
An Improved Algebraic Attack on Hamsi-256

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute

Rehovot 76100, Israel

Abstract. Hamsi is one of the 14 second-stage candidates in NIST’s
SHA-3 competition. The only previous attack on this hash function was
a very marginal attack on its 256-bit version published by Thomas Fuhr
at Asiacrypt 2010, which is better than generic attacks only for very
short messages of fewer than 100 32-bit blocks, and is only 26 times
faster than a straightforward exhaustive search attack. In this paper we
describe a different algebraic attack which is less marginal: It is better
than the best known generic attack for all practical message sizes (up
to 4 gigabytes), and it outperforms exhaustive search by a factor of at
least 512. The attack is based on the observation that in order to discard
a possible second preimage, it suffices to show that one of its hashed
output bits is wrong. Since the output bits of the compression function
of Hamsi-256 can be described by low degree polynomials, it is actually
faster to compute a small number of output bits by a fast polynomial
evaluation technique rather than via the official algorithm.

Keywords: Algebraic attacks, second preimages, hash functions, Hamsi.

1 Introduction

The Hamsi family of hash functions [1] was designed by Özgül Küçük and sub-
mitted to the SHA-3 competition in 2008. In 2009 it was selected as one of
the 14 second round candidates of the competition. Hamsi has two instances,
Hamsi-256 and Hamsi-512, that support four output sizes 224, 256, 384 and 512.

Previous results on Hamsi include distinguishers [4] and [5], pseudo-preimage
attacks [6] and near collision attacks [7]. However, these results do not break the
core security properties of a hash function. More recently, Thomas Fuhr intro-
duced the first real attack on Hamsi-256 [2]. The attack exploits linear relations
between some input bits and output bits of the compression function in order
to find pseudo preimages for the compression function of Hamsi-256 (a pseudo
preimage of an arbitrary chaining value h∗i under the compression function F
is a message block M̄i and a chaining value h̄i−1 such that F(M̄i, h̄i−1) = h∗i).
The pseudo preimages can then be used in order to find a second preimage for
a given message with complexity 2251.3, which is better than exhaustive search
by a marginal factor of 24.7 ≈ 26 (whose existence and exact size depends on
how we measure the complexity of various operations). In addition, Fuhr’s at-
tack is better than a generic long message attack only for very short messages

with up to 96 32-bit blocks1(i.e. 384 bytes). Nevertheless, it is the first attack
on Hamsi-256 that violates its core security claims.

In this paper, we develop new second preimage attacks on Hamsi-256 which
are slightly less marginal. Our best attack on short messages of Hamsi-256 runs
in time which is faster than exhaustive search by a factor of 512, which is about
20 times faster than Fuhr’s attack. For longer messages, we develop another
attack which is faster than the Kelsey and Schneier attack by a factor which is
between 6 and 4 for all messages of practical size (i.e., up to 4 gigabytes). Our
short message attack exploits some of the observations made in [2] regarding
the Hamsi Sbox, but uses them in a completely different way to obtain better
results: While Fuhr solved linear equations in order to speed up the search for
pseudo preimages, our attacks use fast polynomial enumeration algorithms to
quickly discard compression function inputs which cannot possibly yield the
desired output.

Since the straightforward evaluation of the compression function of Hamsi-
256, Fuhr’s attack, and our attacks use different bitwise operations, compar-
ing these attacks on Hamsi-256 cannot be done simply by counting the num-
ber of compression function evaluations. Instead, we compare the complexity
of straightline implementations of the algorithms, counting the number of bit
operations (such as AND, OR, XOR) on pairs of bits and ignoring bookkeep-
ing operations such as moving a bit from one position to another (which only
requires renaming of variables in straightline programs). In this model of compu-
tation, the best available implementation of one compression function evaluation
of Hamsi-256 (given as part of the submission package in [1] and used as the ref-
erence complexity in this paper), requires about 10, 500 bit operations. Our best
attack is about 512 times faster, and is thus equivalent to an algorithm than
performs only 20 bit operations per message block.

Polynomial enumeration algorithms evaluate a polynomial function over all
its possible inputs. Clearly, the complexity of such enumeration algorithms must
be at least 2n for n-bit functions and thus they may seem to provide little ad-
vantage over trivial exhaustive search. However, cryptographic primitives are
usually heavy algorithms that require substantial computational effort per ex-
ecution. Consequently, the complexity of exhaustive search (measured by the
number of bit operations) can be much higher than 2n. However, for low degree
polynomials, the complexity of enumeration algorithms is higher than 2n only by
a small multiplicative factor. In order to attack Hamsi-256, we search for poly-
nomials of low degree that relate some of the bits computed by the compression
function: The variables of each polynomial are chosen from the inputs to Hamsi-
256, and the output of each polynomial is either an output bit of Hamsi-256, a
linear combination of output bits of Hamsi-256, or an intermediate state bit of
Hamsi-256 from which an output bit (or output bits) can be easily computed.

1 Since Hamsi-256 is built using the Merkle-Damg̊ard construction and it has a 256-
bit intermediate state, the best known generic second preimage attack on Hamsi-
256 with long messages is the Kelsey and Schneier attack [3] that runs in time
k · 2128 + 2256−k for messages of length 2k.

Our attack on short messages of Hamsi-256 is divided into two stages: In the
first stage we find multiple pseudo preimages of a single target chaining value
obtained by one of the invocations of the compression function during the com-
putation of the hash of the given message. In the second stage we obtain a second
preimage for the message by searching for a second preimage for one of the target
pseudo preimages that are found in the first stage (this is done by traversing a
tree-like structure of chaining values, as shown in figure 1). In both stages, we
first efficiently enumerate a set of low degree polynomials for all the possible
values of a carefully chosen set of variables which are input to Hamsi-256. We
then run the compression function only for the inputs for which the polynomial
evaluations match the values of the target (or targets). Since the compression
function of Hamsi-256 mixes the chaining value less extensively than the mes-
sage, in the first stage we find only pseudo preimages by selecting our set of
input variables of the enumerated polynomials among the bits of the chaining
value. In the second stage, we have to find second preimages and thus we have to
select our set of input variables of the enumerated polynomials among the mes-
sage bits. Therefore, the polynomials enumerated in the first stage have a lower
degree than those enumerated in the second stage, implying that the first stage
gives a better improvement factor than the second stage (compared to exhaus-
tive search). We note that our two-stage process of finding a second preimage
using an efficient pseudo preimage search algorithm is a variant of the well-known
meet-in-the-middle algorithm, described in the appendix of the extended version
of this paper [12]. The difference is that the second stage of meet-in-the-middle
is performed using exhaustive search, whereas the second stage of our algorithm
is optimized using efficient polynomial enumeration algorithms.

For longer messages, the generic attack of Kelsey and Schneier becomes in-
creasingly better with the length, and quickly overperforms both Fuhr’s attack
and our enumeration-based attack. In this case, we develop another attack that
directly plugs into and speeds up the algorithm of Kelsey and Schneier. The at-
tack is based on the second stage of our short message attack, but uses different
parameters since in this case we try to find a second preimage for a potentially
huge number of targets.

The fact that our short message attack is faster than Fuhr’s attack may seem
surprising, as Fuhr’s attack is based on very simple and efficient algorithms for
solving linear equations, whereas our attack is based on exponential-time polyno-
mial enumeration algorithms. However, linear equations are much more difficult
to obtain than non-linear equations of relatively low degree. In particular, Fuhr
can obtain useful linear equations in only 7 or 8 variables in the first stage. The
complexity of interpolating and solving such a system is faster than exhaustive
search (which requires 27 or 28 function evaluations) only by a small factor. In
the second stage, [2] can not obtain any linear equations and proceeds by per-
forming an exhaustive search, which makes the attack faster than Kelsey and
Schneier’s attack only for very short messages. Another reason why our attack
is faster is that in the first stage we also exploit the weak diffusion of the input
variables into some of the output bits. This allows our enumeration algorithms

to evaluate some polynomials only over the possible values of small subsets of
variables in order to obtain the values for the entire variable set.

2 Description of Hamsi-256

In this section we provide a brief description of the compression function of
Hamsi-256. For more details, please refer to its specification [1].

The compression function of Hamsi-256 takes as an input a 32-bit message
block Mi and a 256-bit chaining value hi and outputs a new 256-bit chaining
value hi+1. The compression function first expands the 32-bit message to 8 blocks
of 32 bits using a linear code over GF (4): E(Mi) = (m0,m1, ...,m7). The ex-
panded message is then concatenated to the chaining value to form a 512-bit
state treated as a 4× 4 matrix of 32-bit blocks as follows:

(m0,m1, ...,m7, c0, c1, ..., c7) −→

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

=

m0 m1 c0 c1
c2 c3 m2 m3

m4 m5 c4 c5
c6 c7 m6 m7

The concatenation is followed by a permutation defined by three rounds,
where each round consists of three layers: In the first layer, the state bits are
XORed with some constants. In the second layer, the 128 4-bit columns of the
state undergo simultaneous applications of a 4× 4 Sbox described in table 1.

Table 1. The Hamsi Sbox.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

The third layer consists of several parallel applications of a linear transfor-
mation L on the state.

(s0, s5, s10, s15) := L(s0, s5, s10, s15)
(s1, s6, s11, s12) := L(s1, s6, s11, s12)
(s2, s7, s8, s13) := L(s2, s7, s8, s13)
(s3, s4, s9, s14) := L(s3, s4, s9, s14)

Finally, the second and fourth rows of the state are discarded and the initial
chaining value hi is XORed with the remaining state to form hi+1. The last
message block is processed differently, by applying 8 rounds of this permutation
8 (instead of the standard 3).

3 A Direct Attack on Hamsi-256

3.1 The Properties and Weaknesses of Hamsi-256 which are
Exploited by the Attack

In the direct attack our goal is to consider the 32 message bits as variables and
the 256-bit chaining value as a fixed input and analyze the degree of the state
bits after each one of the three rounds of the Hamsi-256 compression function
as polynomials in the message bits. Every Hamsi Sbox can be described as a
polynomial of degree 3 in its 4 input variables. However, due to the way the
expanded message bits and the chaining value bits are interleaved in Hamsi-
256, after 1 round of the compression function, each state bit is a polynomial of
reduced degree 2 in the message bits. This may seem insignificant, but after 2
rounds, the degree of each state bit as a polynomial in the message is at most
6 instead of the expected value of 32 = 9. After the final compression function
round, the degree is 18 instead of the expected 27. This low algebraic degree
can be used to obtain distinguishers on Hamsi-256 (as already noticed in [4] and
[5]), but even this reduced degree is too high for our algebraic attack. Instead,
we exploit the low diffusion property of one round of Hamsi-256, namely, that
several output bits of the compression function depend only on a small number
of inputs from the second round.

3.2 Analysis of Polynomials of Degree 6 in 32 Variables

Since the attack on Hamsi-256 relies on a slightly improved version of exhaustive
search, we have to use every possible saving and shortcut in the implementation
of our algorithms, and can not ignore constants or low-order terms. In particular,
we show how to efficiently interpolate and evaluate any polynomial of degree 6
in 32 variables for all the 232 possible values of its inputs using fewer than 7 ·232

bit operations (instead of the 264 complexity of the naive evaluation of the 232

possible terms for each one of the 232 possible inputs):

1. Given any black box implementation of the polynomial (e.g. in the form of
the Hamsi-256 program), evaluate the output of the polynomial (which is a
single bit value) only for input vectors of hamming weight ≤ 6 and store all
the results.

2. Compute the coefficient of each term tI of degree at most 6, where I ⊂
{0, 1, ...31}, |I| ≤ 6 represents some subset of variables multiplied together.
The coefficient of tI is computed by summing all the outputs of the polyno-
mial obtained from all inputs which assign 0 values to all variables that are
not contained in I (where the variables that are contained in I are assigned
all possible values).

3. Allocate an array of 232 bits and copy all the coefficients of the polynomial
into the array. The coefficient tI is copied into the entry whose binary index
is encoded by b0, b1, ..., b31 where bi = 1 if and only if i ∈ I. All the other
entries of the array are set to 0.

4. Apply the Moebius transform [8] on the array and obtain an array which
contains the evaluations of the polynomial for all 232 possible input values.

Step 1 requires
6∑
i=0

(
32
i

)
≈ 220 compression function evaluations. Step 2

requires
6∑
i=0

2i
(

32
i

)
< 226 bit operations. Step 3 can be combined with step 2

by writing the coefficients directly into the array and does not require additional
work. A naive implementation of step 4 requires 32 ·231 bit operations, since the
generic Moebius transform consists of 32 iterations, where in each iteration we
add half of the array entries to the other half. However, in our case, the initial
array can contain only about 220 non zero values, whose locations are known
and represent all the vectors with hamming weight of at most 6. In the first
iteration of the Moebius transform, we split the array into 2 parts according to
one variable and add only the entries whose index has a hamming weight of at
most 6 in the remaining 31 variables (the others entries are left unchanged). The

total complexity of the first iteration is thus
6∑
i=0

(
31
i

)
bit operations. In the

second iteration, each half of the array is split into 2 parts according to another
variable. Similarly, we add only the entries whose index has a hamming weight
of at most 6 in the remaining 30 variables. The total complexity of the second

iteration is thus 2
6∑
i=0

(
30
i

)
. Generally, the complexity of the j′th iteration where

0 ≤ j ≤ 25 is min(231, 2j
6∑
i=0

(
31− j
i

)
). For 26 ≤ j ≤ 31, the complexity is 231.

Summing over all iterations, we get a total complexity of less than 7 · 232. We
note that it is also possible to use the Gray-code based polynomial enumeration
algorithm recently presented in [9] which is a bit more complicated than our
Moebius-based transform, and has a similar time complexity.

Assuming that the straightforward evaluation of one Hamsi-256 compression
function requires about 10, 500 bit operations, step 4 is the heaviest step and
dominates the complexity of the algorithm. Note that when analyzing several
polynomials which correspond to different output bits, step 1 needs to be per-
formed only once since every compression function evaluation gives us the values
of all the required polynomials. In addition, the bit locations XORed together
during the Moebius transformation do not depend on the evaluated polynomial,
and thus the evaluation of k unrelated polynomials can be achieved by XORing
k bit words instead of single bits. This is particularly convenient when k = 32
or k = 64, which are standard word sizes in modern microprocessors.

3.3 Efficiently Eliminating Wrong Messages

Assume that we are given a target chaining value h∗i , and a fixed chaining value
hi−1. We would like to efficiently find a single message block Mi such that

F(Mi, hi−1) = h∗i , or decide that such a message does not exist for the given
hi−1, h∗i . Due to the short message blocks of Hamsi-256, the probability to find
a desired message for random chaining values hi−1 and h∗i is about 232−256 =
2−224. Hence, to succeed with high probability for a given h∗i , we have to generate
about 2224 random values for hi−1. In order to obtain this number of chaining
values, the target h∗i must be located at least in block number 8 of the message
(i.e. i ≥ 8). This implies that we can apply our attack only when the given
message contains at least 8 blocks.

The idea is to algebraically compute only a small set of output bits (indexed
by N) for all the 232 messages and compare their values to the values of those
bits of the target chaining value. If the bits match, we run the compression
function for the message to compute the whole 256-bit output, and compare
it to the target h∗i . Otherwise, we discard the message. Using the algorithm of
section 3.2, we efficiently evaluate only the bits produced after 2 rounds of the
compression function, which are required in order to determine the output bits
specified by N . We then combine these values as specified by the last round,
and obtain the values of the output bits indexed by N for all the possible 232

messages.
In order to minimize the complexity of the attack, we need to select a set N

that is big enough to eliminate a large number of messages with high probability.
On the other hand, choosing N too big, will force us to evaluate many bits after
two rounds, increasing the complexity of the attack. In fact we don’t need to
analyze all the second round bits that are required to compute the output bits
N : We write the ANF form of the output bits N as a function of the second
round bits and note that the sum of the second round variables which are not
multiplied together (which we call the simple sum) is itself a polynomial of degree
6 in the message. Thus, the simple sum of each such output bit can be analyzed
in the same way as the second round bits without computing separately each
one of the summed bits. Note that in Step 1 of the analysis (interpolation),
evaluating the polynomial means computing the sum of variables numerically
from the output. The complexity of this computation is negligible compared to
a compression function evaluation of Hamsi-256.

After choosing the set N of output bits and the set of second round bits of
degree 6 S(N) we have to evaluate, we do the following:

1. Given that i ≥ 8: Choose an arbitrary message prefix of i− 8 blocks
M1,M2, ...,Mi−8 and compute hi−8 = F(M1,M2, ...,Mi−8, IV) (which is
fixed throughout the attack). Use DFS to traverse the tree of chaining values
rooted at hi−8 by assigning values to the blocks
Mi−7,Mi−6, ...,Mi−1 and computing the next chaining value hi−1 (as shown
in figure 1). For each generated hi−1:

2. Evaluate all the bits of S(N) for all possible 32-bit message values using the
algorithm of Section 3.2 and list them as |S(N)| bit arrays of size 232.

3. Using the ANF form of the outputs bits of N as a function of the second
round bits, calculate |N | bit arrays of size 232 representing the values of the
|N | output bits for all the messages.

4. Traverse the |N | bit arrays and check whether the values of the output bits
in N match the values of those bits in h∗i , for each message Mi. Store all the
messages for which there is a match.

5. For each message Mi stored in the previous step, evaluate the full Hamsi-
256 compression function output by using its standard implementation and
check whether F(Mi, hi−1) = h∗i . If equality holds, output
M = M1,M2, ...,Mi. Otherwise go to step 1.

The memory requirements of the algorithm can be reduced by calculating
the bits of N iteratively and eliminating wrong messages according to the cur-
rent calculated bit. We can then reuse some memory which was used for the
calculation of the previous bits of S(N) and which is not required anymore.

Given that |N | = n1, |S(N)| = n2, and the number of bit operations per
message that is required to compute N from S(N) is n3 (calculated using the
ANF form of the outputs bits), the complexity of the attack is about 2224(n3232+
7n2232 + 10500 · 232−n1) =
2256(n3+7n2+10500·2−n1) bit operations. Compared to exhaustive search which
requires about 10500 · 2256 bit operations, this gives an improvement factor of
about (n3+7n2

10500 + 2−n1)−1.
We searched for sets of output bits N that optimize the complexity of the

attack. The best set that we found is N = {5, 156, 184, 214, 221, 249} whose 6
output bits depend just on 56 second round bits. We also have to add 6 bits for
the simple sums of the second round variables, and the full list of 56+6 = 62 bits
is described in appendix A. For this parameter set we get that n2 = 62, n1 = 6
and the computation of all the evaluated output bits requires about n3 = 150
bit operations per message. We calculated this number after a few optimizations
which are based on finding some common parts in the ANF representation of the
output bit polynomials (which can be calculated only once). The improvement
factor (compared to exhaustive search) of this direct attack is therefore a very
modest (150+7·62

10500 + 2−6)−1 ≈ 14. The memory complexity is about 64 · 232 = 238

bits and can be further reduced by iterative calculation of the output bits. We
also found another interesting set of parameters:N = {5, 156, 214, 221, 249} gives
a slightly worse improvement factor of 13.

4 Improving the Direct Attack by Using Pseudo
Preimages

While the direct attack seems to be worse than Fuhr’s attack [2] , it can be
the basis for substantial improvements. In this section we consider the general-
ized problem of finding a pseudo preimage, defined as a pair of a message block
and chaining value M̄i, h̄i−1 such that F(M̄i, h̄i−1) = h∗i for a given value h∗i .
Whereas in the direct attack described in the previous section we could only se-
lect our variables from the message, here we have the extra power of choosing our
variables also from the chaining value bits which are mixed less extensively than

...

...

...
F

IV

arbitrary
 prefix

 direct
evaluation

 algebraic
evaluation

hi
*

=?

=?

=?

Fig. 1. A sketch of the second stage of the attack. After generating a prefix of chaining
values using arbitrary message blocks, we start to traverse a tree-like structure of
chaining values (shown as lightly filled boxes) using DFS: Each node is expanded into
232 successor nodes by selecting the next value for the 32-bit message block in all
possible ways .The tree has 8 levels so that the final level contains 2256 chaining values
(which is roughly the number of chaining values that we need to generate in order
to match the 256-bit target with high probability). The 7 − th level nodes are not
expanded by applying the Hamsi-256 compression function. Instead, we first efficiently
evaluate only a small set of bits for all the 232 possible message blocks. We then execute
the compression function only for the messages for which the evaluation of those bits
match the corresponding values of the target h∗i . The attack succeeds once we find an
8− th level node that matches the target.

the message bits by the Hamsi-256 compression function. By carefully choos-
ing these variables, we can lower the degree of the polynomials, allowing us to
compute these outputs more efficiently compared to the direct attack.

Our improved attack exploits the very interesting observations made by
Thomas Fuhr in section 3 of [2]. For a given message block M , we select our
variables from the state that precedes the first Sbox layer as follows: Let x(j)

denote the j′th bit of the 32-bit word x. We define one variable bit x(j) ∈ {0, 1}
for each j such that s(j)14 = 1 and set s(j)2 = x(j), s(j)10 = x(j). In addition, we
define one variable bit y(j) ∈ {0, 1} for each j such that s(j)1 = 1, s(j)9 = 0 and set
s
(j)
5 = y(j), s(j)13 = y(j). According to [2], after 2 rounds of the compression func-

tion of Hamsi-256, the state bits depend linearly on our variable set: We chose
our variable set such that after the first Sbox layer, only s2, s13 depend linearly
on our variable set. After the first round, only s2, s7, s8, s13 depend linearly on
our variable set. After the second Sbox layer, the dependency of the state on
the variables remains linear and the second diffusion layer does not change this
property. Note that for a random message, we expect |V1| = |{x(j)}j∈jx | = 16,
|V2| = |{y(j)}j∈jy | = 8. We define V = V1 ∪ V2 and for a random message we
expect |V | = 24.

The observations of [2] allow us to select a relatively large set of variables
such that the degree of all the output bits in those variables is 3. In addition,

there are 28 specific output bits that depend only on 16 state bits after 2 rounds
of the compression function. The indexes of these bits are 150 − 156, 182 −
188, 214 − 220, 246 − 252. Moreover, each one of these output bits usually does
not depend on all of our input variables. We calculate for each of these output
bits the variables on which it actually depends, and efficiently enumerate (over
all their possible values) only a certain subset of output polynomials (whose size
we denote by α), called the analyzed polynomials or analyzed bits. We note that
the dependencies of the 28 output bits on our variable set are influenced by
the values of the message and the chaining value, but there are certain patterns
that are common to most messages and chaining value pairs. For example, if our
variable set contains 21 variables, there is usually an output bit which depends
on only 12 of our variables, another 1 or 2 output bits that depend on 13 of our
variables, another 2 or 3 output bits that depend on 14 of our variables and so
forth.

4.1 The Polynomial Analysis Algorithm

All the 28 polynomials defined above have degree of at most 3 in the input vari-
ables. Given a message, a corresponding set of variables and a chaining value, we
first interpolate the linear state bit polynomials of Hamsi-256 after 2 rounds. We
can then use the optimized Moebius transform of section 3.2 (adapted to cubic
polynomials) to efficiently evaluate any cubic polynomial, which corresponds to
output bits 150− 156, 182− 188, 214− 220, 246− 252 over all its inputs. These
values are written into an array of size 2|S|, where S ⊆ V is the set of input
variables on which this polynomial depends. The enumeration algorithm starts
with an initialization phase that interpolates the coefficients of the cubic poly-

nomial by evaluating the function
3∑
i=0

(
|S|
i

)
times and performing

3∑
i=0

2i
(
|S|
i

)
bit operations. The evaluation can be done by running the compression func-
tion, but we can use the second round polynomials in order to speed up this
process: Given that we know the values of the 16 polynomials that are input
to the third round, we can calculate the value of the output bit by evaluating
4 Sboxes and summing 4 of their outputs. An evaluation of one Hamsi Sbox
output bit requires 8 bit operations (computing the 4 Sbox outputs requires 14
bit operations, but this number is reduced for individual bits), and the sum re-
quires 3 more bit operations giving a total of 35 bit operations per evaluation.
The 16 linear polynomials can be efficiently evaluated using a simple differential
method which requires an average of 16 bit operations per evaluation. In total,
one evaluation requires 16 + 35 = 51 bit operations and the initialization step

of the enumeration algorithm requires
3∑
i=0

(51 + 2i)
(
|S|
i

)
bit operations. After

optimizations similar to the ones performed in section 3.2 (which exploit the
sparseness of the coefficients in the array in most iterations of the algorithm),
we get that the algorithm itself requires an additional number of 4 · 2|S| bit
operations.

4.2 The Query Algorithm

Assume that we have already analyzed polynomials pi for 1 ≤ i ≤ α where pi
depends on a subset Si of the variables. The output of the enumeration of each pi
is a table of size 2|Si|. These α tables define a set of about 2|V |−α possible values
for the variables such that when they are used as chaining value bits which are
plugged into the compression function, the values of the α analyzed output bits
match those of the target. Clearly, the remaining values of the variables that do
not match the target can be safely discarded. However, these 2|V |−α solutions
are only implicitly given by the tables and we have to efficiently obtain their
explicit representation.

For example, assume that our set of variables is V = {v1, v2, v3, v4}, and
we have analyzed polynomials p1 that depends on S1 = {v1, v2, v4}, and p2 that
depends on S2 = {v2, v3, v4}. The table obtained after analyzing p1 contains 23 =
8 entries (an entry for each possible value of the variables of S1). Out of these
8 entries, only entries 000, 010, 110, 111 have a value that matches the value of
the corresponding bit of the target. The other 4 entries have the complementary
value (which does not match the value of the corresponding bit of the target).
Note that each entry actually corresponds to two assignments of the 4 variables
(For example, the point 001 corresponds to the assignments 0001 and 0011). Out
of the 8 entries of the table obtained after analyzing p2, the entries 000, 011, 110
have a value that matches the value of the corresponding bit of the target. Our
goal is to find the assignments to the 4 variables whose corresponding entries
in both tables match the bits of the target. The explicit set of solutions in our
example contains the points 0000, 0110, 1110.

A naive approach in order to obtain an explicit representation of the solutions
is to iterate the possible 2|V | values for the variables, and check whether the
value of the entry that corresponds to the value of the variables in each of one
of the tables matches the value of the corresponding analyzed bit (note that
we can discard a potential solution once the entry value in one of the tables
does not match the value of the corresponding analyzed bit). This algorithm
requires at least 2|V | bit operations. We can easily save a factor of 2 by iterating
only the values that match the target in one of the tables. However, we can
do even better by considering the actual variable sets on which each analyzed
output bit depends. The details and analysis of the improved query algorithm are
specified in the appendix of the extended version of this paper [12]. Its expected
complexity is |S1|+2|S1

⋃
S2|−1+...+2|

⋃α
i=1 Si|−α+1 bit operations. Note that this

complexity estimate is not symmetric with respect to the various Si’s, and thus
different orders of analyzing the various tables will yield different complexities.

4.3 Post Filtering the Solutions

After the query algorithm, we are left with 2|V |−α solutions and we have to
determine whether they indeed give a preimage which matches all the 256 bits
of the given chaining value h∗i . One option is to simply run the compression
function and check whether the solutions match the target. However, it is more
efficient to apply the following post filtering algorithm first.

– For each solution, evaluate the remaining 28 − α output bits (that were
not analyzed) one by one, and compare the output to the corresponding
value of h∗i . If the value of an output bit does not match the value of the
corresponding target bit, drop the solution.

For each solution, we expect to evaluate 2 additional bits (we always evaluate
one additional bit, a second bit is evaluated with probability 0.5, a third with
probability 0.25, and so forth). Evaluating a bit requires evaluation of the 16
input linear polynomials up to round 2 plus 35 additional bit operations for the
Sbox and XOR evaluations. A random linear polynomial in the |V | input bits has
about |V |2 non zero coefficients, but this is not the case here. Our special choice of
variables makes them diffuse slowly into the state of Hamsi-256, and as a result,
our linear polynomials are very sparse and require about 3 bit operations per
evaluation. The 2 evaluations thus require 2(35 + 3 · 16) = 166 bit operations.
The post filtering requires in total about 166 ·2|V |−α bit operations. The number
of solutions that remain after the post filtering is about 2|V |−28 (i.e. we expect
to have less than one solution per system on average if |V | < 28), and running
the compression function after the post filtering requires negligible time.

4.4 Finding a Good Sequence of Analyzed Bits

In the previous sections we designed and calculated the complexities of the poly-
nomial analysis algorithm, the query algorithm, and the post filtering algorithm.
Given the sets S1, ..., S28 that correspond to the potential analyzed bits, we would
like to find a good sequence of analyzed bits (of size α) which minimizes the com-
plexity of the attack. Since there are many possible sequences, exhaustive search
for the optimal sequence of analyzed bits is too expensive and thus we used a
heuristic algorithm for this problem. A naive greedy algorithm which iteratively
builds the sequence by selecting the next analyzed bit i that minimizes the added
complexity 51|S|3 + 3 · 2|S|+ 2|

⋃i
j=1 Sj |−i+1 seems to give reasonable results, but

we got even better results by combining the greedy algorithm with exhaustive
search over short sequences, as described next.

1. Given the dependencies of the 28 potential analyzed bits, exhaustively search
for the optimal sequence of 3 analyzed bits that minimizes the sum of com-
plexities of the query algorithm and their analysis.

2. Fill in the remaining 28−3 = 25 bits of the sequence by iteratively searching
for the next analyzed bit i that minimizes the added complexity 51|S|3 +
3 · 2|S| + 2|

⋃i
j=1 Sj |−i+1 (the post-filtering complexity is the same given the

value of i).
3. Determine the length of the sequence α by calculating the total complexity

of the attack for each possible value of 1 ≤ α ≤ 28 and truncate the sequence
of 28 bits to size α.

The first step involves exhaustive search over 28!
25! < 214.5 sequences, each

requires a union of sets of at most |V | variables represented as bit arrays, and

an addition operation. The union requires |V | bit operations and the addition a
few more bit operations since the terms 51|S|3 + 3 · 2|S| are computed only once
and can be rounded in order to nullify the least significant bits. Assuming that
|V | < 25, the complexity of the first step is about 219.5 bit operations, which
can be easily reduced to about 218.5 by considering the sequences in a more
clever way. The second and third steps take negligible time compared to the first
step. Note that this algorithm is performed before analyzing the polynomials,
although it is specified last.

4.5 Details of the Pseudo Preimage Attack on Hamsi-256

The details and analysis of the pseudo preimage attack on Hamsi-256 are speci-
fied below. The input of the algorithm is a chaining value h∗i , and its output is
a message block M̄i and a chaining value h̄i−1 such that F(M̄i, h̄i−1) = h∗i .

1. Generate the next message block M̄i (starting from the zero block, and
incrementing its value each time this step is performed).

2. Compute the set of variables V ′ = V1∪V2 according to M̄i. If |V ′| < 21 then
discard the message and go to step 1. Otherwise, obtain the final set of 21
variables V for the current message block by dropping |V ′| − 21 variables
from V ′. The variables that are dropped are arbitrarily chosen from the set
V1 (the variables are dropped from V1 since the variables of V2 tend to diffuse
more slowly into the state of Hamsi-256, as noted in section 4 of [2]).

3. Generate the next partial chaining value h̄i−1 , which does not assign values
to the variables (starting from the zero partial chaining value each time step
1 is performed, and incrementing its value each time this step is performed).
If no more partial chaining values exist, go to 1.

4. Given M̄i, V and h̄i−1, interpolate the linear state bit polynomials of Hamsi-
256 after 2 rounds.

5. For each of the 28 output bits (150 − 156, 182 − 188, 214 − 220, 246 − 252),
determine the variable subset on which it depends. This is done by retrieving
the 16 linear second round state bits on which the output bit depends, and
then performing a union over the variable subsets on which the 16 state bits
depend.

6. Determine the heuristically best sequence of analyzed bits according to the
algorithm in section 4.4.

7. Analyze the selected polynomials according to section 4.1.
8. Use the query algorithm of section 4.2 to determine the set of solutions.
9. Post filter the solutions according to section 4.3. If no solutions remain, go

to step 3.
10. For each remaining solution, compute the compression function after assign-

ing the value of the solution to the unspecified part of the partial chaining
value, and check whether the output is equal to the target. If there is a so-
lution for which equality holds, return the message and full chaining value.
Otherwise, go to step 3.

In order to find at least one pseudo preimage with high probability, we must
verify that we do not use too many degrees of freedom after throwing away mes-
sages and allocating the variables. We start with 32 degrees of freedom since
the input to the Hamsi-256 compression function contains 256 + 32 = 288 bits,
(32 message bits and 256 chaining value bits) and the output of the compres-
sion function contains only 256 bits. We lose less than 0.5 degrees of freedom
by throwing away messages for which the number of variables is too small. In
addition, every variable sets one constraint on the input of the compression func-
tion and reduces the number of possible inputs to the compression function by
a factor of 2. Thus, we lose a degree of freedom per allocated variable and less
than 21.5 degrees of freedom overall. In total, we remain with a bit more than
32 − 21.5 = 10.5 degrees of freedom which are expected to result in more than
210 pseudo preimages for a random target.

We now estimate the complexity of the pseudo preimage attack: The com-
plexity of some steps can be easily computed: For a given set of variables, step 4
of the algorithms requires 22 compression function evaluations of Hamsi-256 and
21 · 512 < 214 bit operations. Step 5 takes negligible time. Step 6 requires about
218.5 bit operations. Step 10 requires 2|V |−28 compression function evaluations,
which takes negligible time compared to the other steps of the attack. However,
the complexity of the main steps of the attack 7− 9 cannot be easily computed
since it depends on the message and the value of the chaining value used. Thus,
we can only estimate the complexity of the attack by running simulations for
randomly chosen messages and chaining values. In each simulation, we estimate
the complexity of the attack by summing the complexities of the steps above
with the complexity of steps 7− 9, as calculated in section 4.4. After thousands
of simulations we found that for about 95% of messages and chaining values
the attack is faster than exhaustive search by a factor which is at least 213.
The average complexity of the attack is slightly better than 2256−13.5 = 2242.5

compression function evaluations.
Interestingly, the techniques of our pseudo preimage attack can also be used

to speed up generic pseudo collision search algorithms on Hamsi-256 that are
based on cycle detection algorithms (such as Floyd’s algorithm [11]). The details
of the pseudo collision attack are described in the appendix of the extended
version of this paper [12].

5 Using Pseudo Preimages to Obtain Second Preimages
for Hamsi-256

Given a message M = M∗1 ||M∗2 ||...||M∗` with ` ≥ 9, we can use the naive meet-
in-the-middle algorithm (described in the appendix of the extended version of
this paper [12]) in order to find an expected number of 213.5/2 = 26.75 pseudo
preimages and use them as targets for the second preimage attack. This gives a
total complexity of about 2256−5.75 = 2250.25 compression function evaluations.
However, we can do better by using the result of section 3: Recall that our
algorithm for finding pseudo preimages has more than 10 degrees of freedom

left. We use 5 of the remaining degrees of freedom to set the input bits that
correspond to the output bits of the set N = {5, 156, 214, 221, 249} in all the
pseudo preimages to some fixed value. As specified in section 3.3, the set N
represents the target bits for the direct second preimage attack on Hamsi-256
and this choice allows us to speed up the second phase by a factor of about
13 ≈ 23.7. In the first phase of the attack, the bits of N actually function as
input bits to the pseudo preimage search algorithm. The details of the algorithm
are specified below, where x is a numeric parameter:

1. Choose a target block with index of at least 9 (i.e. h∗i with i ≥ 9) and use
the pseudo preimage search algorithm to find 2x pseudo preimages in which
the set of input bits {5, 156 + 128, 214 + 128, 221 + 128, 249 + 128} is fixed
to an arbitrary value. Note that the number 128 is added to some indexes
of N due to the truncation of the output of the compression function.

2. Use the direct second preimage search algorithm to find a second preimage
to one of the 2x pseudo preimages found in the previous step.

We note that we still have 10 − 5 = 5 degrees of freedom left, so we must
choose x ≤ 5 in the first step. The complexity of step 1 is about 2256−13.5+x =
2242.5+x compression function evaluations. The complexity of step 2 is about
2256−x−3.7 compression function evaluations. To optimize the attack, we choose
2x = 30, i.e x ≈ 4.9 for which the total complexity of the attack is about 2248.4,
which is about 27.6 ≈ 200 times better than exhaustive search.

The algorithm presented above works for any message that contains at least 9
blocks. However, this restriction can be removed with little additional cost using
an observation made by an anonymous referee of this paper: Since the 64-bit
message length is encoded in the last two 32-bit blocks, we can find a pseudo
preimage of the last intermediate chaining value with a non-zero message block.
The 32 bits of the message block function as the most significant bits of the
message length of our second preimage, which now contains enough blocks for
the attack. The chaining value of the pseudo preimage gives us the target which
we require for the algorithm above.

In addition, it is possible to improve the algorithm further by building a
layered hash tree, similar to the one used in [10]. The optimized algorithm yields
a less marginal improvement factor of 29 = 512 over exhaustive search, which
is about 20 times better than the attack published by Thomas Fuhr [2]. The
details of this algorithm are specified in the appendix of the extended version of
this paper [12].

6 Second Preimages for Longer Messages of Hamsi-256

The best known generic algorithm for finding second preimages for any Merkle-
Damg̊ard construction of hash functions is due to Kelsey and Schneier [3]. The
algorithm needs to undergo a slight adaptation in order to be applied to the
special structure of Hamsi-256 (see [2]). The complexity of the generic algorithm
for Hamsi-256 is k·2128+2256−k, where the message length satisfies ` ≥ 4k+2k+8.

Hence, the algorithm developed in the previous section is better than the generic
algorithm only for k ≤ 9, i.e. for messages that contain at most 4·9+29+8 = 556
blocks. For longer messages, we design a different algorithm that combines the
techniques used in section 3 with a modified version of the Kelsey and Schneier
algorithm. We elaborate only on the parts of the Kelsey and Schneier algorithm
that are relevant to our modified attack.

Given an ` block message, in the the first phase of the Kelsey and Schneier
algorithm, the attacker generates a (p, q) expandable message for p = 4k and
q = 4k + 2k − 1 such that q + 8 ≤ ` − 1. This phase is left unchanged. We
concentrate on the second phase of the Kelsey and Schneier algorithm, where
we apply the compression function from a common chaining value and try to
connect to one of the chaining values obtained by one of the invocations of the
compression function during the computation of the hash of the given message. If
the message is of size about 2k, the complexity of this phase is 2256−k compression
function evaluations, which forms the bottleneck of the attack (assuming k <
128). Similarly to section 3, the idea is to speed up this phase simply by efficiently
computing several bits of the output for all possible 232 messages and filtering
out messages which do not connect to any of the targets. Assuming that we
efficiently compute the values of x output bits, then we still need to run the
compression function a factor of 2−x+k times for x > k compared to the original
algorithm.

Unlike section 3, a significant portion of the work here involves computing
the output bits (almost) directly, and a smaller portion of the work involves
analysis of the second round bits. The output bits are of degree 18 which is
too high to be analyzed efficiently. However, we can exploit polynomials of a
lower degree relatively easily. As in section 3.3, we use the ANF form of the
output bits as a function of the second round bits. The symbolic representation
is of degree 3 and we would like to get equations of degree 2. We remove all
terms of degree lower than 3 in the ANF form. We then linearize the system
of polynomials by assigning each distinct term of degree 3 a dedicated variable.
We perform Gaussian Elimination on the linearized system and get a system in
which about 120 rows contain only 1 variable and the rest of the rows contain
2 variables (each linearized variable represents 3 variables of round 2 multiplied
together). This is of course not sufficient in order to reduce the degree. However,
these linearized simple expressions (composed of 3 variables of degree 6 in the
message bits) can be handled separately by the technique specified in section
3.2. We select a set of x linear combinations from the rows which contain only
one linearized variables. The rest of the polynomial is of degree 2 · 3 · 2 = 12 in
the message bits, and is analyzed slightly differently. The analysis algorithm for
such a linear combination is specified below. Its input is an arbitrary chaining
value h and it outputs an array of size 232 that contains the evaluations of the
linear combination of the output bits for all possible 232 message blocks.

1. Analyze the 3 second round variables that appear in the expression of the
linearized variable of the linear combination, as specified in section 3.2.

2. Evaluate the remainder of the output bit combination on all input vectors
of hamming weight ≤ 12 and store the results.

3. Interpolate the coefficients of the output bit combination: Place all its values
in an array of size 232, where the values of entries of hamming weight ≥ 13
are set to zero. Then apply the Moebius transform [8] on the array and take
only the coefficients of hamming weight ≤ 12 (the rest are known to be 0).

4. Apply the Moebius transform once more on the array and obtain the eval-
uations of the polynomial (not including the linearized variable) for all 232

possible input values.
5. Add the values of the linearized variable to the array by computing it from

the arrays produced in step 1.

Step 1 requires 3 ·7 ·232 = 21 ·232 bit operations. Step 2 requires
12∑
i=0

(
32
i

)
≈

232

10
compression function evaluations (which need to be performed once per

chaining value). In addition, step 2 requires several bit operations to compute
the value of the linear combination. Most of the linear combinations contain
fewer than 40 additions and step 2 requires additional 40 · 0.1 · 232 = 4 · 232

bit operations. Step 3 requires an application of the Moebius transform, which
takes 16 · 232 bit operations. However, only about 0.1 of the entries of the array
are relevant (the others are not accessed), hence the complexity is less than
2 · 232 bit operations. Step 4 requires the full 16 · 232 bit operations. Step 5
requires additional 3 · 232 bit operations. In total, the algorithm requires about
(21+4+2+16+3)·232 = 46·232 bit operations in addition to the 232

10 compression
function evaluations that are performed globally.

The algorithm to find the second preimage is specified below, where x is a
numeric parameter. It get as an input a message M∗1 ||M∗2 ||...||M∗` and outputs
a message of the same length with the same Hamsi-256 hash value.

1. Generate a p, q expandable message for p = 4k and q = 4k + 2k − 1 such
that q + 8 ≤ `− 1.

2. Choose a set of x output bit combinations from the Gaussian elimination of
the third round output bits in terms of the second round variables, such that
each of these combinations contains a single expression of 3 second round
bits multiplied together.

3. Compute and store all the values of the x output bit combinations of all the
target chaining values h∗i for p+ 8 ≤ i ≤ q + 8.

4. Choose the common digest value of the expandable message h as a chaining
variable and traverse the chaining value tree rooted at h using DFS by gen-
erating the next value for message blocks M1,M2, ...,M7 (as shown in figure
1).

5. Compute the next chaining value h7 = F(M1,M2, ...,M7, h).
6. Analyze each one of the x output bit combinations as specified above for all

possible 232 values for the message block M8, with the input chaining value
h7.

7. Traverse the x bit arrays and check whether the values of the output combi-
nations match the values of the combinations of the target chaining values
h∗i for p + 8 ≤ i ≤ q + 8, for each possible value of the message block M8.
Store all the messages for which there is a match.

8. For each message block M8 stored in the previous step, evaluate the full
compression function and check whether F(M8, h7) = h∗i for p+8 ≤ i ≤ q+8.
If equality holds, output the message
µi−8||M1||M2||...||M8||M∗i+1||...||M∗` , where µi−8 is a message prefix of size
i− 8 blocks (computed from the expandable message) such that
h = F(µi−8, IV). Otherwise, if there is no match, go to step 4.

We analyze the complexity of the algorithm per chaining value h7 (i.e. steps
6−8) in order to calculate the improvement factor of the attack over the generic
algorithm. The Kelsey and Schneier algorithm requires 232 compression function
evaluations per chaining value, whereas we use only 232

10 compression function
evaluations. In addition, we require 46 ·x · 232 bit operations in step 6. However,
we can optimize the complexity of this step for a group of combinations by taking
combinations in which the linearized expressions share some common variables
of the second round (which need to be analyzed only once). In particular, we
can easily select a group of x combinations in which the x linearized expressions
depend only on 2 ·x (instead of 3 ·x) variables of the second round. This reduces
the number of bit operations in step 4 to 39 · x · 232. The improvement factor
of the attack is thus (1

10 + 39x
10500 + 2−x+k)−1. By selecting an optimal value for

x, we get a total improvement factor which is between 6 and 4 for all messages
of practical length containing up to 230 32-bit blocks, whereas Fuhr’s attacks [2]
becomes worse than the generic attack for all messages which are longer than 96
blocks.

7 Conclusions

In this paper, we presented several second preimage attacks on Hamsi-256 that
are based on polynomial enumeration algorithms. Our attacks are faster than
Fuhr’s attack for all message lengths, and unlike Fuhr’s attack they are faster
than the generic Kelsey and Schneier attack for all practical message sizes. Our
new techniques can be applied in principle to other hash algorithms whose com-
pression function can be described by a low degree multivariate polynomial, and
demonstrate the potential vulnerability of such schemes to advanced algebraic
attacks. In addition, our techniques can be used to speed up exhaustive search on
secret key algorithms (such as block cipher, stream ciphers and MACs) that can
be described by a low degree multivariate polynomial in the key bits. However,
hash function designs with a stronger finalization function and an intermediate
state that is bigger than the output (i.e ”wide-pipe” designs), seem to better
resist our attack.

Acknowledgements: The authors thank Orr Dunkelman and Nathan Keller
for helpful discussions that led to this paper. The authors also thank the anony-
mous referees for their very helpful comments on this paper.

References

1. Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 2009.
2. Thomas Fuhr. Finding Second Preimages of Short Messages for Hamsi-256. In

ASIACRYPT, 2010.
3. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for

much less than 2n work. In EUROCRYPT, pages 474-490, 2005.
4. Jean-Philippe Aumasson and Emilia Käsper and Lars Ramkilde Knudsen and

Krystian Matusiewicz and Rune Ødeg̊ard and Thomas Peyrin and Martin Schläffer.
Distinguishers for the Compression Function and Output Transformation of Hamsi-
256. In ACISP, 2010.

5. Christina Boura and Anne Canteaut. Zero-sum Distinguishers for Iterated Permu-
tations and Application to Keccak-f and Hamsi-256 . In SAC 2010.

6. Çagdas Çalik and Meltem Sönmez Turan. Message Recovery and Pseudo-preimage
Attacks on the Compression Function of Hamsi-256. In LATINCRYPT, pages 205-
221, 2010.

7. Meiqin Wang, Xiaoyun Wang, Keting Jia, Wei Wang. New Pseudo-Near-Collision
Attack on Reduced-Round of Hamsi-256. Cryptology ePrint Archive, Report
2009/484, 2009.

8. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, page 285-286.
9. Charles Bouillaguet and Hsieh-Chung Chen and Chen-Mou Cheng and Tony Chou

and Ruben Niederhagen and Adi Shamir and Bo-Yin Yang. Fast Exhaustive Search
for Polynomial Systems in F2. In CHES, 2010.

10. Gaëtan Leurent. MD4 is Not One-Way. In FSE, pages 412-428, 2008.
11. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, page 225-226.
12. Itai Dinur and Adi Shamir. An Improved Algebraic Attack on Hamsi-256. Cryp-

tology ePrint Archive, Report 2010/602.

A Appendix: Parameters For the Direct Attack on
Hamsi-256

The 56 second round bits on which the set N = {5, 156, 184, 214, 221, 249} de-
pends are listed below:
{3, 9, 18, 28, 44, 56, 63, 68, 79, 86, 91, 92, 93, 96, 107, 121, 131, 156, 184, 191, 196, 214, 219, 220,

221, 224, 249, 256, 259, 265, 274, 275, 284, 300, 312, 319, 324, 335, 342, 347, 348, 349, 352, 363,

377, 387, 412, 440, 447, 452, 470, 475, 476, 477, 480, 505}. The 6 simple sums for the sets
N = {5, 156, 184, 214, 221, 249} are given in the table below:

Table 2. The 6 simple sums of the second round variables denoted by xi for 0 ≤ i < 512
for the output bits N = {5, 156, 184, 214, 221, 249}.

Output Bit Simple Sum
5 x9 + x18 + x19 + x63 + x86 + x92 + x121 + x137 + x146 + x147 + x214 + x249

+x265 + x274 + x275 + x319 + x342 + x393 + x402 + x403 + x470 + x476 + x505
156 x3 + x28 + x79 + x156 + x191 + x207 + x259 + x284 + x387 + x412 + x447 + x463
184 1 + x56 + x63 + x107 + x235 + x319 + x347 + x447 + x475 + x491
214 1 + x9 + x86 + x121 + x137 + xv214 + x249 + x265 + x342 + x393 + x470 + x477 + x505
221 1 + x18 + x63 + x68 + x92 + x96 + x146 + x224 + x274 + x319

+x324 + x352 + x402 + x452 + x476 + x477
249 1 + x28 + x44 + x96 + x121 + x156 + x172 + x224 + x249 + x300

+x377 + x412 + x428 + x480 + x505

