���������
���������
���������������

������

��

�������������������������������� ������������������������ ������

������

������
���������
���������
���������
���������

���������
���������
���������
���������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������ ���������������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������������

����

����

����

����
����

����

����

���� ����

���� ����

����

����

����

������������������

���������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����

����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����

�������� ����

������������������ ����

����

���������������� ��������

������������������������

����

����

����

���������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������

��������

��������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��������

����

����

����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
���������

��������

����������������������

��������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����

���
���
���
���

���
���
���
���

���
���
���
���
����������������������

���
���
���
���

���
���
���
���

�������
���
���
���
������������������

���
���
���
���

���
���
���
���
�������

���
���
���
����

�����
�����
�����
�����

�����
�����
�����
�����

����

����
�����
�����
�����
�����

�����
�����
�����
����� �������

���
���
���
����

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

0 1 32 4 5 6 7 8

Fig. 3. Inbound Phase of JH for d = 4 (bit-slice implementation)

• Step 2: Compute the cross-product of the sets: �
�

�
�

�
�

�
� × �
�

�
�

�
�

�
�

and ��
�

��
�

��
�

��
� × �
�

�
�

�
�

�
�

�
�

�
�

,
check if the differences satisfy 2 → 1 when they pass the inverse L
transform, L−1. For the pairs that satisfy the filtering condition, store
only the values in the active words and the middle values for each of the
2 sets. After this step, the number of pairs in each set is approximately
216 · 216/(23.91)2 = 224.18.

• Step 3: Compute the cross-product of the sets: × , check whether
the remaining 10 filtering conditions (marked with) are satisfied
or not. This control can be done by calculating L ◦ S or S−1 ◦ L−1 for
only the active words and does not require the use of the round function
entirely, hence it is very efficient. The total number of remaining pairs
that pass the inbound phase is 224.18 · 224.18/(23.91)10 = 29.26.

Note that, due to the symmetry, the actual number of remaining pairs is 28.26

and the duplication can be avoided in the earlier steps of the algorithm, but for
simplicity it is described like this in the paper. The attack algorithm only stores
the middle values for the pairs that follows the desired differential path and the
values in the n-th round can be computed by calling the round (or inverse round)
function.

The active S-Boxes in the input and output to the compression function must
satisfy the desired property, so out of 28.26 pairs only 28.26 · (2−2.32)2 = 24.32

of them remain. In order to obtain a collision, the difference in both S-Boxes
also need to match, which happens with a probability of 1/3. Therefore for
24.32 ·1/3 ' 22.74 pairs we obtain a semi-free-start collision for the hash function.

Complexity of the Attack: The inbound phase is the part of the attack where
most of the calculations are done. Let U = L ◦ S and U−1 = S−1 ◦ L−1. Then,

6

a round function consists of 8 U -functions, similarly an inverse round functions
has 8 U−1-functions.

For each of the four sets in Step 1 of the algorithm, we try all possible
216 pairs and apply the filtering condition, Although we have 2 U -functions in
forward direction and 2 U−1-functions in backward direction, we only check a
condition if the previous one is satisfied, so the total number of calls, n1 is:

n1 = 232 + 232/24.09 + 232/(24.09)2 + 232/[(24.09)2 · 23.91] = 232.09

which is approximately 229.1 calls to round function1. This step can be done by
232 table look-ups if precomputation is used.

For each of the two sets in Step 2 of the algorithm, since L is a linear trans-
formation, it is sufficient to check whether the differences satisfy the desired
property, i.e.(L−1(∆c, ∆d) = (∆a, 0) or (0,∆b)). The total number of calls in
this step is:

n2 = (216)2 · (1 + 2−3.91) = 232.09

In the final step of the inbound phase, 3 of the 10 conditions to be checked are
again linear transformations and the remaining 7 require the use of U -function.
The complexity of the attack is dominated by this step and the total number of
operations performed is:

n3,bck = (224.18)2 · [(1 + 2−3.91 + (2−3.91)2] ' 248.46

n3,fwd = (224.18)2/(2−3.91)3 ·
6∑

i=0

(2−3.91)i ' 236.72

where fwd and bck denote the forward and backward direction respectively. In
the outbound phase, for each of the 28.26 remaining pairs, starting from the
middle values, we call the round and inverse round functions the obtain the
input and output values.

Results: The above algorithm has been implemented in C for d = 4 and we
observed that the results are compatible with the precomputed values. Thus,
we obtain semi-free-start collision for 8-rounds JH-16. An example is given in
Table 5.

3.2 The Attack on 16 Rounds of JH with d = 8

In this section, we first present an outline for the start-from-the middle attack
on reduced round version of JH for all hash sizes, and then give the calculations
for the complexity analysis of the attack.

1232.09 · 1/8 = 229.09

7

Table 2. Overview of the inbound phase of the attack on 16 rounds of JH (d = 8)

Step Size Sets Filtering Pairs Time Direction
(bits) Conditions Remain Complexity

0 8 128 1 211.75 215.84 fwd
1 16 64 1 219.59 223.50 bck
2 32 32 4 223.54 239.18 fwd
3 64 16 4 231.44 247.08 fwd
4 128 8 4 247.24 262.88 fwd
5 256 4 8 263.20 294.48 fwd
6 512 2 8 295.12 2124.40 fwd
7 1024 1 46 210.38 2190.24 fwd + bck

Attack Procedure: For the compression function E8, the attack is composed
of 16 rounds and the number of active S-Boxes is:

1← 2← 4← 8← 16← 32← 64← 128← 256→ 128→ 64→ 32→ 16→ 8→ 4→ 2→ 1

The algorithm is similar to the one of E4. We again start from the middle and
then propagate outwards by computing the cross-product of the sets and using
the filtering conditions. However, instead of trying all 216 possible pairs, we start
with 27.92 values for each middle value. The number of sets, the bit length of the
middle values (size) of each set, and the number of filtering conditions followed
by the number of pairs in each set are given in Table 2. Similarly, we only store
the values in the active bytes for the outermost rounds and the middle round
for each set, i.e., no other intermediate value is stored.

Complexity of the Attack: The time complexity of the attack for d = 8 is
calculated in a manner similar to that of d = 4. Instead of giving all equations
explicitly, we summarize the results in terms of function calls and their direction
for each step in Table 2. The time complexity of the given attacks is 2190.24 U -
function calls (equivalent to 2190.24 · 2−7 · (1/16) = 2179.24 16-round compression
function calls).

Results: We may lose up to half of the remaining pairs due to symmetry. In
addition, similar to the case for d=4, the active S-Boxes in the input and output
to the compression function should correspond only to the message bits and then
match each other in order to obtain a collision. Therefore, out of 210.38 pairs only
210.38 · 1/2 · (2−2.32)2 · 1/3 ' 23.15 pairs remain.

Suppose that we intend to attack a block Mi where (i < N). Since we obtain
a zero difference in the chaining value, it is guaranteed that the outputs of the
compression function will be the same provided that the both messages have the
same length. As mentioned earlier the same compression function is used for all
hash sizes, and the message digest is generated by truncating HN where N is the
number of blocks in the padded message. Therefore, we have a semi-free-start
collision for all hash sizes of 16-round JH.

8

4 The Rebound Attack on JH Compression Function

The attack on the hash function given in Sec. 3.2 can easily be converted to an
attack on 19 rounds of the compression function for the pairs that satisfy the
inbound phase by using the following differential trails in the outbound phases:

2← 1← Inbound Phase → 1→ 2→ 4

The complexity of the attack remains the same (i.e., 2190.24 U -function calls) and
we obtain a semi-free-start near-collision for 1008 bits. In this section, we improve
these results by using three inbound phases. Once again, we first describe the
steps of our attack for d = 4 in detail, and then give the algorithm and complexity
analysis for d = 8.

4.1 The Improved Rebound Attack on JH with d= 4

The inbound phase of the attack described in this section is composed of 8
rounds, using the following trail:

2← 4→ 2← 4← 8→ 4← 8→ 4→ 2 (1)

It is perhaps interesting to make here some observations on the number of active
S-boxes in the trail. Similar to the AES, the linear diffusion layer of JH imposes
a lower bound on the number of active S-boxes: if d ≥ 2, then there are at least
32 = 9 active S-boxes in every sequence of 4 rounds. The conjectured bound
on the number of active S-boxes over 2d + 1 rounds [8], as well as the trail
(1), demonstrate that the higher dimension of the JH diffusion layer allows for
relatively long and narrow trails.

We decompose the inbound phase into a sequence of three smaller inbound
phases [12], each of which are 3, 2 and 3 rounds respectively. The number of
active SBoxes for each of the steps in each round is:

2← 4→ 2
2← 4← 8→ 4
4← 8→ 4→ 2

We use the bit-sliced representation to analyze the algorithm. We first calculate
the results of the first and the third inbound phases, and then match them with
the second inbound phase. The truncated differential path is given in Fig. 4. The
attack can be summarized as follows:

First Inbound Phase:

• Try all possible 28 values for each of the middle values m1,j ||m1,j+1 and
m′

1,j ||m′
1,j+1 in round 1 for each of the two sets, and keep only those

which satisfy the desired pattern. Therefore, the expected number of
remaining pairs is 28 · 28/24.09 = 211.91 for each set.

9

1 32 4 5 6 7 80

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

����
����
����
����

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

Inbound 1 Inbound 3Inbound 2

Fig. 4. Inbound Phase of JH (d = 4)

• Compute the cross-product of the two sets, check if the differences sat-
isfy 2 → 1 when they pass L−1. For the pairs that satisfy the filter-
ing condition, store only the values in the active words and the middle
values. After this step, the number of pairs is approximately 211.91 ·
211.91/(23.91)2 = 216.

• Check whether the remaining pairs satisfy the desired input difference,
and store these values in list L1. Therefore, the size of L1 is 216 ·
(2−2.32)2 = 211.36

Second Inbound Phase:

• Try all possible 28 values for each of the middle values m4,j ||m4,j+1 and
m′

4,j ||m′
4,j+1 in round 4 for each of the four sets, and keep only those

that satisfy the desired pattern. The expected number of remaining pairs
is again 28 · 28/24.09 = 211.91 for each set.

• Compute the cross-product of the sets having the same pattern, check if
the differences satisfy 2→ 1 when they pass L−1. For the pairs that sat-
isfy the filtering condition, store the values for each of the 2 sets. The ex-
pected number of pairs in each set is approximately (211.91)2/(23.91)2 =
216.

• Compute the cross-product of the sets, �
�
�
�
�
�
�
� × �
�
�
�
�
�
�
�

, and check if the differ-
ences satisfy the filtering condition when they pass L−1. The expected
number of pairs that pass the second inbound phase is (216)2/(2−3.91)2 =
224.18.

10

Third Inbound Phase:

• Try all possible 28 values for each of the middle values m6,j ||m6,j+1 and
m′

6,j ||m′
6,j+1 in round 6 for each of the four sets, and keep only those

that satisfy the desired pattern. The expected number of remaining pairs
is again 211.91 for each set.

• Compute the cross-product of the sets having the same pattern, check
if the differences satisfy 2→ 1 when they pass the inverse L transform.
For the pairs that satisfy the filtering condition, store the values for each
of the 2 sets. The expected number of pairs in each set is approximately
(211.91)2/(23.91)2 = 216.
• Compute the cross-product of the two sets, ��

�
��

�
��

�
��

� × �
�

�
�

�
�

�
�

�
�

�
�

, to check the final
filtering conditions in round 7. The expected number of pairs that pass
the third phase is (216)2/(2−3.91)2 = 224.18. Store these values in list L3.

Merging Inbound Phases: The three previous inbound phases overlap in
the 2 and 4 active words (denoted with black) in rounds 2 and 5 respectively.
Since we have to match these active words in both values, we get a condition
on 16 + 32 = 48 bits in total. These conditions are checked as soon as we have
a remaining pair for the second inbound phase, by using the lists L1 and L3.
As a result, we expect to find (211.36 · 224.18 · 2−16) · 224.18 · 2−32 · (2−2) ' 29.72

solutions for the inbound phase. The last 2−2 factor in the calculation follows
from symmetry.

Outbound Phase: For the pairs that satisfy the inbound phase, we expect to
see the following differential trail in the outbound phase:

2← Inbound Phase → 2→ 4→ 2

Therefore, for the compression function E4, we have the 10-round differential
path shown in Fig. 5. Note that, there are two filtering conditions in the last
round of the outbound phase. Thus, out of 29.72 solutions, only 29.72 ·(2−3.91)2 ≈
21.9 pass to the last round. After the degrouping operation, the message is xor-ed
to the rightmost 32-bits of the output and for the compression function of JH
for d = 4 we have a near-collision for 52 bits.

Data Complexity: The time complexity of the attack is determined by the
first and third inbound phases which is about 232.09 each, hence the total time
complexity is 232.09 + 232.09 = 233.09 U -function calls, equivalent to 233.09 · 2−3 ·
(1/10) = 226.77 compression function calls. The memory complexity is also de-
termined by the third inbound phase which is 224.18.

Results: We obtain a 52-bit free-start near-collision for 10 rounds of the JH
compression function. The results are still not better than theoretic bounds for
JH with d = 4, but it helps us to implement the attack and expand it for the
submitted version of JH.

11

I
N
B
O
U
N
D

P
H
A
S
E

0 108 9

Fig. 5. Outbound Phase of JH (d = 4)

4.2 The Improved Rebound Attack on JH with d = 8

In this section, the attack in Sec. 4.1 on JH with d = 4 is extended to JH with
d = 8 using more rounds (hence the larger number of steps and the increased
complexity) for each of the inbound and outbound phases. The attack is appli-
cable to 19 rounds of the compression function. We first explain the attack in
detail and then give the calculations for the complexity analysis.

Inbound Phase: For the compression function E8, the inbound phase of the
attack is 16 rounds and is composed of two parts. In the first part, we apply the
start-from-the-middle-technique three times for rounds 0−3, 3−10 and 10−16. In
the second part, we connect the resulting active bytes (hence the corresponding
state values) by a match-in-the-middle step. The number of active S-Boxes in
each of the sets is:

2← 4← 8→ 4
4← 8← 16← 32← 64← 128→ 64→ 32

32← 64→ 32→ 16→ 8→ 4→ 2

For a detailed sketch of the inbound phase we refer to Fig. 7. The algorithm for
each set is similar to the one of E4. We again start from the middle and then
propagate outwards by computing the cross-product of the sets and using the
filtering conditions. For each list, we try all possible 216 pairs in Step 0. The
number of sets, the bit length of the middle values (size) of each list, and the
number of filtering conditions followed by the number of pairs in each set are
given in Table 3.

12

Table 3. Overview of inbound phases of the attack on 19 rounds of JH

Step Size Sets Filtering Pairs Complexity
Conditions Remain Backwards Forwards

In
b
o
u
n
d

1 0 8 4 1 211.91 − 216

1 16 2 2 216 223.91 −
2 32 1 2 224.18 232.09 −
3 32 1 2a 219.54

In
b
o
u
n
d

2

0 8 64 1 211.91 − 216

1 16 32 2 216 223.91 −
2 32 16 2 224.18 − 232.09

3 64 8 4 232.72 248.46 −
4 128 4 4 249.80 265.54 −
5 256 2 4 283.96 299.70 −
6 512 1 4 2152.28 2168.02 −

In
b
o
u
n
d

3

0 8 32 1 211.91 − 216

1 16 16 2 216 223.91 −
2 32 8 2 224.18 − 232.09

3 64 4 2 240.54 − 248.45

4 128 2 2 273.26 − 281.17

5 256 2 2 2138.70 − 2146.61

aCheck whether the pairs satisfy the desired input difference

Merging Inbound Phases: Connecting these three lists is performed as fol-
lows: whenever a pair is obtained from set 2, we check whether it exits in L1

or not. If it does, another check is done for L3. Since we have 219.54 and 2138.7

elements in lists 1 and 3 respectively, 2152.28 pairs passing the second inbound
phase, and 32-bit and 256-bit conditions for the matches. The total expected
number of remaining pairs is (219.54 ·2152.28 ·2−32) ·2138.70 ·2−256 · (2−2) = 220.52.

We obtained more pairs than usual due to the additional filtering conditions
in the outbound phase, in order to obtain a near-collision (which will be explained
in the following part) for 19 rounds of the compression function.

Outbound Phase: The outbound of the attack is composed of 3 rounds in the
forward direction. For the pairs that satisfy the inbound phase, we expect to see
the following differential trail in the outbound phase:

Inbound Phase → 2→ 4→ 8→ 4

Note that in the last step of the outbound phase we have four filtering con-
ditions. We had 220.52 remaining pairs from the inbound phase, thus, we expect
220.52 · (23.91)4 = 24.88 pairs to satisfy the above path. A detailed schema of this
trail is shown in Fig. 7.

The final step of the compression function is xor-ing the message bits after
the degrouping operation to the output of the compression function. We have

13

Table 4. Complexity of the generic attack for near-collisions

#Rounds # bits Generic Attack Our Results
Near Collision Complexity

19 1008 2454.21 2156.77

20 992 2411.18 2156.70

21 960 2341.45 2156.63

22 896 2236.06 2156.56

23 768 299.18 2156.50

4 active words in the output and 4-bit difference in the message, two of which
collide in bit positions 512 and 768. Thus, it is possible to cancel them with a
probability of 2−2 and the number of pairs reduce to 22.88. To sum up, we have
a difference in (4 · 4− 2) + 2 = 16 bits in total.

Complexity of the Attack: For the inbound phase, the complexity of the
attack for d = 8 is calculated in a similar manner to that of d = 4. The results for
preparing the lists are summarized for each step in Table 3. The time complexity
of the attack is dominated by the second set, L2, which is about 2168.02 U -
function calls (equivalent to 2168.02 · 2−7 · (1/19) = 2156.77 19-round compression
function calls). The memory requirements are determined by the largest list,
which is L3 with a size of 2138.70 256-bit data.

Results: Note that in this attack, the complexity requirements are reduced sig-
nificantly compared to the initial idea that uses only one inbound phase. For 19
rounds of the JH compression function, we obtain a semi-free-start near-collision
for 1008 bits. We can simply increase the number of rounds by proceeding for-
wards in the outbound phase. Our attack still works in this case with the same
complexity (U -function calls). The number of bits for near-collision and the
generic attack complexities are given in Table 4. As a result, our attack is better
than generic attacks up to 22 rounds.

5 Conclusion

In this paper, we presented the first cryptanalysis results of JH by using rebound
attack techniques. We first explained our attack on 8 rounds of JH (d = 4) in
detail and then showed how this attack can be used to attack 16 rounds of JH
hash function. We further improved our findings by using three inbound phases
instead of one and obtained a 1008-bit semi-free-start near-collision for 19 rounds
of the JH compression function. The required memory for the attack is 2143.70

bytes of data. The time complexity is reduced to 2156.77 compression function
calls, and it requires 2152.28 memory accesses. We also presented semi-free-start
near-collision results for 20-22 rounds of the JH compression function with the

14

same memory requirement and time complexity. Our findings are summarized
in Table 1.

Acknowledgements

The authors would like to thank Hongjun Wu for discussion of our results, his
remarks and corrections. We also like to thank anonymous reviewers of FSE
2010 for their comments; Meltem Sönmez Turan and Onur Özen for reviewing
the previous versions of the paper.

References

1. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. [13] 1–18

2. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [13] 19–35
3. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup, V.,

ed.: CRYPTO. Volume 3621 of LNCS., Springer (2005) 17–36
4. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results

and Applications. In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of LNCS.,
Springer (2006) 1–20

5. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In Adams, C.M., Miri, A., Wiener, M.J., eds.: Se-
lected Areas in Cryptography. Volume 4876 of Lecture Notes in Computer Science.,
Springer (2007) 56–73

6. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes
in Computer Science., Springer (2009) 55–69

7. NIST: Cryptographic Hash Competition http://www.nist.gov/

hash-competition.
8. Wu, H.: The Hash Function JH. Submission to NIST (2008) http://icsd.i2r.

a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf.
9. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:

Cryptanalysis of Reduced Whirlpool and Grøstl. In Dunkelman, O., ed.: FSE.
Volume 5665 of Lecture Notes in Computer Science., Springer (2009) 260–276

10. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In Jr., M.J.J., Rijmen, V., Safavi-Naini, R., eds.: Selected Areas in Cryp-
tography. Volume 5867 of Lecture Notes in Computer Science., Springer (2009)
16–35

11. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full Lane Compression Function. [14] 106–125

12. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. [14] 126–143

13. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.:
EUROCRYPT. Volume 3494 of LNCS., Springer (2005)

15

http://www.nist.gov/hash-competition
http://www.nist.gov/hash-competition
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

14. Matsui, M., ed.: Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Tokyo, Japan, December 6-10, 2009. Proceedings. In Matsui, M., ed.: ASI-
ACRYPT. Volume 5912 of Lecture Notes in Computer Science., Springer (2009)

A Sample Data

We performed several experiments for different S-Box setups, but the implemen-
tation results shown below are obtained by using the same S-Box (S0) in each
round for simplicity.

Table 5. Example for the rebound attack with one inbound phase (d = 4)

Bit-Slice Results Reference Results

P1 P2 Difference P1 P2 Difference

0 6ddf8804acec67ef addf8804acec67ef c000000000000000 6dacdfec886704ef adacdfec886704ef c000000000000000
1 53d4792d4304231c 03d4792d4104231c 5000000002000000 53d4792d4304231c 03d4792d4104231c 5000000002000000
2 c7b01dd79c2227e3 e7ba1dd7cc2927e3 200a0000500b0000 c71d9c27b0d722e3 e71dcc27bad729e3 200050000a000b00
3 55c5a1f5a7f8a0bc 3595acfe6708a9b2 60500d0bc0f0090e 55a7c5f8a1a0f5bc 35679508aca9feb2 60c050f00d090b0e
4 2b3ead8b7712b433 a9f04e08299bd357 82cee3835e896764 2b3ead8b7712b433 a9f04e08299bd357 82cee3835e896764
5 bd2e0491b4824e41 d62ef09101827441 6b00f400b5003a00 bd04b44e2e918241 d6f001742e918241 6bf4b53a00000000
6 7c47294041d9f1c6 46472940b0d9f1c6 3a000000f1000000 7c4147d929f140c6 46b047d929f140c6 3af1000000000000
7 89100fddca5632e0 a5100fddca5632e0 2c00000000000000 89100fddca5632e0 a5100fddca5632e0 2c00000000000000
8 29184f8fc8fc9af1 19184f8fc8fc9af1 3000000000000000 294fc89a188ffcf1 194fc89a188ffcf1 3000000000000000

16

Fig. 6. Differential characteristic for 16 rounds of JH Hash Function (bit-slice
representation)

17

76543210

OutboundInbound Phase 3Inbound Phase 2Inbound Phase 1

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
098

Fig. 7. Inbound and Outbound Phases of JH compression function (bit-slice
representation)

18

