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Abstract. In this paper, we present new results on the second-round
SHA-3 candidate ECHO. We describe a method to construct a collision in
the compression function of ECHO-256 reduced to four rounds in 252 op-
erations on AES-columns without significant memory requirements. Our
attack uses the most recent analyses on ECHO, in particular the Super-
SBox and SuperMixColumns layers to utilize efficiently the available
freedom degrees. We also show why some of these results are flawed
and we propose a solution to fix them. Our work improves the time
and memory complexity of previous known techniques by using available
freedom degrees more precisely. Finally, we validate our work by an im-
plementation leading to near-collisions in 236 operations for the 4-round
compression function.
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1 Introduction

Recently, the National Institute of Standards and Technology (NIST) initiated an
international public competition aiming at selecting a new hash function design
[12]. Indeed, the current cryptanalysis of hash functions like SHA-1 and MD5
show serious weaknesses [18,19,20,21]. To study hash functions, one of the most
powerful strategy is the differential cryptanalysis, which was introduced in [2] by
Biham and Shamir to study the security of block ciphers. It consists in following
the evolution of a message pair in the cipher by looking at the differences between
the messages while they propagate through the encryption process. This type of
analysis is particularly useful for studying hash functions where no secret-key is
involved: in this known-key model [5], the attacker can thus follow the message
pair at each step of the process. Knudsen generalized the idea in [4] with the
concept of truncated differentials, aiming at following the presence of differences
in a word, rather than their actual values. Initiated by the work of Peyrin on
Grindhal [13], this kind of analysis leads to many other successful attacks against
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block ciphers and hash functions, in particular those based on the AES [6,10]
like ECHO. For the AES, since all differences are equivalent, only their presence
matters.

Thanks to the SHA-3 contest, new kinds of attacks for AES-based permu-
tations have been suggested in the past few years, in particular the rebound
attack [10] and the start-from-the-middle attack [9]. In both cases, the novelty
is to start searching for a message pair conforming to a given differential path
in the middle of the trail. Doing so, we have the freedom of choosing values and
differences where they can reduce greatly the overall cost of the trail.

The rebound technique uses these degrees of freedom to fulfill the most ex-
pensive part of the trail at very low average complexity whereas the remaining
of the path is verified probabilistically. The number of controlled rounds in that
case can not exceed two rounds. The start-from-the-middle technique improves
the rebound attack in the sense that it uses the independence in the search
process as much as possible. Consequently, it extends the number of controlled
rounds to three, without any extra time.

In the present case of ECHO, Schläffer uses in [17] the idea of multiple inbound
phases on two different parts of the whole path. Similar techniques have been
introduced on Whirlpool [6] and on the SHA-3 proposal LANE [8]. In comparison
to the rebound or the start-from-the-middle techniques, we are not limited to a
controlled part located in the middle of the path. In the end, the partial message
pairs are merged using remaining degrees of freedom. Schläffer’s nice attacks
permute some linear transformations of the ECHO round function to introduce
the SuperMixColumns layer, which relies on a large matrix presenting non-
optimal diffusion properties. It thus allows to build sparser truncated differential.
In this paper, we show that the latest analyses of ECHO made by Schläffer fail
with high probability at some point of the merging process: the attacks actually
succeed with probability 2−128. Nevertheless, we suggest an attack using degrees
of freedom slightly differently to construct collisions and near-collisions in the
compression function of ECHO-256 reduced to four rounds.

Our new techniques improve the rebound attack by using freedom degrees
more precisely to get and solve systems of linear equations in order to reduce
the overall time and memory complexity. We also describe a similar method
as the one described by Sasaki et al. in [16] to efficiently find a message pair
conforming to a truncated differential through the SuperSBox when not all
input or output bytes are active. Both new techniques allow to repair some
of the Schläffer’s results to construct collisions in the compression function of
ECHO-256. To check the validity of our work, we implement the attack to get a
semi-free-start near-collisions in 236 computations. That is, a chaining value h
and a message pair (m,m′) colliding on 384 bits out of 512 in the compression
function f reduced to four rounds: f(h,m) =384 f(h,m′).

We summarize our results in Table 1.

The paper is organized as follows. In Section 2, we quickly recall the spec-
ifications of the ECHO hash function and the permutation used in the AES. In
Section 3, we describe the differential path we use and present an overview of



Table 1. Summary of results detailed in this paper and previous analyses of
ECHO-256 compression function. We measure the time complexity of our results
in terms of operations on AES-columns. The notation n/512 describe the number
n of bits on which the message pair collides in the near-collisions. Result from
[17] have not been printed since flawed.

Rounds Time Memory Type Reference

3 264 232 free-start collision [14]

3 296 232 semi-free-start collision ? [14]

4.5 296 232 distinguisher [14]

4 236 216 semi-free-start near-collision 384/512 This paper

4 244 216 semi-free-start near-collision 480/512 † This paper

4 252 216 semi-free-start collision This paper
? With chosen salt
† This result is an example of other near-collisions that can be derived from the attack

of this paper.

the differential attack to find a message pair conforming to this path. Then, in
Section 4, we present the collision attack of ECHO-256 compression function re-
duced to four rounds. Finally, we conclude in Section 5. We validate our results
by implementing the near-collision attack.

2 Description of ECHO

The hash function ECHO updates an internal state described by a 16× 16 matrix
of GF

(
28
)

elements, which can also be viewed as a 4 × 4 matrix of 16 AES
states. Transformations on this large 2048-bit state are very similar to the one of
the AES, the main difference being the equivalent S-Box called BigSubBytes,
which consists in two AES rounds. The diffusion of the AES states in ECHO

is ensured by two big transformations: BigShiftRows and BigMixColumns
(Figure 1).
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Fig. 1. One round of the ECHO permutation. Each of the 16 cells is an AES state
(128 bits).

At the end of the 8 rounds of the permutation in the case of ECHO-256,
the BigFinal operation adds the current state to the initial one (feed-forward)
and adds its four columns together to produce the new chaining value. In this



paper, we only focus on ECHO-256 and refer to the original publication [1] for
more details on both ECHO-256 and ECHO-512 versions. Note that the keys used
in the two AES rounds are an internal counter and the salt, respectively: they
are mainly introduced to break the existing symmetries of the AES unkeyed
permutation [7]. Since we are not using any property relying on symmetry and
that adding constants does not change differences, we omit these steps.

Two versions of the hash function ECHO have been submitted to the SHA-
3 contest: ECHO-256 and ECHO-512, which share the same state size, but inject
messages of size 1536 or 1024 bits respectively in the compression function. Fo-
cusing on ECHO-256 and denoting f its compression function, Hi the i-th output
chaining value, Mi = M0

i ||M1
i ||M2

i the i-th message block composed of three

chunks of 512 bits each M j
i and S = [C0C1C2C3] the four 512-bit ECHO-columns

constituting state S, we have (H0 = IV ):

C0 ← Hi−1 C1 ←M0
i C2 ←M1

i C3 ←M2
i

AES. We recall briefly one AES round on Figure 2 and refer as well to original
publication [11] for further details. The MixColumns layer implements a Max-
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Fig. 2. One round of the AES permutation is the succession of four transforma-
tions: SubBytes (SB), ShiftRows (SR), MixColumns (MC) and AddKey (AK).
Each of the 16 cells is an element of GF

(
28
)

(8 bits).

imum Distance Separable (MDS) code that ensures a complete diffusion after
two rounds. It has good diffusion properties since its branch number, i.e. the
sum of input and output active bytes, is always 0 or greater or equal than 5.
As for the AES S-Box, it satisfies an interesting differential property: namely,
a random differential transition exists with probability approximately 1/2. By
enumerating each input/output difference pair, this result can be computed and
stored in 216 in the difference distribution table ∆. At the position (δi, δo), this
table contains a boolean value whether the differential transition δi → δo exists.
That is, if the equality S(λ) + S(λ + δi) = δo holds for at least one element
λ ∈ GF

(
28
)
, S being the AES S-Box. We note that this table can be slightly

enlarged to 219 to store one solution when possible.

Notations. Throughout this paper, we name each state of the ECHO permu-
tation after each elementary transformation: starting from the first state S0, we



end the first round after 8 transformations1 in S8 and the four rounds in S32.
Moreover, for a given ECHO-state Sn, we refer to the AES-state at row i and
column j by Sn[i, j]. Additionally, we introduce column-slice or slice to refer to
a thin column of size 16 × 1 of the ECHO state. We use ECHO-column or simply
column to designate a column of ECHO, that is a column of four AES states.
Similarly, ECHO-row or row refer to a row of the ECHO state; that is, four AES
states.

3 Differential attack for hash functions

To mount a differential attack on a hash function, we proceed in two steps. First,
we need to find a good differential path, in the sense that, being probabilistic, it
should hold with a probability as high as possible. In the particular case of AES-
based hash functions, this generally means a path with a minimum number of
active S-Boxes. In comparison with the differential attacks where fixed differences
chosen for their high probability go along with the differential path, for this
particular design, all differences behave equivalently. Thus, the path is actually
a truncated path, precising only whether a difference exists or not.

Second, we have to find a pair of messages following that differential path,
which fixes values and differences. In the sequel, we present an equivalent de-
scription of the ECHO-permutation and then detail our choice of differential path,
using the new round description. The part of the attack that finds a valid message
pair for this path using the equivalent description is detailed in Section 3.3.

3.1 Reordering of transformations in the ECHO permutation

SuperSBox. The concept of SuperSBox was independently introduced by
Lamberger et al. in [6] and by Gilbert and Peyrin in [3] to study two AES rounds.
By bringing the two non-linear layers together, this concept is useful to find a
message pair conforming to a given differential path and leads to a new kind of
cryptanalysis. The design of one AES round describes the sequence SB-SR-MC
of transformations2, but we can use the independence of bytes to reorder this
sequence. Namely, dealing with the non-linear BigSubBytes layer of ECHO, we
can permute the first ShiftRows with the first SubBytes without affecting the
final result of the computation. We then glue the two non-linear layers into a
unique SB-MC-SB non-linear transformation of the permutation. The so-called
SuperSBox transformation is then viewed as a single non-linear layer operating
in parallel on 32-bit AES-columns.

SuperMixColumns. In a similar way, by permuting the BigShiftRows trans-
formation with the parallel MixColumns transformations of the second AES

1 Transformations are: SR - SB - MC - SB - SR - BSR - MC - BMC.
2 While omitting the key adding.



round, a new super linear operation has been introduced by Schläffer in [17],
which works on column-slices of size 16× 1.

This super transformation called SuperMixColumns results of 16 parallel
applications of MixColumns followed by the equivalent in ECHO, that is Big-
MixColumns. This super transformation is useful for building particular sparse
truncated differential. The matrix of the SuperMixColumns transformation
is defined as the Kronecker product (or tensor product) of M with itself, M
being the matrix of the MixColumns operation in the AES: MSMC = M⊗M.
Schläffer noted in [17] (in Section 3.3) that MSMC is not a MDS matrix and its
branch number is only 8, and not 17.

From this observation, it is possible to build sparse truncated differentials
(Figure 3) where there are only 4 active bytes in both input and output slices
of the transformation. The path 4→ 16→ 4 holds with probability 2−24, which
reduces to 28 the number of valid differentials, among the 232 existing ones.
For a given position of output active bytes, valid differentials are actually in a
subspace of dimension one. In particular, for slice s, s ∈ {0, 4, 8, 12}, to follow
the truncated differential 4→ 16→ 4 of Figure 3, we need to pick each slice of
differences in the one-dimensional subspace generated by the vector vs, where:

v0 = [E000 9000 D000 B000]T v4 = [B000 E000 9000 D000]T

v8 = [D000 B000 E000 9000]T v12 = [9000 D000 B000 E000]T

MC BMC

SuperMixColumns

Fig. 3. The SuperMixColumns layer in the particular case of the truncated
differential 4→ 16→ 4.

This new approach of the combined linear layers allows to build sparser trun-
cated differentials but caused erroneous conclusions when it was used in [17] (in
Section 4.1). Namely, at the end of the attack, where two partial solutions need
to be merged to get a solution for the whole differential path, everything relies
on this critical transformation: we need to solve 16 linear systems. We detail
more precisely the problem in Section 3.4, where we study the merge process.

3.2 Truncated differential path

As in the more recent analyses of ECHO [15,17], we consider the path at the
byte-level: this allows to build paths sparser than the ones we could obtain by



considering only the AES-state level [1,3,9]. Our path is mostly borrowed from
[17] and counts 418 active S-Boxes for the ECHO-permutation reduced to four
rounds. In comparison to the path from [17], we increase significantly the number
of active S-Boxes in the first round to decrease the time complexity of the attack.
We note that the number of active S-Boxes is not directly correlated with the
complexity of the attack. Moreover, in that case of an AES-based permutation,
we can consider a truncated differential path because the actual differences are
not really important since they are all equivalent: only their presence matters.

Figure 4 presents the truncated differential path used in this attack on the
compression function reduced to four rounds. The attack being quite technical,
colors have been used in order to improve the reader’s understanding of the
attack.

3.3 Finding a message pair conforming to the differential path

Strategy. To find a message pair that follows the differential path of Figure 4,
our attack splits the whole path into two distinct parts and merges them at
the end. In the sequel, we refer to these two parts as first subpart and second
subpart. The attack of Schläffer in [17] proceeds similarly but uses the rebound
attack technique in the two subparts. We reuse this idea of finding message pairs
conforming to partial truncated parts but most of our new techniques avoid
the rebound attack on the SuperSBox. Both subparts are represented in the
Figure 4: the first one starts in S7 and ends in S14 and fixes the red bytes of
the two messages, whereas the second one starts at S16 until the end of the four
rounds in S31 and fixes the yellow bytes. Additionally, the chaining value in the
first round of the path are the blue bytes.

SuperSBox. In the differential path described on Figure 4, there are many
differential transitions through the SuperSBox of the third round where input
differences are reduced to one active byte. We are then interested in differential
transitions such as the one described in Figure 5. For this kind of transition,
the distribution difference table of the SuperSBox would work but requires 264

to be computed and stored3. We show that we can compute a pair of columns
satisfying this path in 211 operations on one AES-column.

Let us consider the input difference to be ∆i = [δi, 0, 0, 0]
T

reduced to

one active byte δi and the output difference ∆o =
[
δ1o , δ

2
o , δ

3
o , δ

4
o

]T
: we aim at

finding a pair of AES-columns (c1, c2) conforming to those differences; that is:
c1+c2 = ∆i and SuperSBox(c1)+SuperSBox(c2) = ∆o. In a precomputation
phase of 216, we compute and store the differential distribution table of the AES
S-Box.

3 In that case, we could compute and store smaller tables in 240 for the four possible
positions of active bytes.
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Fig. 4. The differential path used in this attack on the ECHO-256 compression
function reduced to four rounds. To find a valid pair of messages, we split the
path into two parts: the first subpart between S7 and S14 (red bytes) and the
second subpart between S16 and S31 (yellow bytes). Black bytes are the only
active bytes, blue bytes come from the chaining value and gray bytes in the first
round are set to get a collision (or a near-collision) in the compression step.
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Fig. 5. A SuperSBox differential transition with only one active input byte.

The differential properties of the AES S-Box restrict the number of output
differences of the first SubBytes layer to 27−1 and for each one, the underlying
values are set. Denoting δ′i one of the output differences of this layer and λ the
associated value such that S−1(λ) + S−1(λ + δ′i) = δi, we can propagate this
difference ∆′i = [δ′i, 0, 0, 0]T linearly to learn the four differences at the input of

the second SubBytes layer. We note ∆′o = MC(∆′i) = [δ1o
′
, δ2o
′
, δ3o
′
, δ4o
′
]T those

differences. Here, both the input and the output differences are known and the
four differential transitions δio

′ → δio exist with probability approximately 2−4.
Since we can restart with 27 − 1 different δ′i, we get approximately 23 valid dif-
ferential transitions. Each of these transitions fixes the underlying values, noted
λ1, λ2, λ3, λ4. At this point, all intermediate differences conform to the path, but
in terms of values, we need to ensure that λ is consistent with λ1, λ2, λ3, λ4. To
check this, we exhaust the 24 valid vectors of values we can build by interchanging
λi and λi + δio

′
.

All in all, among the 23+4 vectors of values we can build, only a fraction 2−8

will satisfy the 8-bit condition on λ. This means that the considered differential
transition ∆i → ∆o through the SuperSBox occurs with probability 2−1 and
if the transition exists, we can recover an actual AES-column pair in 27 24 = 211

operations.

3.4 Overview of the attack

In this subsection, we describe the main steps used to find a message pair con-
forming to the differential path. We begin by the sensitive part of the attack,
which caused erroneous statements in [17]: the merging phase of the two partial
solutions.

Merging step. Assume for a moment that we solved both subparts of the
path, i.e. the red bytes between S7 and S14 are fixed as well as the yellow ones
between S16 and S31: we have two partial solutions for the complete differential
path. The truncated differential of Figure 4 is then partially verified but to merge
the two parts, we need to set the white bytes so that the SuperMixColumns
transition from S14 to S16 is possible.



Due to the particular construction of MSMC , some algebra considerations
show that for the already-known values in S14 (red) and S16 (yellow), the Su-
perMixColumns transition will not be possible unless a 128-bit constraint is
satisfied: the remaining degrees of freedom can not be used to satisfy this rela-
tion. Since all of the 16 column-slices of the considered matrices are independent,
this leads to 16 constraints on 8 bits.

The flaw in [17] is to assume these relations are true, which holds only with
probability 2−128, whatever the value of unset bytes are. These equalities need to
be true so that the 16 linear systems have solutions. The first system associated
to the first slice is given by:

MSMC

[
a0 x0 x1 x2 a1 x3 x4 x5 a2 x6 x7 x8 a3 x9 x10 x11

]T
=[

b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
]T (1)

where ai and bi are known values, xi are unknowns and ∗ is any value in GF
(
28
)
.

This system has solutions if a particular linear combination of [a0, a1, a2, a3]
T

and [b0, b1, b2, b3]
T

lies in the image of some matrices: this constraints the
already-known values to verify an 8-bit relation. The constraint comes from
the fact that MSMC is the Kronecker product M ⊗M. For example, in the
following, we denote by ai, 0 ≤ i ≤ 3, the four known values of slice 0 of S14
coming from the first subpart (red) and bi the known values for the same slice
in S16, from the second subpart (yellow). With this notation, the first system
will have solutions if and only if the following condition is satisfied:

2a0 + 3a1 + a2 + a3 = 14b0 + 11b1 + 13b2 + 9b3. (2)

See Appendix A for the detailed proof. These constraints for each slice of the
SuperMixColumns transition can also be viewed in a different way: consider
all the bi known for all slices, thus we can only pick 3 out of 4 ai per slice
in S14 and determine the last one deterministically. Alternatively, due to the
ShiftRows and BigShiftRows transitions, we can independently determine
slices 0, 4 and 8 in S12 so that slice 12 of S12 would be totally determined. This
transfers the problem into the first subpart of the path.

Step 1. We begin by finding a pair of ECHO-columns satisfying the truncated
path reduced to the first ECHO-column between S7 and S12. This is done with
a randomized AES-state of the column, used to get and solve linear equations
giving all differences between S7 and S9. Indeed, differences between S7 and S9
for the first column only depend on the four differences in S7[2,0]4. Then, we
search for valid differential transitions through the AES S-Box between S9 and
S10 to finally deduce a good pair of ECHO-columns. This step can be done in 212

operations on AES-columns (Section 4.1).

4 Linear relations can be deduced by linearly propagating differences in S7[2,0] for-
wards until S9.



Step 2. Once we solved the first ECHO-column, we can deduce all differences be-
tween S12 and S16: indeed, the wanted SuperMixColumns transition imposes
them as discussed in Section 3.1. This step is done in constant time (Section 4.2).

Step 3. Now that we have the differences in S16, we have a starting point to
find a message pair for the second subpart of the whole truncated path: namely,
states between S16 and S31 (yellow bytes). To do so, the idea is similar as
in Step 1: since all differences between S20 and S24 only depend on the four
differences of S245, we can use a randomized AES-column c in S18 to get four
independent linear equations in S20 and thus deduce all differences between S20
and S24. Then, we search for input values for the 15 remaining SuperSBoxes,
which have only one active byte at their input (Section 3.3). This succeeds with
probability 2−15 so that we need to retry approximately 215 new random c. The
whole step can be done in 226 operations on AES-columns (Section 4.2).

Being done, the truncated path is followed until the end of the four rounds
in S32. Note that we can filter the MixColumns transition between S26 and
S27 in a probabilistic way so that less slices would be active in S32.

Step 4. Getting back to the first subpart of the truncated path, we now find
a valid pair of ECHO-columns satisfying the truncated path between S7 and S12
reduced to the second ECHO-column. This is basically the same idea as in Step 1.
This can be done in 212 operations on AES-columns as well (Section 4.3). Note
that this step could be switched with Step 3.

Step 5. To construct a valid pair of ECHO-columns satisfying the truncated
path between S7 and S12 reduced to the third ECHO-column, we proceed as
before (steps 1 and 4), but we start by randomizing three AES states instead of
one: indeed, differences between S7 and S9 at the input of the non-linear layer
now depend on 12 differences, the ones in S7[0,2], S7[1,2] and S7[3,2]. Getting
12 linear systems then allow to learn those differences and we can finally search
for four valid differential transitions through the AES S-Box in 24 operations on
AES-columns (Section 4.3).

Step 6. The merging step in [17] fails with high probability, but we know how to
get into the valid cases: since the three first ECHO-columns of the first subpart are
now known, we can deduce the whole last ECHO-column allowing the 16 needed
equations mentioned before. There is no freedom for that column, so we are left
with a probabilistic behavior to check if it follows the column-reduced truncated
differential. We then propagate the pair of deduced values backwards until S8
and check if the invBigMixColumns transition behave as wanted: namely, four
simultaneous 4 → 3 active bytes, which occurs with probability (2−8)4. Hence,

5 Linear relations can be deduced by linearly propagating the four differences of
S24[0,0] backwards until S20.



we need to restart approximately 232 times the previous Step 5 to find a valid
pair of ECHO-columns satisfying both the path between S7 and 12 and the 128-
bit condition imposed by the merging step. This step can be performed in 236

operations on AES-columns (Section 4.3).

Step 7. To get a collision in the compression function, we then need to take
care of the compression phase in the BigFinal operation: the feed-forward and
the xor of the four ECHO-columns. The collision is reached when the sum of
the two active AES-states per row in S0 equals the active one in S32. We have
enough degrees of freedom to determine values in associated states of S7 (gray)
to make this happens. Together with the probabilistic filter of Step 3, this step
may impose the global time complexity of the attack; so, weakening the final ob-
jective (to get a near-collision, for instance) can make the whole attack practical
(Section 4.4).

Step 8. The last step consists in filling all the remaining bytes by solving the
16 linear systems mentioned in Step 6, while taking care at the same time that
the invBigMixColumns between S8 and S7 reaches the values determined by
Step 7. Due to the particular structure of the solution sets, the systems can be
solved in parallel in 232 operations on AES-columns (Section 4.5).

4 Collision on the 4-round compression function

4.1 Partial message pair for the first subpart

This step aims at finding a pair of ECHO-columns satisfying the truncated dif-
ferential of Figure 6. We consider the first column separately from the others in
order to reach a situation where the merging process will be possible. Indeed,
once we fix a slice, we can determine the differences at the beginning of the
second subpart in S16.

The previous method suggested in [17] (in Section 4.1) to find paired values
following this truncated differential is a rebound attack working in time 232 and
using the differential distribution table of the SuperSBox of size 264. We show
how we can find an ECHO-column pair conforming to this reduced path in 212

operations on AES-columns without significant memory usage.
Rather than considering the whole column at once, we start by working on

the top AES state in S11, that is S11[0,0]. We begin by choosing random values
(λ0, λ1, λ2, λ3) for the first AES-column of S11[0,0] (blue bytes), such that the
active byte is set to difference δ, also chosen at random in GF

(
28
)
\{0}. Starting

from S11[0,0] and going backwards, those values and differences are propagated
deterministically until S8[0,0]. Since there is only one active byte per slice in the
considered ECHO-column of S7, each of the associated four slices of S8 lies in a
subspace of dimension one. Therefore, solving four simple linear systems leads
to the determination of the 12 other differences of S8.
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(a) Truncated differential. (b) Flow of AES states.

Fig. 6. Truncated differential path (a) used for the first subpart of the attack
for one ECHO-column. We represent on (b) the order in which AES states are
randomized (black) or deduced by a small rebound attack (gray).

Therefore, in the active slice of S9 of Figure 6 at the input of the SubBytes
layer, the four first paired bytes have values and differences known, whereas in
the 12 other positions, only differences are set. Our goal now is to find good val-
ues for these byte pairs, which can be achieved by a small rebound attack on the
AES S-Box where the output differences are propagated from S11 by choosing
random differences. Thus, we iterate on the (28)3 possible unset differences of
S11 and propagate them linearly to S10. When both input and output differ-
ences of the 12 AES S-Boxes are known, we just need to ensure that these 12
differential transitions are possible. This is verified by the precomputed table6

∆. It ensures that the 12 transitions will occur simultaneously with probabil-
ity 2−12. Since we can try approximately (28)3 output differences, we will have
about (28)3 2−12 (24)3 ≈ 224 different vectors of values by trying them all. The
factor (24)3 comes from the possibility of interchanging the two solutions of the
equations 12 times to get more vectors of values7.

All in all, for any λ0, λ1, λ2, λ3, δ picked at random in GF
(
28
)

(with non-null
difference), we can find 224 ECHO-column pairs in S12 in 212 such that the asso-
ciated truncated differential from S12 to S7 is verified. We could thus build ap-
proximately 224+8×5 = 264 pairs of ECHO-columns following the column-reduced
truncated differential.

4.2 Finding a message pair for the second subpart

We now get a partial message pair conforming to the first subpart of the trun-
cated path reduced to a single ECHO-column. Rather than completing this partial
message pair for the three other active slices in S12, we now find a message pair
conforming to the second subpart of the truncated path, located in the third
round from S16 to S24 (yellow bytes).

6 This is the differential distribution table of the AES S-Box, which required 216 bits
to be stored.

7 There are cases where four solutions exist, but for simplicity, we consider only the
more common two-solution case.



Indeed, the mere knowledge of a single active slice pair of S12 in the first
subpart is sufficient to get a starting point to find a message pair for the second
subpart, i.e. yellow bytes. This is due to the desired transition through the Su-
perMixColumns transition: as explained in Section 3.1, differences in S14 lie
in one-dimensional subspaces. Once a slice pair for the first slice of S12 is known
and computed forwards to S14 (black and red bytes on Figure 7), there is no
more choice for the other differences in S14. Finally, all differences between S12
and S17 have been determined by linearity of involved transformations.

S12

SR

S13

BSR

S14

SuperShiftRows

Fig. 7. The SuperShiftRows layer where only the values and differences of the
first slice of S12 are known (black and red bytes).

At this point, only input differences of SuperSBoxes of the third round are
known. We note that all operations between S20 and S24 are linear, so that all
differences in those states only depend on the four differences of S24. We denote
by ki the non-null difference of column slice i ∈ {0, 1, 2, 3} in state S24. By lin-
early propagating differences in S24 backwards to S20, we obtain constraints on
the 64 output differences of the SuperSBox in S20. To find the actual differ-
ences, we need to find the four ki and thus determine four independent linear
equations. Considering arbitrarily the first AES-column of S20[0,0] (Figure 8),

differences are: [84k0, 70k3, 84k2, 70k1]
T

(black bytes).

δ λ0

λ1

λ2

λ3

MC

S18[0,0]

SB

S19[0,0] S20[0,0]

Fig. 8. The MixColumns and SubBytes transitions on the first AES-column
between S18[0,0] and S20[0,0].

Starting from S18, let δ a random difference among the 27 − 1 possible ones
imposed by S17 for the considered columns (Figure 8). Any choice imposes the
value associated to the differential transition as well: we denote it λ0. At this step,
we introduce more freedom by picking random values for the three remaining
bytes of the column: (λ1, λ2, λ3). Note that we can choose (28)3 = 224 of them



and thus 231 starting points in total. After this randomization the AES-column
in S18, the same AES-columns in S19 and S20 are fully determined. We then
need to link the four bytes with the differences provided by the right part of
the path from S24 to S20: this is done by simple algebra by solving four linear
equations in four variables, which are ki, 0 ≤ i ≤ 3.

After solving, we have the four differences ki of state S24: we propagate them
backwards from S24 to S20 and learn all the differences between S20 and S24.
Only one pair of AES-columns out of the 16 was used in S18 to deduce differences
ki in S24, so we now try to find values for the 15 left (Figure 9).

S17

SB

S18

MC

S19

SB

S20

SuperSBox

Fig. 9. Last step to get a message pair conforming to the second subpart of the
path: finding the 15 remaining AES-columns using the SuperSBox properties.
Black bytes are active and yellow bytes have already been defined in the previous
step, as well as differences of the first AES-column of the first AES-state. Gray
bytes are inactive and the target of this step.

Each of the remaining AES-columns, can be viewed as a differential transition
through a SuperSBox between S17 and S20 where all differences have been
previously set. As described in 3.3, we have 15 differential transitions through
the SuperSBox with only one input active byte in each. The 15 transitions
occur simultaneously with probability 2−15 and if so, we can recover the 15 AES-
column pairs in parallel in 211 using the technique previously described. Since
there are 15 AES-columns to find in S17, we need to generate approximately 215

new (δ, λ0), λ1, λ2, λ3 and restart the randomization in S18[0,0].
Considering one message pair conforming to a single ECHO-column of the first

subpart of the truncated path as starting point, the number of pairs we can build
which follow the truncated path for this second subpart is: 27 28×3 2−15 ≈ 216.
We note that we get one in 226 operations in parallel.

In the collision attack on the compression function, we further extend this
step by probabilistically filtering the active bytes in the MixColumns transition
between S26 and S27. Among the 216 message pairs we can build that follow the
truncated path between S16 and S26, only one in average will verify the 4 → 2
transition through MixColumns. If such a pair is found then the pair conforms
the truncated path until the end of the four rounds; otherwise, we need to find
a new starting point, i.e. a new slice pair for slice 0 in S12. We reduce to two
active bytes and not one or three because this is a best compromise we can make
to lower the overall time complexity of the collision attack.



4.3 Completing the partial message pair of the first subpart

As discussed in Section 3.4, to solve the merging step, slice 12 of S12 is con-
strained by slices 0, 4 and 8 of S12. All values of slice pair 0 have been deter-
mined (Section 4.1) and used to fix yellow bytes and thus get a message pair
conforming to the second subpart of the truncated path (Section 4.2).

Consequently, we only have freedom on the slice pairs 4 and 8 in S12. We
determine values of slice pair 4 in the same way as slice 0 by considering the
first subpart of the truncated path from S7 to S14 reduced to the second ECHO-
column. There is a single active byte per slice in this ECHO-column of S7, so that
we can build approximately 260 valid columns8 in that position in 212 operations
on AES-columns for a single one.

As soon as we have one, we use the remaining freedom of slice 8 to generate
simultaneously slice pairs 8 and 12 of S12. We note that in the two last ECHO-
columns of S7, there are three active bytes per slice (Figure 4). The method
we suggest starts by finding a slice pair for slice 8 conforming to the truncated
differential reduced to the third ECHO-column between S7 and S12. We proceed in
the same way as we did for slices 0 and 4 and then, we deduce deterministically
the slice pair 12 from the constraints imposed by the merge. Finally, we check
whether that slice pair conforms the truncated differential reduced to the last
ECHO-column until S7, namely the four simultaneous transitions 4 → 3 through
invMixColumns between S8 and S7.

The cost of 24 to construct a slice pair for slice 8 allows to repeat it 232 times

to pass the probability
(
2−8
)4

of finding a valid slice pair for slice 12 conforming
to both the linear constraints of the merge and the truncated differential through
invBigMixColumns. Note that we have enough degrees of freedom to do so
since we can find approximately (27)4 (28)3×3 = 2100 valid slice pairs for slice
8. However, only 232 are needed, which completes this step in 236 operations on
AES-columns and fixes all the red bytes between S7 and S14.

4.4 Compression phase in the feed forward

After four rounds, the round-reduced compression function applies the feed for-
ward (S33 ← S0+S32) and XORs the four columns together (BigFinal). This
operation allows to build the differential path such that differences would cancel
out each other. As shown in the global path (Figure 4), states S0 and S32 XORed
together lead to state S33 where there are three active AES-states in each row.
In terms of differences, if each row sums up to zero, then we get a collision for
the compression function in S34 after the BigFinal.

As we constructed the path until now, in both S0 and S32, we still have
freedom on the values: only differences in S32 located in the two first slices are
known from the message pair conforming to the second subpart of the truncated

8 Note that in Section 4.1, we could build 264 of them because differences were chosen
freely, whereas in the present case, differences are constrained by the AES S-Box
differential properties to sets of size 27 − 1. We thus loose 24 degrees of freedom.



path. These differences thus impose constraints on the two other active pair
states per row in S0. Namely, for each row r of S0 where active AES states are
located in columns cr and c′r, we have S0[r, cr]+S0[r, c′r] = S32[r, 0]. Additionally,
differences in S4 are known by linearly propagating the known differences from
S7.

After the feed-forward, we cancel differences of each row independently: we
describe the reasoning for an arbitrary row. We want to find paired values in
the two active states of the considered row of S0, say (A,A′) and (B,B′), such
that they propagate with correct differences in S4, which are known, and with
correct diagonal values (red bytes) in S7 after the MixColumns. In the sequel
(Figure 10), we subscript the AES-state A by j to indicate that Aj is the AES-
state A propagated until ECHO-state Sj with relevant transformations according
to Figure 4.

SR S-SB SR MC

A0 B0 A1 B1 A4 B4 A6 B6 A7 B7

A′0 B′0 A′1 B′1 A′4 B′4 A′6 B′6 A′7 B′7

Fig. 10. Propagation of the pairs of AES-states (Ai, A
′
i) and (Bi, B

′
i) in a single

ECHO-row in the first round. Non-white bytes represent active bytes; those in S7
(in red) are the known values and differences from the message pair conforming
to the first subpart of the truncated path.

The known differences of S4 actually sets the output differences of the Su-
perSBox layer: namely, A4 + A′4 = ∆4 and B4 + B′4 = ∆′4, where ∆4 and ∆′4
are the known differences in the considered row of S4. The constraint on the
known diagonal values in A7 and B7 restricts the available freedom in the choice
of the AES-columns of A6 and B6 (and linearly, to their equivalent A′6 and B′6
with diagonal values in A′7 and B′7) to reach the already-known diagonal values
in S7 (red bytes). An alternative way of stating this is: we can construct freely
the three first columns of (A4, A

′
4) and (B4, B

′
4) and deduce deterministically

the fourth ones with the next MixColumns transition, since 4 out of 8 input or
output bytes of MixColumns fix the 4 others. Furthermore, this means that if
the three first columns of A1, A′1, B1 and B′1 are known, then we can learn the
values of the remaining columns of S1 (bytes in gray).

We thus search valid input values for the three first SuperSBoxes of S1:
to do so, we randomize the two differences per AES-column in this state and
get valid paired values with probability 2−1 in 218 computations with respect to
output differences ∆4 (Section 3.3). Consequently, we can deduce the differences
of the same AES-columns in B1 + B′1 to get a zero sum with S32 after the
BigFinal. This holds with the same 2−1 probability, with respect to ∆′4. Once
we have the three differential transitions for the three first AES-columns of both
AES-states, all the corresponding values are then known and we propagate them
in A6, A′6, B6 and B′6 (black bytes). Since in S7, diagonal values are known, we



deduce the remaining byte of each column in A6, A′6, B6 and B′6 (gray) and
propagate them backwards until S1.

The final step defines the nature of the attack: to get a collision, we check
if those constrained values cancel out in the feed-forward, which holds with
probability 2−32. Restarting with new random values in S1 and in parallel on
the four rows, we find a collision in 218 22 232 = 252 operations on AES-columns.
Indeed, we need to repeat 232 times the search of valid paired input values for
the SuperSBox, which is done in time 218 and succeeds with probability 2−2.

4.5 Final merging phase

After we have found message pairs following both subparts of the truncated path
so that the merge is possible, we need to finalize the attack by merging the two
partial solutions.

In practice, this means finding values for each white bytes in the truncated
path and in particular, at the second SuperMixColumns transition between
S14 and S16. For each of the 16 slices, we get a system of linear equations like
(1). In each solution set, each variable only depends on 3 others, and not on all
the 11 others. This stems from the structured matrix MSMC . For example, in
the first slice, we have:

L0(x0, x3, x6, x9) = c0 (3)

L1(x1, x4, x7, x10) = c1 (4)

L2(x2, x5, x8, x11) = c2 (5)

where L0, L1, L2 are linear functions and c0, c1, c2 constants linearly deduced
from the 8 known-values ai and bi, 0 ≤ i ≤ 3, of the considered system.

In this phase of the merging process, we also need to set white bytes ac-
cordingly to the known values in S7 stemming from the feed-forward. We pick
random values for unset bytes in S7[1,3] and S7[2,2] (Figure 11), such that all
values in the two last ECHO-columns of S7 are set. Consequently, by indirectly

S7

BMC

S8

SR

S9

SB-MC-SB

S12

SR-BSR

S14

Blue, red and yellow bytes

Green bytes

Fig. 11. After randomization of states S7[1,3] and S7[2,2], all values of gray bytes
are known. Colors show the flow of values in one step of the merging process.

choosing values for gray bytes in S14, we set the values of half of the unknowns



per slice. For example, the system for the first slice becomes:

L′0(x0, x3) = c′0 (6)

L′1(x1, x4) = c′1 (7)

L′2(x2, x5) = c′2 (8)

where L′0, L
′
1, L
′
2 are linear functions and c′0, c′1, c′2 some constants.

The three equations (6), (7), (8) are independent, which allows to do the
merge in three steps: one on each pair of slices (1, 5), (2, 6) and (3, 7) of S12.
Figure 11 represents in color only the first step, on the slice pair (1, 5) of S12.
We show that each of the three steps can be done in 232 computations and detail
only the first step.

Because of the dependencies between bytes within a slice in S14, any choice of
blue bytes in S12[0,0] determines blue bytes on S12[1,1] (and the same for yellow

and red bytes, Figure 11). In total, we can choose
(
28×4

)3
= 296 different values

for the blue, yellow and red AES-columns of state S12. Since we are dealing
with values, we propagate them backwards until S8. The BigMixColumns
transition from S7 to S8 for these two slices imposes the 8 green values in S8[2,0]
and S8[3,1]. Going forwards through the SuperSBox, we deduce green values in
S14 and check whether the four pairs of green bytes satisfy the linear constraints

in S14, which occur with probability
(
2−8
)4

= 2−32. We then have to restart
with approximately 232 new blue bytes and random yellow and red ones before
satisfying the four constraints simultaneously.

After repeating this step for slices (2, 6) and (3, 7), we get a valid message
pair that follows all the truncated path of Figure 4.

5 Conclusion

In this article, we introduce new results on ECHO-256 compression function re-
duced to four rounds by describing a collision attack. Our result is the first
one which does not need to store the large difference distribution table of the
SuperSBox, which contributes in making the attack practical. We also prove
that the latest results by Schläffer on ECHO are flawed and we suggest a way to
correct it in some ways. We also improve the time and space complexity of the
attack by taking into account more precisely the available degrees of freedom.
We describe as well an efficient way to find paired input values conforming to
particular truncated differentials through the SuperSBox where not all input
bytes are active. Finally, we validate our claims by implementing a practical
variant of the described attack. We believe this work can lead to new attacks:
in particular, the collision attack by Schläffer on ECHO-256 might be corrected
using our new techniques.
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A Merging process in detail

An instance of the problem to solve is the following: given a0, a1, a2, a3, b0, b1,
b2, b3 ∈ GF

(
28
)
, find x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11 ∈ GF

(
28
)

such that:

MSMC

[
a0 x0 x1 x2 a1 x3 x4 x5 a2 x6 x7 x8 a3 x9 x10 x11

]T
= (9)[

b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
]T

where ∗ is any value in GF
(
28
)
. Since we are only interested in the four first

output values (the problem is similar for others slices), we do not take into
consideration the lines other than the four first ones. Let MSMC|0,1,2,3 be that

matrix. The system to be solved can be rewritten as (MSMC|j0,1,2,3 is the matrix
composed of rows 0, 1, 2, 3 and column j from MSMC):

MSMC|1,2,3,5,6,7,9,10,11,13,14,150,1,2,3

[
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

]T
=

MSMC|0,4,8,120,1,2,3


a0
a1
a2
a3

+


b0
b1
b2
b3


(10)

Now, we make the assumption that at least one solution to the problem ex-
ists. This means that the right-hand side of (10) lies in the image of the ma-
trix MSMC|1,2,3,5,6,7,9,10,11,13,14,150,1,2,3 from the left-hand side. Because the matrix

MSMC is a Kronecker product of M with itself, MSMC|1,2,3,5,6,7,9,10,11,13,14,150,1,2,3 ,

MSMC|9,10,11,13,14,150,1,2,3 and MSMC|1,2,3,5,6,70,1,2,3 share the same image, described by:

S0 =
{

[t0, t1, t2, L(t0, t1, t2)] , t0, t1, t2 ∈ GF
(
28
) }

(11)



where L(t0, t1, t2) = 247t0 + 159t1 + 38t2. Finally, if a solution exists, this means
that: 

4 6 2 2

2 3 1 1

2 3 1 1

6 5 3 3


︸ ︷︷ ︸

MSMC|0,4,8,120,1,2,3


a0
a1
a2
a3

+


b0
b1
b2
b3

 ∈ S0 (12)

In other words, this means that the following equality is true:

14b0 + 11b1 + 13b2 + 9b3 = 2a0 + 3a1 + a2 + a3. (13)

The given parameters a0, a1, a2, a3, b0, b1, b2, b3 are then constrained on an
8-bit condition. The converse is then: if this relation is not satisfied, then the
problem has no solution.

We took the example of the very first slice, but the problem is similar for the
16 different slices in S14/S16. Namely, per slice, parameters need to satisfy the
following equalities:

Slice Condition

0 14b0 + 11b1 + 13b2 + 9b3 = 2a0 + 3a1 + a2 + a3

1 11b0 + 13b1 + 9b2 + 14b3 = 2a0 + 3a1 + a2 + a3

2 13b0 + 9b1 + 14b2 + 11b3 = 2a0 + 3a1 + a2 + a3

3 9b0 + 14b1 + 11b2 + 13b3 = 2a0 + 3a1 + a2 + a3

4 14b0 + 11b1 + 13b2 + 9b3 = a0 + 2a1 + 3a2 + a3

5 11b0 + 13b1 + 9b2 + 14b3 = a0 + 2a1 + 3a2 + a3

6 13b0 + 9b1 + 14b2 + 11b3 = a0 + 2a1 + 3a2 + a3

7 9b0 + 14b1 + 11b2 + 13b3 = a0 + 2a1 + 3a2 + a3

8 14b0 + 11b1 + 13b2 + 9b3 = a0 + a1 + 2a2 + 3a3

9 11b0 + 13b1 + 9b2 + 14b3 = a0 + a1 + 2a2 + 3a3

10 13b0 + 9b1 + 14b2 + 11b3 = a0 + a1 + 2a2 + 3a3

11 9b0 + 14b1 + 11b2 + 13b3 = a0 + a1 + 2a2 + 3a3

12 14b0 + 11b1 + 13b2 + 9b3 = 3a0 + a1 + a2 + 2a3

13 11b0 + 13b1 + 9b2 + 14b3 = 3a0 + a1 + a2 + 2a3

14 13b0 + 9b1 + 14b2 + 11b3 = 3a0 + a1 + a2 + 2a3

15 9b0 + 14b1 + 11b2 + 13b3 = 3a0 + a1 + a2 + 2a3

The main problem in the reasoning of [17] is to assume that a solution exists,
while for some parameters, there is no solution.

In the end, if the condition is verified we can choose x0, x1, x2, x3, x4, x5,
x6, x7, x8 freely and determine x9, x10, x11 afterwards. If a solution exists, there

are
(
28
)9

= 272 solutions to the problem. Taking any other slice leads to a very
similar description of the set of solutions, with the same kind of dependencies
between the variables.
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