
Attack on Broadcast RC4 Revisited

Subhamoy Maitra1, Goutam Paul2, and Sourav Sen Gupta1

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India.

{subho, souravsg r}@isical.ac.in
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India.
goutam.paul@ieee.org

Abstract. In this paper, contrary to the claim of Mantin and Shamir
(FSE 2001), we prove that there exist biases in the initial bytes (3 to 255)
of the RC4 keystream towards zero. These biases immediately provide
distinguishers for RC4. Additionally, the attack on broadcast RC4 to
recover the second byte of the plaintext can be extended to recover the
bytes 3 to 255 of the plaintext given Ω(N3) many ciphertexts. Further,
we also study the non-randomness of index j for the first two rounds of
PRGA, and identify a strong bias of j2 towards 4. This in turn provides
us with certain state information from the second keystream byte.

Keywords: Bias, Broadcast RC4, Cryptanalysis, Distinguishing Attack,
Keystream, RC4, Stream Cipher.

1 Introduction

RC4, designed by Ron Rivest for RSA Data Security in 1987, is the most popular
commercial stream cipher algorithm. There are two components of the RC4 algo-
rithm, namely, the Key Scheduling Algorithm (KSA) and the Pseudo-Random
Generation Algorithm (PRGA), that are presented in Algorithm 1 and Algo-
rithm 2 respectively. Given a secret key k of size l bytes (typically, 5 ≤ l ≤ 16),
an array K of size N bytes (typically, N = 256) is created to hold the key such
that K[y] = k[y mod l] for any y ∈ [0, N − 1]. The KSA uses this secret key
to scramble a permutation S of ZN = {0, 1, . . . , N − 1}, initialized as the iden-
tity permutation. After that, the PRGA generates keystream bytes to be bitwise
XOR-ed with the plaintext. The indices i (deterministic) and j (pseudo-random)
are used to point to the locations of S. All additions in the KSA and PRGA
routines of RC4 algorithm are performed modulo N .

Since the advent of RC4 in 1987, it has faced rigorous analysis over the
years due to its simple structure. Extensive research has been conducted to
identify weaknesses of RC4 in terms of the KSA as well as the PRGA. There
are several important results in cryptanalysis of RC4 where the initial bytes
are not of concern. The most prominent recent works in this direction are the
distinguisher proposed by Mantin [4] (based on the occurrence of strings of the



Input: Secret Key K.
Output: S-Box S generated by K.

for i = 0, . . . , N − 1 do
S[i] = i;

end

Initialize counter: j = 0;

for i = 0, . . . , N − 1 do
j = j + S[i] + K[i];
Swap S[i] ↔ S[j];

end

Algorithm 1: KSA

Input: S-Box S, output of KSA.
Output: Random stream Z

generated from S.

Initialize the counters: i = j = 0;

while TRUE do
i = i + 1;
j = j + S[i];
Swap S[i] ↔ S[j];
Output Z = S[S[i] + S[j]];

end

Algorithm 2: PRGA

pattern ABTAB with A, B bytes and T a string of bytes of small length), and
the state recovery attack presented by Maximov and Khovratovich [6].

However, the major portion of the literature in RC4 cryptanalysis involves
results related to initial keystream bytes of PRGA [2, 5] (also see the references
therein). To get rid of these problems, one may throw away some initial bytes of
RC4 PRGA as suggested in [3, 7]. But it may not be easy to modify the actual
implementations immediately by throwing away some initial keystream bytes,
since RC4 is already in use in many commercial applications. Thus the crypt-
analytic results related to the initial bytes are still of importance. Moreover,
these results are always of theoretical significance in terms of studying one of
the most popular stream ciphers. The trend continues, including the most recent
biases in this direction [8] that relates the initial keystream bytes, state variables
and secret key of RC4. Recently, another paper [9] accepted at Eurocrypt 2011
exploited the known biases of RC4 (mostly involving the initial bytes) to pro-
vide distinguishers against WEP and WPA. Using related idea, this paper also
proposes the best key recovery attack against WPA till date.

Notation. Let Sr, ir, jr, zr denote the state, index i, index j, and the keystream
byte respectively, after r (≥ 1) rounds of PRGA have been performed. Let S0

denote the state just before the PRGA starts, i.e., right after the KSA ends.
Further, let pr,x denote the probability Pr(Sr[x] = x), after r rounds of PRGA,
where r ≥ 1 and 0 ≤ x ≤ N − 1.

Motivation and Contribution. In FSE 2001, Mantin and Shamir [5] pub-
lished the best known distinguishing attack on RC4 based on the bias of the
second byte towards zero. This result states that if the initial permutation is ran-
domly chosen from the set of all (N !) permutations of ZN , then Pr(z2 = 0) ≈ 2

N

in RC4 keystream, whereas this should be 1
N

in case of a random stream of bytes.

In [5, Section 3.2], after the description of the bias in the event (z2 = 0), the
following statement has been made:



“One could expect to see a similar (but weaker) bias towards 0 at all the
other outputs zt with t = 0 mod n, since in 1/N2 of these cases St[2] = 0
and j = 0, which would give rise to the same situation. However, extensive
experiments have shown that this weaker bias at later rounds does not exist.
By carefully analyzing this situation one can show that for any j 6= 0, the
output is zero with a slight negative bias, and the total contribution of these
negative biases exactly cancels the positive bias derived from j = 0. The
only time we don’t have this cancellation effect is at the beginning of the
execution, when j always starts as 0 rather than as a uniformly distributed
random value.”

The main two claims implied by the above statement are as follows.

MS-Claim 1: Pr(zr = 0) = 1
N

at PRGA rounds 3 ≤ r ≤ 255.
MS-Claim 2: Pr(zr = 0 | jr = 0) > 1

N
and Pr(zr = 0 | jr 6= 0) < 1

N
for

3 ≤ r ≤ 255. These two biases, when combined, cancel each other to produce
no bias in the event (zr = 0) in rounds 3 to 255.

MS-Claim 2 was made to justify MS-Claim 1 in [5]. In the current work, contrary
to MS-Claim 1, we show (Theorem 1) that Pr(zr = 0) > 1

N
for all rounds r from

3 to 255. The immediate implications are that we find 253 new distinguishers
of RC4, and that the validity of MS-Claim 2 is questionable. This motivates us
to analyze the work of [5] to refute the aforementioned claims, and to study the
(non)-randomness of j in PRGA. It is quite surprising that this issue has never
been identified over the last decade.

The bias in the second byte was used in [5] to mount a distinguisher. We
use our newly discovered biases to construct a class of 253 new distinguishers
corresponding to the initial 253 keystream bytes zr for r ∈ {3, 4, . . . , 255}.

In addition, we study the non-randomness of index j rigorously to find a
strong bias of j2 towards 4. We can use this bias to guess the internal state
variable S2[2] from the value of keystream byte z2. Very recently, the results
published in [8] claimed an exhaustive search for biases in all possible linear
combinations of the state variables and the RC4 keystream bytes. However, our
result concerning the bias of j2 towards 4 is not covered in [8].

The literature of RC4 cryptanalysis, developed over more than two decades,
is quite rich. In context of this paper, we have only referred to the publica-
tions which have direct relevance with our work. The reader may look into the
references therein for a more detailed overview.

During the proposition and proof of our results in this paper, we shall require
the following well known result in RC4 cryptanalysis from the existing literature.
This appears in [3, Theorem 6.3.1], and we can restate the result as follows.

Proposition 1 ([3]). At the end of KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =















1
N

[

(

N−1
N

)v
+

(

1 −
(

N−1
N

)v
)

(

N−1
N

)N−u−1
]

if v ≤ u;

1
N

[

(

N−1
N

)N−u−1
+

(

N−1
N

)v
]

if v > u.



Remark 1. As Proposition 1 reveals, the underlying assumption of Mantin and
Shamir [5] regarding the randomness of the initial permutation is violated in
practice. This non-randomness in the permutation for the initial state of PRGA
gives rise to the biases that we report in this paper.

2 Bytes 3 to 255 of PRGA are Biased to Zero

In this section we show that all the initial 253 bytes of RC4 keystream from
round 3 to 255 are biased to zero. To prove the main theorem, we require the
following technical result.

Lemma 1. For r ≥ 3, the probability that Sr−1[r] = r is

pr−1,r ≈ p0,r ·

[

(

N − 1

N

)r−1

−
1

N

]

+
1

N
.

Proof. The event Sr−1[r] = r may occur in the following two ways.

1. S0[r] = r, and index r is not touched by any i or j during first (r − 1) PRGA
rounds: The first event occurs with probability p0,r. For the second one, note
that index r is not touched by i = 1, . . . , r−1 values, and the probability that
none of j touches it either is approximately (N−1

N
)r−1. Thus the contribution

of this case is approximately p0,r · (
N−1

N
)r−1.

2. S0[r] 6= r, and still Sr−1[r] equals r by random association: The probability of
the first event is (1 − p0,r) and given this event, the second one is likely to
occur only due to random association, thus with probability ≈ 1

N
. Hence,

the contribution of this case is approximately (1 − p0,r) ·
1
N

.

Adding the two contributions calculated above, we get the result. ⊓⊔

Remark 2. RC4 PRGA starts with j0 = 0. For r = 1, we have j1 = j0 + S0[1] =
S0[1] which, due to Proposition 1, is not uniformly distributed. For r = 2, we have
j2 = j1 +S1[2] = S0[1]+S1[2], whose probability distribution is more close to the
uniform random distribution than that in case of j1. In round 3, another pseudo-
random byte S2[3] would be added to form j3. From round 3 onwards, j can safely
be assumed to be uniform over ZN . Experimental observations also confirm this.
A detailed discussion on the randomness of j is presented in Section 4. In Item
1 of the proof of Lemma 1, the product

Pr(j1 6= r) · Pr(j2 6= r) · · ·Pr(jr−1 6= r) = Pr(j1 6= r) · Pr(j2 6= r) ·

(

N − 1

N

)r−3

is approximated as (N−1
N

)r−1, but one may always try the exact forms for the
probabilities Pr(j1 6= r) and Pr(j2 6= r) to obtain further accuracy.

Now, we can state our main theorem on the bias of RC4 initial bytes.



Theorem 1. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte
is equal to 0 is

Pr(zr = 0) ≈
1

N
+

cr

N2
.

where cr is given by
[

(

N−1
N

)r
+

(

N−1
N

)N−r−1
−

(

N−1
N

)N−1
]

·
[

(

N−1
N

)r−2
− 1

N−1

]

.

Proof. We prove the result by decomposing the event (zr = 0) into two mutually
exclusive and exhaustive cases1, as follows.

Pr(zr = 0) = Pr (zr = 0 & Sr−1[r] = r) + Pr (zr = 0 & Sr−1[r] 6= r) (1)

Now we consider the events (zr = 0 & Sr−1[r] = r) and (zr = 0 & Sr−1[r] 6= r)
individually to calculate their probabilities. In this direction, note that

zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[ir]]

= Sr[Sr[r] + Sr−1[ir]] = Sr[Sr[r] + Sr−1[r]].

This expression for zr will be used in various effects throughout the paper.

Calculation of Pr (zr = 0 & Sr−1[r] = r): In this case Sr−1[r] = r, and thus
we have the probability

Pr (zr = 0 & Sr−1[r] = r)

= Pr(Sr[Sr[r] + r] = 0 & Sr−1[r] = r)

=
N−1
∑

x=0

Pr (Sr[x + r] = 0 & Sr[r] = x & Sr−1[r] = r)

=

N−1
∑

x=0

Pr (Sr[x + r] = 0 & Sr[r] = x) · Pr (Sr−1[r] = r) (2)

The last expression results from the assumption that the events (Sr[x + r] = 0)
and (Sr[r] = x) are both independent from (Sr−1[r] = r), as a state update
has occurred in the process. Note that Sr−1[r] = r is one of the values that gets
swapped to produce the new state Sr (location [r] denotes [ir] at this stage), and
this is why we can claim the independence of Sr[r] and Sr−1[r]. Otherwise, if a
location [s] is not same as [ir] or [jr], then Sr[s] would be the same as Sr−1[s],
even after the state update.

Now, let us compute Pr(Sr[x + r] = 0 & Sr[r] = x) = Pr(Sr[x + r] =
0) ·Pr(Sr[r] = x | Sr[x+ r] = 0) independently. In this expression, if there exists
any bias in the event (Sr[x + r] = 0), then it must propagate from a similar
bias in (S0[x + r] = 0), as was the case for (Sr−1[r] = r) in Lemma 1. However,

1 In the pre-proceedings version, we had considered the same cases, and had obtained
the same expressions for Pr(zr = 0) and cr. However, the proof for Theorem 1 used
Jenkin’s bias [1] (Glimpse) in an intermediate step as a crude approximation. In this
version, we present a rigorous analysis which does not require to use Jenkin’s bias.



Pr(S0[x+r] = 0) = 1
N

by Proposition 1, and thus we can safely assume Sr[x+r]
to be random as well. This provides us with Pr(Sr[x + r] = 0) = 1

N
.

For Pr(Sr[r] = x | Sr[x+r] = 0), observe that when x = 0, the indices [x+r]
and [r] in the state Sr point to the same location, and the events (Sr[x + r] =
Sr[r] = 0) and (Sr[r] = x = 0) denote identical events. Thus in this case,
Pr(Sr[r] = x | Sr[x + r] = 0) = 1. In cases where x 6= 0, the indices [x + r] and
[r] refer to two distinct locations in the permutation Sr, obviously containing
different values. In this case,

Pr(Sr[r] = x | Sr[x + r] = 0) = Pr(Sr[r] = x | x 6= 0) =
1

N − 1
.

For justifying the randomness of Sr[r] for x 6= 0, one may simply observe that
the location [r] = [ir] is the one that got swapped to generate state Sr from
the previous state, and thus the randomness assumption of Sr[r] is based on the
randomness assumption of jr, which is validated for r ≥ 3 later in Section 4.

According to the discussion above, we obtain

Pr (Sr[x + r] = 0 & Sr[r] = x) =

{ 1
N

· 1 = 1
N

if x = 0,
1
N

· 1
N−1 = 1

N(N−1) if x 6= 0.
(3)

Substituting these probability values in Equation (2), we get

Pr (zr = 0 & Sr−1[r] = r)

= Pr (Sr−1[r] = r)

[

N−1
∑

x=0

Pr (Sr[x + r] = 0 & Sr[r] = x)

]

= pr−1,r ·

[

1

N
+

N−1
∑

x=1

1

N(N − 1)

]

= pr−1,r ·

[

1

N
+ (N − 1) ·

1

N(N − 1)

]

= pr−1,r ·
2

N
. (4)

Calculation of Pr (zr = 0 & Sr−1[r] 6= r): Similar to the previous case, we can
derive the probability as follows:

Pr (zr = 0 & Sr−1[r] 6= r)

=
∑

y 6=r

Pr(Sr[Sr[r] + y] = 0 & Sr−1[r] = y)

=
∑

y 6=r

N−1
∑

x=0

Pr (Sr[x + y] = 0 & Sr[r] = x & Sr−1[r] = y)

An interesting situation occurs if x = r − y. In this case, on one hand, we
obtain Sr[x + y] = Sr[r] = 0 for the first event, while on the other hand, we



get Sr[r] = x = r − y 6= 0 for the second event (note that y 6= r). This poses a
contradiction (event with probability of occurrence 0), and hence we can write

Pr (zr = 0 & Sr−1[r] 6= r)

=
∑

y 6=r

∑

x6=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x & Sr−1[r] = y)

=
∑

y 6=r

∑

x6=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x) · Pr (Sr−1[r] = y) , (5)

where the last expression results from the fact that the events (Sr[x + y] = 0)
and (Sr[r] = x) are both independent from (Sr−1[r] = y), as a state update has
occurred in the process, and Sr−1[r] got swapped during that update.

Similar to the derivation of Equation (3), we obtain

Pr (Sr[x + y] = 0 & Sr[r] = x) =

{

0 if x = 0,
1

N(N−1) if x 6= 0.
(6)

The only difference occurs in the case x = 0. In this situation, simultaneous
occurrence of the events (Sr[x + y] = Sr[y] = 0) and (Sr[r] = x = 0) pose a
contradiction as the two locations [y] and [r] of Sr are distinct (note that y 6= r),
and they can not hold the same value 0 as the state Sr is a permutation. In all
other cases (x 6= 0), the argument is identical to that in the previous derivation.

Substituting the values above in Equation (5), we get

Pr (zr = 0 & Sr−1[r] 6= r)

=
∑

y 6=r

Pr (Sr−1[r] = y)





∑

x6=r−y

Pr (Sr[x + y] = 0 & Sr[r] = x)





=
∑

y 6=r

Pr (Sr−1[r] = y)









0 +
∑

x6=r−y
x6=0

1

N(N − 1)









=
∑

y 6=r

Pr (Sr−1[r] = y)

[

(N − 2) ·
1

N(N − 1)

]

=
N − 2

N(N − 1)

∑

y 6=r

Pr (Sr−1[r] = y)

=
N − 2

N(N − 1)
· (1 − Pr (Sr−1[r] = r)) =

N − 2

N(N − 1)
· (1 − pr−1,r) (7)

Calculation for Pr(zr = 0): Combining the probabilities from Equation (4) and
Equation (7) in the final expression of Equation (1), we obtain the following.

Pr(zr = 0) = pr−1,r ·
2

N
+

N − 2

N(N − 1)
· (1 − pr−1,r)

=
pr−1,r

N − 1
+

N − 2

N(N − 1)
=

1

N
+

1

N − 1
·

(

pr−1,r −
1

N

)

(8)



Now, substituting the value of pr−1,r from Lemma 1 in Equation (8), we obtain

Pr(zr = 0) ≈
1

N
+

1

N − 1
· p0,r ·

[

(

N − 1

N

)r−1

−
1

N

]

. (9)

Further, we can use Proposition 1 to get the value of p0,r as

p0,r = Pr(S0[r] = r) =
1

N

[

(

N − 1

N

)r

+

(

1 −

(

N − 1

N

)r) (

N − 1

N

)N−r−1
]

.

Substituting this expression for p0,r in Equation (9), we obtain the desired result
Pr(zr = 0) ≈ 1

N
+ cr

N2 with the claimed value of cr. ⊓⊔

In Theorem 1, we have presented the bias in the probability Pr(zr = 0) in terms
of the parameter cr, which in turn is a function of r. But we are more interested in
observing the bias for specific rounds of RC4 PRGA, namely within the interval
3 ≤ r ≤ 255. Thus, we are interested in obtaining numerical bounds on the
bias for this specific interval. The next result is a corollary of Theorem 1 that
provides exact numeric bounds on Pr(zr = 0) within the interval 3 ≤ r ≤ 255,
depending on the corresponding bounds of cr within the same interval.

Corollary 1. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte
is equal to 0 is bounded as follows

1

N
+

0.98490994

N2
≥ Pr(zr = 0) ≥

1

N
+

0.36757467

N2
.

3 32 64 96 128 160 192 224 255
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index r of RC4 keystream bytes.

V
al

ue
 o

f c
r.

Fig. 1. Value of cr versus r during RC4 PRGA (3 ≤ r ≤ 255).

Proof. We calculated all values of cr (as in Theorem 1) for the range 3 ≤ r ≤ 255,
and checked that cr is a decreasing function in r where 3 ≤ r ≤ 255 (one may
refer to the plot in Fig. 1 in this regard). Therefore we obtain

max
3≤r≤255

cr = c3 = 0.98490994 and min
3≤r≤255

cr = c255 = 0.36757467.

Hence the result on the bounds of Pr(zr = 0), depending on the bounds of cr. ⊓⊔



Fig. 2 depicts a comparison between the theoretically derived vs. experimen-
tally obtained values of Pr(zr = 0) versus r, where 3 ≤ r ≤ 255. The experi-
mentation has been carried out with 1 billion trials, each trial with a randomly
generated 16 byte key.

3 32 64 96 128 160 192 224 255
3.9

3.91

3.92

3.93

3.94
x 10

−3

Index r of RC4 keystream bytes.

P
r(

 z
r =

 0
 )

.

 

 
Experimental (16 byte key)
Theoretical
Probability 1/N (ideal case)

Fig. 2. Pr(zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

One may observe in Fig. 2 that the theoretical curve does not exactly coincide
with the mean line of the experimental plot. This is algebraically expressed by
the approximation in Theorem 1. The approximation arises due to the ideal
randomness assumptions in the proof of Lemma 1, which do not hold in practice.

2.1 A Class of New Distinguishers

Theorem 1 immediately gives a class of distinguishers. In [5, Theorem 2], it is
proved that if an event e happens with probabilities p and p(1+ǫ) in distributions
X and Y respectively, then for p and ǫ with small magnitude, O

(

p−1ǫ−2
)

samples
suffice to distinguish X from Y with a constant probability of success.

In our setting, let X and Y denote the distributions corresponding to random
stream and RC4 keystream respectively, and er denote the event (zr = 0) for
r = 3 to 255. From the formulation as in Equation (10), we can write p = 1

N

and ǫ = cr

N
. Thus, to distinguish RC4 keystream from random stream, based on

the event (zr = 0), one would need number of samples of the order of

(

1

N

)−1
( cr

N

)−2

∼ O(N3).

We can combine the effect of all these distinguishers by counting the number of
zeros in the initial keystream of RC4, according to Theorem 2, as follows.

Theorem 2. The expected number of 0’s in RC4 keystream rounds 3 to 255 is
approximately 0.9904610515.



Proof. Let Xr be a random variable taking values Xr = 1 if zr = 0, and Xr = 0
otherwise. Hence, the total number of 0’s in rounds 3 to 255 is given by

C =

255
∑

r=3

Xr.

We have E(Xr) = Pr(Xr = 1) = Pr(zr = 0) from Theorem 1. By linearity of
expectation,

E(C) =

255
∑

r=3

E(Xr) =

255
∑

r=3

Pr(zr = 0).

Substituting the numeric values of the probabilities Pr(zr = 0) from Theorem 1,
we get E(C) ≈ 0.9904610515. Hence the result. ⊓⊔

For a random stream of bytes, this expectation is E(C) = 253
256 = 0.98828125.

Thus, the expectation for RC4 is approximately 0.22% higher than that for the
random case. The inequality of this expectation in RC4 keystream compared to
that in a random stream of bytes may also be used to design a distinguisher.

2.2 A Critical Analysis of the Event (zr = 0) Given jr = or 6= 0

Recall the expression for Pr(zr = 0) from Theorem 1:

Pr(zr = 0) =
1

N
+

1

N − 1
·

(

pr−1,r −
1

N

)

≈
1

N
+

cr

N2
. (10)

In the expression for pr−1,r, as in Lemma 1, we see that
(

N−1
N

)r−1
> 1

N
for

all 3 ≤ r ≤ 255. Thus, there is always a positive bias in pr−1,r, and in turn in
Pr(zr = 0). Further, for any r ≥ 1, we can write

Pr(zr = 0) = Pr(jr = 0) · Pr(zr = 0 | jr = 0)

+Pr(jr 6= 0) · Pr(zr = 0 | jr 6= 0). (11)

One may note that MS-Claim 2 of Mantin and Shamir [5] essentially states that
Pr(zr = 0 | jr = 0) = 1

N
+ ar and Pr(zr = 0 | jr 6= 0) = 1

N
− br for 3 ≤ r ≤ 255,

where both ar, br > 0. Plugging these values in Equation (11), we have

1

N
+

cr

N2
=

1

N

(

1

N
+ ar

)

+

(

1 −
1

N

)(

1

N
− br

)

for 3 ≤ r ≤ 255.

Simplifying the above equation, we get ar = cr

N
+ (N − 1)br. Thus, if MS-Claim

2 is correct, then we must have

Pr(zr = 0 | jr = 0) =
1

N
+

cr

N
+ (N − 1)br =

1 + cr

N
+ (N − 1)br,

where 0.98490994 ≥ cr ≥ 0.36757467 for 3 ≤ r ≤ 255 (from Corollary 1).
However, extensive experiments have confirmed that Pr(zr = 0 | jr = 0) ≈ 1

N
,

thereby refuting MS-Claim 2 of Mantin and Shamir.



2.3 Guessing State Information using the Bias in zr

Mantin and Shamir [5] used the bias of the second byte of RC4 keystream to
guess some information regarding S0[2], based on the following.

Pr(S0[2] = 0 | z2 = 0) =
Pr(S0[2] = 0)

Pr(z2 = 0)
· Pr(z2 = 0 | S0[2] = 0) ≈

1/N

2/N
· 1 =

1

2
.

Note that in the above expression, no randomness assumption is required to
obtain Pr(S0[2] = 0) = 1

N
. This probability is exact and can be derived by

substituting u = 2, v = 0 in Proposition 1. Hence, on every occasion we obtain
z2 = 0 in the keystream, we can guess S0[2] with probability 1

2 , and this is
significantly more than a random guess with probability 1

N
.

In this section, we use the biases in bytes 3 to 255 (observed in Theorem 1) to
extract similar information about the state array Sr−1 using the RC4 keystream
byte zr. In particular, we try to explore the conditional probability Pr(Sr−1[r] =
r | zr = 0) for 3 ≤ r ≤ 255, as follows.

Pr(Sr−1[r] = r | zr = 0) =
Pr(zr = 0 & Sr−1[r] = r)

Pr(zr = 0)
≈

pr−1,r ·
2
N

1
N

+ cr

N2

In the above expression, cr is as in Theorem 1. One may write

pr−1,r =
1

N
+

cr

N
−

cr

N2
,

using Equation (8) from the proof of Theorem 1, and thereby obtain

Pr(Sr−1[r] = r | zr = 0) ≈

(

1
N

+ cr

N
− cr

N2

)

· 2
N

1
N

+ cr

N2

= 2 ·

(

1

N
+

cr

N
−

cr

N2

)

·
(

1 +
cr

N

)−1

≈
2

N
+

2cr

N
.

From the expression for Pr(Sr−1[r] = r | zr = 0) derived above, one can
guess Sr−1[r] with probability more than twice of the probability of a random
guess, every time we obtain zr = 0 in the RC4 keystream. In Fig. 3, we plot the
theoretical probabilities

Pr(Sr−1[r] = r | zr = 0) = 2 ·

(

1

N
+

cr

N
−

cr

N2

)

·
(

1 +
cr

N

)−1

against r for 3 ≤ r ≤ 255, and the corresponding experimental values observed
by running the RC4 algorithm 1 billion times with randomly selected 16 byte
keys. It clearly shows that all the experimental values are also greater than 2

N
,

as desired. The crisscross nature of the curves in Fig. 3 originates from a similar
behavior observed in the curves of Fig. 2.



3 32 64 96 128 160 192 224 255
0

0.005

0.01

0.015

0.02

0.025

0.03

Index r of RC4 keystream bytes.

P
r(

 S
r−

1[r
] =

 r
 | 

z r =
 0

 )
.

 

 
Experimental Values
Theoretical Values
Probability 2/N

Fig. 3. Pr(Sr−1[r] = r | zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

3 Attacking the RC4 Broadcast Scheme

Let us now revisit the famous attack of Mantin and Shamir [5] on broadcast
RC4. As mentioned in their paper,

“A classical problem in distributed computing is to allow N Byzantine gener-
als to coordinate their actions when up to one third of them can be traitors.
The problem is solved by a multi-round protocol in which each general
broadcasts the same plaintext (which initially consists of either “Attack” or
“Retreat”) to all the other generals, where each copy is encrypted under a
different key agreed in advance between any two generals.”

In [5], the authors propose a practical attack against an RC4 implementation
of the broadcast scheme, based on the bias observed in the second keystream
byte. They prove that an enemy that collects k = Ω(N) number of ciphertexts
corresponding to the same plaintext M , can easily deduce the second byte of M ,
by exploiting the bias in z2.

In a similar line of action, we may exploit the bias observed in bytes 3 to
255 of the RC4 keystream to mount a similar attack on RC4 broadcast scheme.
Notice that we obtain a bias of the order of 1

N2 in each of the bytes zr where 3 ≤
r ≤ 255. Thus, roughly speaking, if the attacker obtains about N3 ciphertexts
corresponding to the same plaintext M (from the broadcast scheme), then he
can check the frequency of occurrence of bytes to deduce the r-th (3 ≤ r ≤ 255)
byte of M .

The most important point to note is that this technique will work for each
r where 3 ≤ r ≤ 255, and hence will reveal all the 253 initial bytes (number
3 to 255 to be specific) of the plaintext M . We can formally state our result
(analogous to [5, Theorem 3]) as follows.

Theorem 3. Let M be a plaintext,and let C1, C2, . . . , Ck be the RC4 encryptions
of M under k uniformly distributed keys. Then if k = Ω(N3), the bytes 3 to 255
of M can be reliably extracted from C1, C2, . . . , Ck.



Proof. Recall from Theorem 1 that Pr(zr = 0) ≈ 1
N

+ cr

N2 for all 3 ≤ r ≤ 255 in
the RC4 keystream. Thus, for each encryption key chosen during broadcast, the
r-th plaintext byte M [r] has probability 1

N
+ cr

N2 to be XOR-ed with 0.

Due to the bias of zr towards zero, 1
N

+ cr

N2 fraction of the r-th ciphertext bytes
will have the same value as the r-th plaintext byte, with a higher probability.
When k = Ω(N3), the attacker can identify the most frequent character in
C1[r], C2[r], . . . , Ck[r] as M [r] with constant probability of success. ⊓⊔

The attack on broadcast RC4 is applicable to many modern Internet proto-
cols (such as group emails encrypted under different keys, group-ware multi-user
synchronization etc.). Note that Mantin and Shamir’s attack [5] works at the
byte level. It can recover only the second byte of the plaintext under some
assumptions. On the other hand, our attack can recover additional 253 bytes
(namely, bytes 3 to 255) of the plaintext.

4 Non-Randomness of j in PRGA

During the PRGA round of RC4 algorithm, two indices are used; the first is
i (deterministic) and the second is j (pseudo-random). Index i starts from 0
and increments by 1 (modulo N) at the beginning of each iteration, whereas
j depends on the values of i and S[i] simultaneously. The pseudo-randomness
of the internal state S triggers the pseudo-randomness in j. In this section, we
attempt to understand the pseudo-random behavior of j more clearly.

In RC4 PRGA, we know that for r ≥ 1, ir = r mod N and jr = jr−1 +
Sr−1[ir], starting with j0 = 0. Thus, we can write the values assumed by j at
different rounds of PRGA as follows.

j1 = j0 + S0[i1] = 0 + S0[1] = S0[1],

j2 = j1 + S1[i2] = S0[1] + S1[2],

j3 = j2 + S2[i3] = S0[1] + S1[2] + S2[3],

...
...

...

jr = jr−1 + Sr−1[ir] = S0[1] + S1[2] + · · · + Sr−1[r] =
r

∑

x=1

Sx−1[x],

where 1 ≤ r ≤ N − 1, and all the additions are performed modulo N , as usual.

4.1 Non-Randomness of j1

In the first round of PRGA, j1 = S0[1] follows a probability distribution which
is determined by S0, the internal state array after the completion of KSA. Ac-



cording to Proposition 1, we have

Pr(j1 = v) = Pr(S0[1] = v) =































1
N

if v = 0;

1
N

(

N−1
N

+ 1
N

(

N−1
N

)N−2
)

if v = 1;

1
N

(

(

N−1
N

)N−2
+

(

N−1
N

)v
)

if v > 1.

This clearly tells us that j1 is not random. This is also portrayed in Fig. 4.

4.2 Non-Randomness of j2

In the second round of PRGA however, we have j2 = S0[1]+S1[2], which demon-
strates better randomness, as discussed next. Note that we have the following in
terms of probability for j2.

Pr(j2 = v) = Pr(S0[1] + S1[2] = v)

=
N−1
∑

w=0

Pr(S0[1] = w) · Pr((S1[2] = v − w) | (S0[1] = w)) (12)

In the above expression, (v − w) is performed modulo N , like all arithmetic
operations in RC4. The following cases may arise with respect to Equation (12).

Case I. Suppose that j1 = S0[1] = w = 2. Then, we will have S1[i2] = S1[2] =
S1[j1] = S0[i1] = S0[1] = 2. In this case,

Pr((S1[2] = v − 2) | (S0[1] = 2)) =

{

1 if v = 4,
0 otherwise.

Case II. Suppose that j1 = S0[1] = w 6= 2. Then S0[2] will not get swapped in
the first round, and hence we will have S1[2] = S0[2]. In this case,

Pr((S1[2] = v − w) | (S0[1] = w 6= 2)) = Pr(S0[2] = v − w).

Let us substitute the results obtained from these cases to Equation (12) to obtain

Pr(j2 = v) =































Pr(S0[1] = 2) +

N−1
∑

w=0
w 6=2

Pr(S0[1] = w) Pr(S0[2] = v − w), if v = 4;

N−1
∑

w=0
w 6=2

Pr(S0[1] = w) Pr(S0[2] = v − w), if v 6= 4.

(13)
Equation (13) completely specifies the exact probability distribution of j2, where
each of the probabilities Pr(S0[x] = y) can be substituted by their exact val-
ues from Proposition 1. However, the expression suffices to exhibit the non-
randomness of j2 in the RC4 PRGA, having a large bias for v = 4. We found
that the theoretical values corresponding to the probability distribution of j2 (as
in Equation (13)) match almost exactly with the experimental data plotted in
Fig. 4. For the sake of clarity, we do not show the theoretical curve in Fig. 4.



0 4 32 64 96 128 160 192 224 255
0.0025

0.0039

0.005

0.0075

0.01

Value v, from 0 to 255.

P
r(

 j 
r =

 v
 )

.

 

 
Distribution of j

1

Distribution of j
2

Distribution of j
3

Fig. 4. Probability distribution of jr for 1 ≤ r ≤ 3.

Calculation of Pr(j2 = 4). Let us now evaluate Pr(j2 = 4) independently:

Pr (j2 = 4)

= Pr(S0[1] = 2) +

N−1
∑

w=0
w 6=2

Pr(S0[1] = w) · Pr(S0[2] = 4 − w)

=
1

N

[

(

N − 1

N

)N−2

+

(

N − 1

N

)2
]

+

N−1
∑

w=0
w 6=2

Pr(S0[1] = w) · Pr(S0[2] = 4 − w)

Following Proposition 1, the summation term in the above expression evaluates
approximately to 0.965268

N
for N = 256. Thus, we get

Pr(j2 = 4) ≈
1

N

[

(

N − 1

N

)N−2

+

(

N − 1

N

)2
]

+
0.965268

N
≈

7/3

N
.

This verifies our experimental observation, as depicted in Fig. 4.

Guessing State Information using the Bias in j2. It is also feasible to use
this bias of j2 to guess certain information about the RC4 state S2. In particular,
we shall focus on the event (S2[i2] = 4− z2) or (S2[2] = 4− z2), and prove a bias
in the probability of occurrence of this event, as follows.

Proposition 2. After completion of the second round of RC4 PRGA, the state
variable S2[2] equals the value 4 − z2 with probability

Pr (S2[2] = 4 − z2) ≈
1

N
+

4/3

N2
.

Proof. First, note that we can write z2 in terms of the state variables as follows

z2 = S2[S2[i2] + S2[j2]] = S2[S1[j2] + S1[i2]] = S2[S1[j2] + S1[2]].



Thus, we can write the probability of the target event (S2[2] = 4− z2) as follows

Pr(S2[2] = 4 − z2) = Pr(S2[i2] = 4 − S2[S1[j2] + S1[2]])

= Pr(S1[j2] = 4 − S2[S1[j2] + S1[2]])

= Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4)

Now, the idea is to exploit the bias in the event (j2 = 4) to obtain the bias in
the probability mentioned above. Thus, we decompose the target event into two
mutually exclusive and exhaustive cases2, as follows.

(S1[j2] + S2[S1[j2] + S1[2]] = 4) = (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)

∪ (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 6= 4)

First event (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4): The probability for the
first event can be calculated as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)

= Pr(S1[4] + S2[S1[4] + S1[2]] = 4 & j2 = 4)

=

N−1
∑

y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y & j2 = 4)

=

N−1
∑

y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y) · Pr(j2 = 4)

= Pr(j2 = 4)
N−1
∑

y=0

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y)

In the last expression, the values taken from S1 are independent of the value
of j2, and thus the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) are both
independent of the event (j2 = 4). Also note that if y = 4, we obtain

S1[4] + S2[y] = S1[4] + S2[4] = S1[4] + S2[j2] = S1[4] + S1[i2] = S1[4] + S1[2],

which results in the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) being
identical. In all other cases, we have S1[4] + S2[y] 6= S1[4] + S1[2] and thus the
values are chosen distinctly independent at random. Hence, we obtain

Pr(S1[4] + S2[y] = 4 & S1[4] + S1[2] = y) =

{ 1
N

if y = 4;
1

N(N−1) if y 6= 4.

The probabilities in the above expression are verified through experimentation
by running the RC4 algorithm 1 billion times, choosing a 16 byte key uniformly

2 In the pre-proceedings version, we had considered the same cases, and had obtained
the same expression for Pr(S2[2] = 4− z2). However, the proof used Jenkin’s bias [1]
(Glimpse) in an intermediate step as a crude approximation. In this version, we
present a rigorous analysis which does not require to use Jenkin’s bias.



at random in each run. The probability for the first event turns out to be

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 = 4)

= Pr(j2 = 4) ·





1

N
+

∑

y 6=4

1

N(N − 1)





=
7/3

N
·

[

1

N
+ (N − 1) ·

1

N(N − 1)

]

=
7/3

N
·

2

N
.

Second event (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 6= 4): For the second event,
the probability calculation can be performed in a similar fashion, as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 6= 4)

=
∑

x6=4

Pr(S1[x] + S2[S1[x] + S1[2]] = 4 & j2 = x)

=
∑

x6=4

N−1
∑

y=0

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y & j2 = x)

Note that the case y = x poses an interesting situation. On one hand, we obtain
S1[x]+S2[y] = S1[x]+S2[x] = S1[x]+S2[j2] = S1[x]+S1[i2] = S1[x]+S1[2] = 4,
while on the other hand, we get S1[x] + S1[2] = x 6= 4. We rule out the case
y = x from the probability calculation due to this contradiction, and get

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 6= 4)

=
∑

x6=4

∑

y 6=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y & j2 = x)

=
∑

x6=4

∑

y 6=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y) · Pr(j2 = x).

As before, in the last expression, the values taken from S1 are independent of
the value of j2, and thus the events (S1[x] + S2[y] = 4) and (S1[x] + S1[2] = y)
are both independent of the event (j2 = x).

Another interesting case occurs if y = 4 in the above calculation. In this
case, one one hand, we have S1[x] + S2[4] = 4, while one the other hand we get
S1[x]+S1[2] = 4. One may notice that S1[4] is a value that does not get swapped
to obtain the state S2. This is because the only two values to get swapped at this
stage are from the locations [i2] = [2] and [j2] = [x] 6= [4]. Thus, S2[4] = S1[4]
and we get S1[x] + S1[4] = 4 and S1[x] + S1[2] = 4, indicating S1[4] = S1[2]. As
S1 is a permutation, this situation is not possible, and all other cases deal with
two distinct locations of the permutation S1. Therefore, we obtain

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y) =

{

0 if y = 4;
1

N(N−1) otherwise.



In turn, we obtain the probability of the second event as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 & j2 6= 4)

=
∑

x6=4

Pr(j2 = x)
∑

y 6=x

Pr(S1[x] + S2[y] = 4 & S1[x] + S1[2] = y)

=
∑

x6=4

Pr(j2 = x)









0 +
∑

y 6=x
y 6=4

1

N(N − 1)









=
∑

x6=4

Pr(j2 = x)

[

(N − 2) ·
1

N(N − 1)

]

=
N − 2

N(N − 1)

∑

x6=4

Pr(j2 = x)

=
N − 2

N(N − 1)
· (1 − Pr(j2 = 4)) =

N − 2

N(N − 1)
·

(

1 −
7/3

N2

)

.

Calculation for Pr(S2[2] = 4 − z2): Combining the probabilities for the first
and second events, we obtain the final probability as

Pr(S2[2] = 4 − z2) =
7/3

N2
·

2

N
+

N − 2

N(N − 1)
·

(

1 −
7/3

N2

)

≈
1

N
+

4/3

N2
.

Hence the desired probability for the event (S2[2] = 4 − z2). ⊓⊔

Thus, one can guess the value of S2[i2] = S2[2] with probability greater
than that of a random guess (probability 1

N
). For N = 256, the result matches

with our experimental data generated from 1 billion runs of RC4 with randomly
selected 16 byte keys.

4.3 Randomness of jr for r ≥ 3

Along the same line of analysis as in the case of j2, it is possible to compute the
explicit probability distributions of jr =

∑r

x=1 Sx−1[x] for 3 ≤ r ≤ 255 as well.
We do not present the expressions Pr(jr = v) for r ≥ 3 to avoid complication.
However, it turns out that jr =

∑r

x=1 Sx−1[x] becomes closer to be random as
r increase. The probability distributions of j1, j2 and j3 are shown in Fig. 4,
where the experiments have been run over 1 billion trials of RC4 PRGA, with
randomly generated keys of size 16 bytes.

One may note that the randomness in j2 is more than that of j1 (apart
from the case v = 4), and j3 is almost uniformly random. This trend continues
for the later rounds of PRGA as well. However, we do not plot the graphs for
the probability distributions of jr with r ≥ 4, as these distributions are almost
identical to that of j3, i.e., almost uniformly random in behavior.



5 Conclusion

In this paper, we revisit the attack on broadcast RC4 introduced in FSE 2001
by Mantin and Shamir [5], and refute some claims made in that paper. Mantin
and Shamir claimed that amongst the initial bytes of RC4 keystream, only the
second one shows a bias to zero, and none of the other initial bytes has any
bias (even weaker). Contrary to this claim, we prove that all the other initial
keystream bytes (3 to 255 to be specific) also exhibit a bias to zero. It comes
as a surprise to us that this observation has escaped the scrutiny of the RC4
research community for a long time.

The above biases can distinguish RC4 keystream reliably from a random
stream of bytes. Further, these biases can also be exploited to mount an attack
against broadcast RC4. In addition to the second plaintext byte recovery as
in [5], our technique can retrieve the bytes 3 to 255 of the plaintext. The bias
shown by these initial bytes also allow us to guess some state information from
the RC4 keystream (Sr−1[r] given zr = 0 for 3 ≤ r ≤ 255).

Further, we study the non-randomness of index j in RC4 PRGA that reveals
a strong bias of j2 towards 4. This bias in turn helps in guessing the state value
S2[2] from the second keystream byte.

We would like to make a small note on a related observation. The probability
calculation for event (zr = 0) in this paper was triggered by the observation that
the event (Sr−1[r] = r) is biased in the first place. There exist similar biases
(though in a much weaker magnitude) in the event (Sr[u] = v) for other values
of u, v as well. These biases may in turn lead to corresponding biases in events
(zr = k) for k 6= 0, but we do not study these in the scope of this paper.

Another observation that caught our attention during this work was the
noticeable negative bias in Pr(z1 = 0). Similar issues of non-random behavior
in the first keystream byte z1 has been reported earlier in [7, Section 6]. But
neither [7] nor we could provide a satisfactory proof of this bias. We would like
to pose this as an open problem to conclude our paper:

Open problem: Compute Pr(z1 = 0) explicitly to support the observations
made in [7] and the negative bias observed in the line of our work.

Acknowledgment. The authors are thankful to the anonymous reviewers for
their comments and suggestions that helped in improving technical and edito-
rial details of the paper. The authors would also like to express their gratitude
towards Dr. Mridul Nandi and Mr. Santanu Sarkar, who have helped improve
the technical content of the paper through discussions regarding some of the
probability computations.

References

1. R. J. Jenkins. ISAAC and RC4. 1996. Available at http://burtleburtle.net/

bob/rand/isaac.html.



2. S. Maitra and G. Paul. New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. In proceedings of FSE 2008, Lecture Notes in Computer
Science, Springer Verlag, Vol. 5086, pp. 253–269, 2008.

3. I. Mantin. Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel, 2001. Available at http://www.wisdom.weizmann.ac.

il/~itsik/RC4/Papers/Mantin1.zip.
4. I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator. In

proceedings of EUROCRYPT 2005, Lecture Notes in Computer Science, Springer-
Verlag, Vol. 3494, pp. 491–506, 2005.

5. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In proceedings
of FSE 2001, Lecture Notes in Computer Science, Springer-Verlag, Vol. 2355, pp.
152–164, 2001.

6. A. Maximov and D. Khovratovich. New State Recovering Attack on RC4. In pro-
ceedings of CRYPTO 2008, Lecture Notes in Computer Science, Springer, Vol.
5157, pp. 297–316, 2008.

7. I. Mironov. (Not So) Random Shuffles of RC4. In proceedings of CRYPTO 2002,
Lecture Notes in Computer Science, Springer-Verlag, Vol. 2442, pp. 304–319, 2002.

8. P. Sepehrdad, S. Vaudenay and M. Vuagnoux. Discovery and Exploitation of New
Biases in RC4. In proceedings of SAC 2010. Lecture Notes in Computer Science,
Springer, Vol. 6544, pp. 74–91, 2011.

9. P. Sepehrdad, S. Vaudenay and M. Vuagnoux. Statistical Attack on RC4 Distin-
guishing WPA. Accepted at EUROCRYPT 2011.


