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Abstract. At Eurocrypt 2001, Biryukov and Shamir investigated the
security of AES-like ciphers where the substitutions and affine transfor-
mations are all key-dependent and successfully cryptanalysed two and
a half rounds. This paper considers PRESENT-like ciphers in a similar
manner. We focus on the settings where the S-boxes are key dependent,
and repeated for every round. We break one particular variant which was
proposed in 2009 with practical complexity in a chosen plaintext/chosen
ciphertext scenario. Extrapolating these results suggests that up to 28
rounds of such ciphers can be broken. Furthermore, we outline how our
attack strategy can be applied to an extreme case where the S-boxes are
chosen uniformly at random for each round and where the bit permuta-
tion is secret as well.
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1 Introduction

Small computing devices are becoming more and more popular and establish a
part of the pervasive communication infrastructure. One example of these tiny
computing devices are RFID systems which are used e.g., for identifying and
tracking animals or on toll roads. A prediction for the future is that RFID tags
will replace bar codes. But this extensive deployment of computing devices is not
only useful and convenient, it also carries a wide range of security risks. At the
same time we are talking about extremely resource constrained environments.
Therefore, the demand for lightweight encryption algorithms increases. The block
cipher PRESENT [1] is an important example of a lightweight cipher. It consists
of alternate layers of substitutions and permutations.

Important design principles of lightweight ciphers are an efficient hardware
implementation, a good performance and a moderate security level. Usually there
is a trade-off between the performance and the security level. In order to speed
up the algorithm we want as few rounds of encryption as possible but there is a
minimum number of rounds required to assure the security level.

PRESENT is a 64-bit iterated block cipher that comes in two variants, one
with an 80-bit key and one with a 128-bit key. Both run in 31 rounds, each
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round has three layers, a substitution layer consisting of 16 parallel applications
of the same 4-bit S-box, a permutation layer consisting of a bit-wise permutation
of 64 bits, and a key addition layer, where a subkey is exclusive-ored to the
text. PRESENT was designed to allow fast and compact implementation in
hardware. The best known cryptanalytic attack on PRESENT is a linear attack
on 26 of the 31 rounds [2]. The attack requires all possible 264 texts and has a
running time of 272. Although this attack is hardly practical, it illustrates that
the number of rounds used should not be dramatically reduced.

An idea of how to strengthen the cipher in a way that enables one to reduce
the number of rounds has been presented by two researchers from Princeton
University. The cipher Maya [3] is a 16-round SP-network similar to PRESENT.
The main difference is that the substitution layer of Maya consists of 16 different
S-boxes which are key dependent and therefore kept secret. The bit permutation
between the S-box layers is fixed and public. In each round a round key is
xored to the text. It is argued that this cipher can be implemented efficiently in
practice and also that “differential cryptanalysis is infeasible”. In this paper we
will investigate the question if such a cipher would be stronger than the original,
and if so, how much stronger.

The Maya design is one particular way of designing a PRESENT-like ci-
pher with secret components. In an extreme case one could choose 16 S-boxes
uniformly at random and independently for every round. Furthermore one could
also make the bit permutation part of the key and chosen uniformly at ran-
dom from the set of all such permutations and used repeatedly or as another
extreme, a bit permutation is chosen for each round uniformly at random and
independently for every round.

The idea of having ciphers where the substitutions are not publicly known and
part of the secret key is not new. Notable examples are Khufu [4],the Khufu
variation Blowfish [5] and GOST [6] as well as other proposals [7, 8].

Our results. In this paper we focus on the Maya case. We present a novel
differential-style attack which enables us to find the S-boxes in the first round
one by one.

The attack was implemented and successfully recovered the secret key in
versions up to 16 rounds. The complexity of the attack on the 16-round ver-
sion is approximately 238 using a similar number of chosen plaintexts/chosen
ciphertexts. In particular, the proposed cipher Maya can be broken with prac-
tical complexity. In our experiments the correct key was usually found in less
than one week on a standard PC.

To better understand the running time of the attack, we establish a simplified,
mathematical model for the complexity of this attack and verify by numerous
experiments that the model fits the real world. Extrapolation of the experimental
data, backed up by our model, indicate that the attack has the potential to break
up to 28 rounds with a chosen plaintext complexity less than 264.

Furthermore, we outline how even the extreme case of PRESENT-like ci-
phers with secret components, that is the case where all components in all rounds
are chosen uniformly and independent at random can be attacked.



Related work. Biryukov and Shamir investigated the security of iterated ci-
phers where the substitutions and permutations are all key-dependent [9]. In
particular they analysed an AES-like cipher with 128-bit blocks using eight-bit
S-boxes. An attack was presented on five layers (SASAS, where S stands for
substitution and A stands for affine mapping) of this construction which finds
all secret components (up to an equivalence) using 216 chosen plaintexts and
with a time complexity of 228. Using the terminology of “rounds” as in the AES,
this version consists of two and a half rounds.

The extreme case of our cipher, where the S-boxes and the bit-permutation
are chosen at random for each round, is a special instance of the SASAS ci-
pher [9]. In fact the attack of Biryukov and Shamir applies to three rounds of
this variant and has a running time of 216 using 28 chosen texts. However the
complexity of the attack for more than three rounds is unclear, but seems to
grow very quickly [9]. The SASAS attack is a multiset attack whereas we use
a differential-style attack to recover the S-boxes. Also, the technique to recover
the bit permutation is different.

There have been other attempts to cryptanalyse ciphers with secret S-boxes.
Gilbert and Chauvaud presented a differential attack on the cipher Khufu [10].
Khufu is an unbalanced Feistel cipher and the attack exploits the relatively slow
diffusion in the cipher and bears some resemblance with our work. Also, Vaude-
nay provided cryptanalysis of reduced-round variants of Blowfish [11]. Moreover,
the cipher C2, which has a secret S-box, was cryptanalysed by Borghoff et al. [12].

Organisation. The paper is organised as follows. In Section 2 the cipher is
presented. Section 3 explains the approach for recovering the secret S-boxes.
In Section 4, practical issues of the attack are discussed. In Section 5 we give
experimental results for the attack when applied to the Maya cipher [3]. Section
6 describes our model to back up the extrapolations of the experimental data. We
outline the more general case and further improvements in Section 7. Section 8
holds the conclusion.

2 The Cipher

We focus on a PRESENT-like cipher where the secret consists of one round
key for each round and 16 secret S-boxes. We assume that the round keys and
the S-boxes are randomly chosen. In practice these secret components might be
derived from a master key using a key schedule which generates key dependent
round keys and S-boxes. These 16 randomly chosen S-boxes form the substitution
layer which is used repeatedly throughout all the rounds. The permutation layer
consists of a bit permutation which is fixed and publicly known.

One round of encryption works as follows (cf. Algorithm 1). The current text
is divided into nibbles of 4 bits which are processed by the 16 S-boxes in parallel.
Then the bit permutation is applied to the concatenation of the output of the
S-boxes and the output is xored with the round-key.



Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 S-boxes Si and N round keys Ki from K
2: STATE← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do {Substitution layer}
6: STATEj ← Sj(STATEj)
7: end for
8: Reassemble STATE
9: Apply bit permutation to STATE

10: Add round key Ki to STATE
11: end for
12: C ← STATE

Algorithm 1: Pseudo-code of a PRESENT-like cipher with secret S-boxes. The
number of rounds is N .

The cipher Maya, proposed by Gomathisankaran and Lee [3], is an instance
of the cipher described in Algorithm 1 with N = 16. The authors claim that it
is efficient in a hardware implementation.

We attack this cipher by recovering all 16 S-boxes. However, in the general
case, we do not know the last-round key, and therefore what we recover is in
fact the 16 S-boxes xored with the last round key. Once this is done, we can
peel off the first and last layers of encryption, and attack the cipher with two
rounds less; this time, the S-boxes are known and a standard differential or linear
attack can be mounted to extract the round keys. What we obtain in the end
is an equivalent description of the cipher, but not necessarily the key. Still, the
equivalent description of the cipher will allow us to encrypt or decrypt any text
of our choice.

Furthermore, we shall outline how our attack can be applied to a gener-
alization. Here, the S-boxes are chosen uniformly at random for each round.
Additionally, the bit permutation can be chosen randomly for each round and
kept secret as part of the key. In this case, the addition of the round keys is not
necessary because it can be seen as part of the S-boxes. Furthermore the permu-
tation is omitted in the last round. This extreme variant can be compared with
an instance of SASAS [9]. Note that in this variant nothing but the block size
and the number of rounds is known. The pseudo-code of this variant is described
as Algorithm 2.

3 Principle of the Attack

In this section, we explain the idea of our approach to recover the S-boxes in the
basic variant of a PRESENT-like cipher with secret S-boxes. It is a differential-
style attack and the complexity is analysed in Section 6.

Recall that in the basic variant of the cipher (cf. Algorithm 1), there are 16
secret S-boxes which are applied in all rounds. We denote these 16 S-boxes Si,



Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 ·N S-boxes Si,j , 1 ≤ i ≤ N , 0 ≤ j ≤ 15 and N − 1 bit permutations Pi

from K
2: STATE← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do {Substitution layer}
6: STATEj ← Si,j(STATEj)
7: end for
8: Reassemble STATE
9: if i < N then

10: Apply bit permutation Pi to STATE
11: end if
12: end for
13: C ← STATE

Algorithm 2: Pseudo-code of a PRESENT-like cipher with secret S-boxes and
secret bit permutations, all unique for each of the N rounds.

0 ≤ i < 16, and we note that all Si are bijective mappings with the signature
F4
2 → F4

2. For convenience, we introduce the following notation.

Definition 1. Given the S-box S and e ∈ F4
2, we denote the set of all pairs

{x, y} such that S(x)⊕ S(y) = e by De. Here, we consider the pairs {x, y} and
{y, x} to be identical. A pair {x, y} belonging to a set De where e has Hamming
weight 1 is called a slender pair. A set consisting of slender pairs is called a
slender set.

Without loss of generality, we explain how to recover the leftmost S-box
S0. In order to obtain information about S0, we encrypt a certain number t of
structures Pri of plaintexts of the form

Pri = {(x‖ri) | x ∈ F4
2}

where each ri ∈ F60
2 for 0 ≤ i < t is chosen uniformly at random. Two different

plaintexts (x‖ri), (y‖ri) in Pri have an input difference of the form

(x‖ri)⊕ (y‖ri) = (?‖060),

where 0n denotes the bit string consisting of n zeros.
We shall be looking at the corresponding ciphertexts in order to see if there

is an input pair for which only one S-box is active in the ciphertext. For now,
let p({x, y}) denote the probability that only one S-box is active in the cipher-
text difference when the plaintext pair is {x‖r, y‖r}, taken over all the different
choices of r ∈ F60

2 . The attack is based on some assumptions. The first assump-
tion is a standard one in differential cryptanalysis:

Assumption 1 The probability p({x, y}) depends only on the value of S(x) ⊕
S(y), not specifically on the pair {x, y}. Hence, given e = S(x) ⊕ S(y), we can
denote this probability pe.



We shall be particularly interested in identifying slender pairs. In order to do
this, we need the following assumption, which has been experimentally verified
to hold in most cases.

Assumption 2 The probability pe is higher when e has Hamming weight 1, than
when e has Hamming weight greater than 1.

Learning all the probabilities pe would require encryptions of all 264 possible
plaintexts, but we can estimate the probabilities by introducing counters

C({x, y}) =
∣∣{ri |∃j : E(x‖ri)⊕ E(y‖ri) = 04j‖?‖060−4j}

∣∣
for all pairs {x, y}, x, y ∈ F4

2. Hence, the counter C({x, y}) counts how often
only one S-box is active in the ciphertext pair when the input pair to S-box S0

is {x, y}.
Assumption 1 says that pairs belonging to the same set De should also have

similar counter values when sufficiently many plaintexts have been encrypted.
Assumption 2 says that the highest counter values will (usually) correspond to
slender pairs. In the attack we are going to try to identify the slender sets, and
this will be relatively easy if the probabilities pe and pe′ , e 6= e′, are sufficiently
different. Experiments show that this condition is often satisfied.

The counter C consists of 120 values since there are
(
16
2

)
= 120 different

pairs {x, y}. After encrypting sufficiently many structures we may sort C in
descending order, and thereby hopefully obtain a partitioning of the 120 pairs
into a number of sets corresponding to De for different values of e. For every
e 6= 0 it holds |De| = 8. We shall return to this partitioning method in a moment.
Our final goal will be to learn all four slender sets De.

Generalizing to all S-boxes and their inverses. In a practical attack we
do not only want to eventually recover the S-box S0, but all S-boxes. The above
observations can clearly be generalized to all S-boxes by introducing additional
types of structures and additional counters.

Moreover, the symmetry between encryption and decryption in the cipher we
are considering here means that one may obtain the same type of information
about the inverse S-boxes as one obtains about the S-boxes themselves. This can
even be done in a chosen-plaintext setting, although it may require more texts
than in a chosen-ciphertext setting.

Assume now that we have identified u slender sets for some S-box S, and v
slender sets for its inverse S−1. The following table shows the average number
of S-boxes that would give rise to the same u+ v sets; these averages are based
on 100,000 randomly generated S-boxes.

u\v 1 2 3 4

1 207 3.52 1.44 1.19
2 3.52 1.16 1.03 1.01
3 1.44 1.03 1.01 1.01
4 1.19 1.01 1.01 1.01



Evidently, if u+ v ≥ 6, the S-box is usually uniquely determined from the u+ v
sets, and in many cases, fewer sets are sufficient. However, there exist S-boxes
S which are not uniquely determined even if all four slender sets are known for
both S and S−1.

On a side note: if De and De′ are known for some S-box S, then De⊕e′

does not give any new information about S, since De⊕e′ can be derived from
De and De′ . Clearly, if {x, y} ∈ De and {x, z} ∈ De′ , then {y, z} ∈ De⊕e′ .
This observation generalizes to more than two sets. In general, given sets Dei

one can construct all sets De where e can be written as a linear combination
of the vectors ei, see Lemma 2 in Appendix A. Therefore, we shall generally
only be interested in the four slender sets, since all other sets give no additional
information about the S-box.

We now describe a number of ways to partition the pairs into sets and to
check that this partitioning is correct.

Partitioning pairs into sets. Assume again that we are trying to recover S-
box S0. Our starting point for partitioning pairs (in particular the slender pairs)
into sets is the counter C.

The straightforward partitioning method simply sorts C in descending order,
and takes the first eight pairs as the first set, the next eight pairs as a second
set, etc. Using this method obviously means that we shall often make the wrong
partitioning into sets, but the partitioning can be checked using the very strong
filtering methods described in the following subsection.

Filtering methods. Given u sets for some S-box S and v sets for its inverse
S−1, the most indicative method to check whether these sets may be correct is to
see how many S-boxes would give rise to the same sets. If no S-box gives rise to
these sets, then clearly the sets must be wrong. However, counting the number
of S-boxes that give rise to these sets is somewhat inefficient (see, however,
Section 4), and as we have seen, if we only know a few sets, there are usually
several S-boxes that give rise to the same sets, and so the probability of a false
positive is high in this case. We call this filter the existence filter.

A much more efficient method is based on the trivial observation that for
any valid set De, we have that {x, y : {x, y} ∈ De} = F4

2. In other words, a
valid set “covers” all values in F4

2. Hence, if we have identified a candidate set D
containing two pairs {x, y} and {x, z}, then D cannot be a valid set. Although
this method is very simple, it is in fact a very strong filter; the probability that
eight randomly chosen pairs among the 120 pairs cover all values in F4

2 is only

7∏
i=1

(
2i
2

)(
16
2

)
− i
≈ 2−18.7,

and therefore in practice, many wrong candidate sets are discovered by this
method. We call this filter the cover filter.



It should be noted that one can prove that the cover filter is not only neces-
sary, but also sufficient; see Appendix A.

The final filtering method that we describe here is based on the observation
that if {x1, y1} and {x2, y2} belong to the same set De, then {x1, y2} and {x2, y1}
will also belong to the same set De′ for some e′ 6= e, and likewise, {x1, x2}
and {y1, y2} will belong to the same set De′′ for some e′′ 6∈ {e, e′}. To see
this, note that if {x1, y1} and {x2, y2} belong to the same set De, then (by
definition) S(x1) ⊕ S(y1) = S(x2) ⊕ S(y2) = e, and therefore S(x1) ⊕ S(y2) =
S(x2) ⊕ S(y1) = e ⊕ S(y1) ⊕ S(y2) 6= e, etc. Hence, assume that we know two
sets D′ and D′′ (both already known to cover F4

2), and that {a, b} ∈ D′ and
{a, c} ∈ D′′. Now, if {c, d} ∈ D′, then for these two sets to both be valid, it
must hold that {b, d} ∈ D′′. We call this filter the bowtie filter; if one follows the
“partner” b of a in the set D′ and jumps to the next set D′′ to find the partner d
of b there and so forth, then one should come back to the pair {a, b} in D′ after
two jumps back and forth between the two sets, hence forming a bowtie-shaped
cycle:

D′ = {

D′′ = {

,

,

{a, b} {c, d} . . .

{a, c} {b, d} . . .

3.1 Relaxed Truncated Differentials

The method considered so far increments a counter only when there is a single
active S-box in the ciphertext pair. The probability of this event is relatively
low, so many plaintext pairs are needed before it is possible to partition pairs
into sets.

It is much more likely that the weight one difference spreads moderately
through the cipher resulting in a few active S-boxes in the ciphertext. Hence, we
might find slender pair candidates more efficiently by looking at ciphertext pairs
with more than one active S-box. The more active S-boxes we allow, the more
noise we will get, and so there is a tradeoff between the signal-to-noise ratio, and
the strength of the signal.

It turns out that allowing even a relatively large number of active S-boxes
does not introduce too much noise. This can be used to make the attack more
efficient. For each input S-box Si and for each pair {x, y} we introduce counters
Ci,j({x, y}). We increment the counter Ci,j({x, y}) every time the input pair
{x, y} to S-box Si (with a random but fixed input to the other S-boxes) leads
to exactly j S-boxes being active, where j ranges from 1 to 15. When we have
done a number of encryptions we may sort the counters Ci,j for some pair i, j.
If the cover filter identifies sets based on this sorting, we assume that these are
correct slender sets. When we have several sets, we use the bowtie filter to check
the validity of the sets. We do this for increasing j from 1 to 15. Since the cover
filter is a very strong filter, the risk of errors is low, both in the cases where the
signal is weak (small values of j), and also in the cases where there is a lot of
noise (large values of j).



4 The Attack in Practice

We now describe how the attack is carried out in practice. The attack consists
of a data collection phase followed by an S-box recovery phase, and those two
phases are repeated until all or almost all S-boxes have been recovered.

4.1 Data Collection Phase

In the data collecting phase we simply encrypt structures and increment counters
when applicable. Each structure consists of 16 plaintexts differing in only a single
input S-box. Which S-box is active is a random choice among the S-boxes that
have not already been recovered.

After encryption, we check all 120 pairs of ciphertexts to see if any of them
are active in less than 16 S-boxes. If so, we increment the corresponding counter
for the input pair to the S-box that was active in the plaintext.

We also carry out decryptions in order to obtain information about the in-
verse S-boxes.

4.2 S-box Recovery Phase

Every once in a while, we stop collecting data and try identifying sets for each
S-box. This is done by first sorting the counters for each number of active output
S-boxes. We start with the lowest number of active output S-boxes. We check
if the top eight counter values in the sorted list passes the cover filter. If so, we
consider these eight pairs a slender set and add it to a collection of identified sets,
unless the set is already present in the collection. When there are multiple sets
in the collection, we check that they pass the bowtie filter. We then look at the
next eight pairs and so forth. We stop adding sets when we have identified four
sets, or we run into an inconsistency such as a failing bowtie test or non-disjoint
sets. In case of an inconsistency, we give up identifying sets for this S-box.

The bowtie filter can also be used to filter out candidate sets that can be
derived from existing sets. Consider as an example a situation where the following
two candidate sets De and De′ (passing the bowtie test) have been identified:

De = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {a,b}, {c,d}, {e, f}}
De′ = {{0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, a}, {9,b}, {c, e}, {d, f}}.

From these two sets we can derive the set De⊕e′ directly as

De⊕e′ = {{0, 3}, {1, 2}, {4, 7}, {5, 6}, {8,b}, {9, a}, {c, f}, {d, e}}

As an example, S(0)⊕ S(3) = (S(0)⊕ S(1))⊕ (S(1)⊕ S(3)) = e⊕ e′. Hence, if
we identify a set which can be derived from two sets already identified, then we
should not add the third set to our collection (on the assumption that the first
two sets are slender, which means the third is not).

We note that if one swaps two “bowtie pairs” in two valid sets (e.g., the
pairs {0, 1} and {2, 3} could be swapped with {0, 2} and {1, 3} in De and De′



above), then the resulting sets will still pass both the cover and the bowtie test.
This is a potential cause for errors; if two sets have roughly the same probability
of causing a single active S-box in the ciphertext, and the distribution of the
probabilities for each output S-box is similar for the two sets, then we are likely
to generate wrong sets that pass both the cover and the bowtie test. This error
may be caught by the existence filter (cf. the following), but if not, then we’ll be
recovering the wrong S-box. This does happen in practice, although it is rather
rare.

We repeat the above method of identifying sets for the inverse S-boxes as
well, maintaining separate counters for these.

Once we have identified as many sets as possible using this method (for both
the S-box and its inverse), we can apply the existence filter to check if these
sets can possibly be valid; if there is no S-box generating these sets, then the
sets are obviously not valid. As mentioned in Section 3, applying the existence
filter is not terribly efficient; on the other hand, it is not terribly slow either.
A reasonably efficient way to implement it is by making guesses for values of
S(0) and the exact values e for the identified sets De until one runs into an
inconsistency with the candidate sets. Note that once these guesses have been
made, we may find the “partner” of 0 in all candidate sets. For instance, if the
two sets De and De′ in the example above are our candidate sets, and we guess
that S(0) = 0, then we would know that S(1) = 2i and S(2) = 2j for some
(guessed) i, j, i 6= j and 0 ≤ i, j < 4. We would obtain similar information about
the inverse S-box from the candidate sets for the inverse S-box. This method is
able to find all candidate S-boxes in a fraction of a second given at least one set
for the S-box and one set for its inverse.

If an S-box (or a candidate for it) has been recovered, we stop considering
this S-box both in the data collection and the S-box recovery phase. If not all
S-boxes have been recovered, we continue the data collection phase. In some
cases, we have to give up recovering one or more S-boxes because we are unable
to identify sufficiently many sets, or because we consistently get no candidates
for the S-box based on the identified sets. In the latter case, there is obviously an
error in the partitioning into sets. If we consistently obtain multiple candidates
for an S-box, we may also accept this and consider the S-box recovered, keeping
a record of all candidates.

5 Case Study: the Block Cipher Maya

Maya is a block cipher proposed at WCC 2009 [3]. It is a PRESENT-like cipher
with key dependent S-boxes (repeated in every round) and a fixed, known bit
permutation (see Fig. 1). Each round also contains an addition of a round key.
The round keys and the S-boxes are derived from the 1024-bit master key.

Since the S-boxes are the same in every round, using the differential-style
attack described above, we are able to get information on the S-boxes and their
inverses. We get information on both directions for every encrypted pair and can
choose to also do decryptions to obtain information about the inverse of a specific
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Fig. 1. The Maya bit permutation.

S-box. In this way we often recover at least two sets in each direction, which
usually means all the S-boxes can be determined uniquely. The key addition,
however, means that we only obtain the correct S-boxes up to an xor by the
last round key, which is unknown. However, this still enables us to peel off the
first and the last round of encryption, after which the attack can be repeated
on this reduced cipher. Moreover, we expect that once the S-boxes are known, a
dedicated differential or linear attack is more efficient than our general attack.
In the end, we obtain a description of an equivalent cipher.

The standard number of rounds in Maya is 16 and below the log of the
complexity to recover the secret S-boxes for a number of different randomly
chosen example keys is given. Complexities in italics are extrapolated values
from running the attack on fewer rounds.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Complexity 45.5 36.0 35.9 36.9 35.7 39.3 37.4 37.1 40.6 38.5 39.4 39.5 36.0 36.7 38.3 37.4

Moreover, Table 1 (Appendix B) shows the log of the complexity (number
of texts) as a function of the number of rounds for the same example keys. See
Fig. 2 for a graphical representation. The complexities refer to obtaining all 16
S-boxes (whenever possible, see discussion below), so that the first and the last
round can be peeled off, and the cipher with two round less can then be attacked.

In this implementation of the attack, an S-box was considered correctly re-
covered if only one S-box gave rise to the given partitioning into sets (or the
given top 32 pairs). However, if a substantial amount of time had been spent on
an S-box, the conditions were relaxed such that even if there were more than
one candidate S-box, work on this S-box was still discontinued and all candi-
dates were printed. In extreme cases, where there were no candidate S-boxes
after a lot of time had been spent trying to recover the S-box, that S-box was
given up. The choice of when to accept multiple candidates, or when to give up
an S-box, obviously affects the complexity of the attack. A more sophisticated
implementation might adapt better to these situations. As an example, if the
program consistently gives rise to the same partitioning into sets, and there are
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Fig. 2. A graphical representation of the data in Table 1. The thick line represents the
median computed for each number of rounds.

no candidates for this partitioning, one might try swapping elements between
sets in such a way that the bowtie condition still holds.

The error rate of the attack is very low. If we consider the highest number of
rounds broken in each of the 16 test cases, then the total number of S-boxes that
had to be recovered was 16·16 = 256. Of these, 245 were correctly recovered with
only a single S-box candidate. For seven S-boxes, there were multiple candidates,
and the correct S-box was always one of these. The number of candidates ranged
from two to four. Three out of 256 S-boxes were incorrectly recovered with only
a single S-box candidate. One S-box was given up due to too much time spent
trying to recover it.

In a real attack, the fact that some S-boxes were incorrectly recovered would
be discovered after attempting to break the cipher reduced by the first and
the last rounds. By making sure that a large amount of information about the
identified sets and the counter values is recorded, it is likely that one would be
able to locate the S-box causing the problem. For instance, there may be 16
counters that are all similar, meaning that it is likely that two sets have been
mixed up.

6 Model for the Complexity of Recovering Sets De

For a small number of rounds the attack to recover one or more sets De has
small complexity and it is possible to get sufficient experimental data. However,
to be able to extrapolate the attack complexity we describe a theoretical model
below.



We again focus on recovering a single S-box e.g., S0. In the attack we are
faced with the problem to group 120 counters C({x, y}), each belonging to an
input pair to an S-box of the first round, into 15 distinct groups. All pairs within
a group should yield the same output difference, i.e., belong to a set De for some
e.

Interpreting the counters C({x, y}) as random variables, a counter C({x, y}),
with S(x)⊕ S(y) = e is binomially distributed with parameters n and pe . Here
pe is the probability that the difference (e||060) after the first layer of S-boxes
yields to only one active S-box in the output and n is the number of text pairs.

Assumption 2 states that counters C({x, y}) such that S(x) ⊕ S(y) has a
weight greater than one are significantly smaller than others and we therefore
focus only on the 32 counters corresponding to slender pairs. Thus, we consider
8 counters distributed with parameters (n, p1), 8 distributed with parameters
(n, p2), 8 distributed with parameters (n, p4) and finally 8 counters distributed
with parameters (n, p8) (here we identified e = (0, 0, 0, 1) with 1, e = (0, 0, 1, 0)
with 2 etc.). Without loss of generality we assume p1 ≥ p2 ≥ p4 ≥ p8 and
that holds p1 6= p2. The attack works by looking at the 8 highest counters
and is successful if those counters correspond to the same output difference,
e.g., e = 1, of the S-box. The attack fails whenever there exists a pair {x1, y1}
with output difference ’1’ and a pair {x2, y2} with S(x2)⊕ S(y2) 6= 1 such that
C({x1, y1}) ≤ C({x2, y2}). In the following we estimate this failure probability
depending on the number of samples n.

To simplify the problem for now, we consider only two pairs {x1, y1} and
{x2, y2} and their corresponding counters where C({x1, y1}) is distributed with
parameters (n, q) and C({x2, y2}) is distributed with parameters (n, p) for q > p.
The attack fails if C({x1, y1}) ≤ C({x2, y2}) and thus we denote Z = C({x2, y2})−
C({x1, y1}) and

err = Pr(C({x1, y1}) ≤ C({x2, y2})) = Pr(Z ≥ 0).

To investigate this error further consider the usual approximation of the binomial
distribution by the normal distribution, C({x1, y1}) ∼ N(nq, nq(1 − q)) and
C({x2, y2}) ∼ N(np, np(1− p)). With this approximation, the distribution of Z
can be approximated by Z ∼ N(µ, σ2), where µ = n(p − q) and σ = n(p(1 −
p) + q(1− q)).

The density function for the normal distribution with mean µ and variance

σ2 is given by the following formula: f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 . The integral of the

normal density function is the normal distribution function

N(t) =
1√
2π

∫ t

−∞
e−

1
2x

2

dx.

The error we make is thus described by

err ≈ 1− 1√
2πσ

∫ 0

−∞
e−

(x−µ)2

2σ2 = 1− 1√
2π

∫ −µ
σ

−∞
e−

x2

2 = 1−N
(
−µ
σ

)
.



The following lemma gives an estimate of the ‘tail’ 1 −N(x) which is useful to
approximate the error.

Lemma 1 ([13]). Let φ(x) = 1√
2π
e−

x2

2 be the normal distribution. As x→∞

1−N(x) ≈ x−1φ(x).

Using the approximation of Lemma 1 yields

err ≈ 1−N(−µ
σ

) ≈ −σ
µ

1√
2π
e−

1
2 (
µ
σ )

2

. (1)

From (1) it follows that for a given failure probability err the sample must be of
size

n >
−c(p2 − p+ q2 − q)

(p− q)2
, (2)

where c = LambertW
(

1
2 err2 π

)
[14] is a small constant depending on the error. As

example we can assume that q = 2p then in order for the attack to be successful
we need a sample of size 3c

p .
After having estimated the failure probability for 2 counters, assuming inde-

pendence, the total error probability errt, that is, the probability of the event
that one of the 8 counters with parameter (n, p1) being smaller than one of the
24 counters with parameters (n, p2), (n, p4), (n, p8) can be bounded as

errt ≤ 1− (1− err)8·24.

If we allow an error probability of errt ≤ 0.5, which in light of the strong cover
filter is clearly sufficient, we need err ≤ 1− 0.51/(8·24) ≈ 0.0036. For this c = 8 is
sufficient.

The next step is to find a way to estimate the probabilities pe. Assuming the
cipher is a Markov cipher we can model the propagation of differences through
the cipher as a matrix multiplication of the difference distribution matrices and
the permutation matrices. Considering the difference distribution table for the
whole layer of S-boxes would yield a 264 × 264 matrix. Therefore we determine
the difference distribution matrix which contains only the probabilities for 1 to
1 bit differences, which as it turns out when comparing to experimental data, is
a good approximation. This matrix is of size only 64 × 64. This enables us to
simulate the propagation of 1 to 1 bit differences through a number of rounds
using matrix multiplications. For the resulting matrix an entry (i, j) contains
the probability that given the single, active input bit i after the first layer of
S-boxes, a single output bit j in the second last round will be active. This matrix
can therefore be used to get an estimate for the parameters of the counters. We
determine the probability that given a fixed 1 bit difference after the first round
exactly one S-box is active in the last round (analogously for the inverse). This
can be done by summing over the corresponding matrix entries. Then we use
formula (2) to calculate the number of plaintexts needed to recover at least two
sets De in each direction. Note that in the original attack we do not restrict
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Fig. 3. Comparison between the medians of the experimental data and the model for
recovering two sets De in each direction. The black line shows the experimental data
while the red (gray) line shows the data from the model. The complexity unit is one
plaintext.

ourselves to having a single active S-box in the last round but a limited number
of active S-boxes. Furthermore, we can expect that a single active S-box will
on average not lead to 16 active S-box after two rounds of encryption. Thus we
believe that in practice we can break at least two more rounds of encryption with
the sample size determined by the model, meaning the model yields an upper
bound for the complexity.

The comparison between the experimental data and the modeled data sup-
port this assumption.

To justify the introduced model we implemented the attack for a small num-
ber of rounds (see Section 5). For each number of rounds we sampled 1000 ciphers
in our model to determine the sample size needed to distinguish between the two
distributions. Fig. 3 gives a comparison of the experimental data with that of
the model for the case that we want to recover at least four sets De for all 16
S-boxes. The black line shows the experimental data and the red line shows the
model for an error of around 0.3% which corresponds to c = 8. The complexity
denotes the logarithm of the number of plaintexts used. As seen, the model seems
to give an upper bound on the complexity of the attack. In some rare cases the
difference between p and q is close to zero, which leads to a very high attack
complexity. These rare cases have a strong influence on the average complexity,
hence we considered the median instead of the mean to estimate the complexity
of the attack.

The modeled data suggest that we are able to break up to 28 rounds before
we reach the bound of 264 available plaintexts.



7 Extensions

In this section we outline some possible extensions of our attack. This includes
some further improvements (cf. Section 7.1) as well as attacks on the more
general variant of the cipher where all components in all rounds are chosen
independently and uniformly at random (cf. Section 7.2).

7.1 Linear Cryptanalysis

In the differential-style attack one hypothesis is that the probability of a char-
acteristic with a single-bit difference at the output of the S-box layer in the first
round is correlated to a single-bit difference at the input to the S-box layer in
the last round or to the number of active S-boxes in the last round. Using a
similar hypothesis for linear characteristics one can mount a linear attack to
extract information about the secret S-boxes. In the differential-style attack one
tries to identify sets of eight pairs of values related to a certain differential. In
a linear-style attack one tries to identify pairs of eight values related to a cer-
tain linear characteristic. It was confirmed in a small number of experiments
on ciphers with a small number of rounds that this approach can be used to
derive information about the S-boxes. One natural future direction of research
is to combine the differential-style attack outline in this paper with a similar
linear-style attack.

7.2 Fully Random PRESENT-like Ciphers

In this section we consider PRESENT-like ciphers where the S-boxes and the bit
permutations of all rounds are chosen independently and uniformly at random,
that is ciphers given by Algorithm 2.

For such a cipher one would not get information about the inverse S-boxes
like in the case of Maya. Moreover, the S-boxes are not uniquely determined,
cf. Appendix A for more details. One needs to recover all four slender sets De

for each S-boxes. We implemented a series of attacks on such ciphers and the
results show that recovering four sets is indeed possible, but not for all S-boxes.
The following table shows the results of our tests to fully recover one S-box in
the first round. The complexity is the number of chosen plaintexts needed and
is given as the median of 500 tests.

Rounds Complexity Probability
4 212.5 73%
5 215.5 82%
8 224.5 81%

In each test the computation was stopped if not all 4 slender sets where obtained
with 230 structures. The tests are very time-consuming which is why results for
6 and 7 rounds were not implemented.

Summing up, the attack does not seem to be able to fully recover all S-boxes
of the first (or last) round, merely about 80%. However in the remaining cases,



the attack identifies one, two or three sets Se, which means that only a limited
number of choices for these S-boxes remain. Depending on exactly how many
choices of the S-boxes are left, one possible way to proceed is to simply make a
guess, and repeat the attack on a reduced number of rounds. If S-boxes in other
rounds cannot be successfully recovered, the guess might have been wrong. This
is a topic for further research.

Recovering the Bit Permutations. Once the first S-box layer has been re-
covered, one can start recovering the first bit permutation layer. Here we outline
the technique.

The idea is similar to the method of recovering S-boxes; one encrypts plain-
text pairs differing in (e.g.) two bit positions. Whenever the output difference is
small (e.g., one active S-box), one increments a counter for the pair of positions
differing in the plaintext. This is repeated a number of times for all pairs of bit
positions. One may now assume that the highest counter values correspond to
pairs of bit positions that are mapped to the same S-box input.

This leads to information about which bit positions are mapped to the same
S-box input in the next round. One can also vary three or four bit positions in
order to obtain more information. The complexity of this method has not been
thoroughly investigated, but preliminary results indicate that it is similar to (if
not lower than) the complexity of recovering S-boxes.

8 Conclusion

In this paper a novel differential-style attack was presented and applied to 64-
bit PRESENT-like ciphers with secret components. A variant with 16 secret
S-boxes can be attacked for up to 28 rounds with a data complexity of less than
264. It is interesting to note that the best known attack on PRESENT, a linear
attack, can be used to cryptanalyse up to 26 rounds of PRESENT (which has
publicly known but carefully chosen S-boxes and bit permutation).

Also, the variant where the S-boxes and bit permutations are chosen at ran-
dom for every round can also be attacked with a data complexity of less than
264 for up to 16 rounds.

It is clear that our attacks exploit that there are weak differential properties
for some randomly chosen four-bit S-boxes, and they do not apply to ciphers
where the S-boxes are chosen as in PRESENT. However, a restriction to strong
S-boxes (w.r.t to differential cryptanalysis) would also limit the size of the key.
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A What We Learn about the S-boxes from the Sets

In this section, we discuss in detail how much we actually learned about an S-box
after recovering one or more sets De. Here we focus on sets for the S-box itself
and not on sets for its inverse. Before doing so, we remark that it is not possible
to recover the S-boxes uniquely when no set for the inverse S-box is given. In
particular, when two S-boxes S and S′ differ by a permutation of the output



bits and by adding a constant after the S-box, in other words, there exists a bit
permutation P and a constant c such that

S′(x) = P (S(x)) + c,

then those S-boxes cannot be distinguished. We therefore call two S-boxes ful-
filling the above relation equivalent.

Lemma 2. Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, and ei ∈ F4
2 we can

construct all sets Dy where y ∈ span(e1, . . . , er).

Proof. If y ∈ span(e1, . . . , er) then there exists a (not unique) chain of values

y0 = ej0 , y1, . . . , ys = y

such that yi⊕yi+1 = eji for ji ∈ {1, . . . , r}. We can inductively construct the sets
Dyi . First note that we already know the set Dy0 = Dej0

and we can construct
Dyi+1

using the set Dyi and Deji
given that

{a, b} ∈ Dyi⊕eji ⇔ ∃c ∈ F4
2 such that {a, c} ∈ Dyi and {c, b} ∈ Deji

ut

Having this technical lemma in place, we can prove the following theorem.

Theorem 3. Let S : F4
2 → F4

2 be a (bijective) S-box and for e ∈ F4
2 with wt(e) =

1,
De = {{x, y} | S(x)⊕ S(y) = e}.

Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, up to equivalence, there are

24−r−1∏
i=1

24 − i2r

possibilities for S. More concretely,

1. given 4 sets the S-box is determined uniquely,
2. given 3 sets there are 8 possible S-boxes,
3. given 2 sets there are 384 possible S-boxes, and
4. given 1 set there are 645120 possible S-boxes.

Proof. Assume we are given r sets De1 , . . . , Der . First, up to equivalence, we can
assume that S(0) = 0 and furthermore e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and so
on. We claim that given this information, S is fixed on the set

{x | S(x) ∈ span(e1, . . . , er)}.

For this, let y ∈ span(e1, . . . , er) be given. From Lemma 2 we know that we can
construct the set Dy. As Dy passes the cover filter, there exists a pair {0, x} ∈ Dy

for some x ∈ F4
2. It follows that we found an x ∈ F4

2 such that

S(0) + S(x) = S(x) = y.



More generally, the same argument shows that, given De1 , . . . , Der , fixing
S(x′) = y′ the values of S are fixed for all x such that S(x) is in the coset
y′⊕ span(e1, . . . , er). Noting there are 24−r cosets of span(e1, . . . , er) and taking
into account the bijectivity of the S-box, the theorem follows. ut

In particular, the proof of Theorem 3 implies the following.

Corollary 1. The cover filter is necessary and sufficient. That is to say that
given a number of sets De where e runs through a subspace of F4

2, there exists
an S-box corresponding to these sets if and only if each of the sets De passes the
cover filter.

B Example Complexities for Maya

Table 1. The log of the complexity (number of texts encrypted or decrypted) of 16 test
runs of the attack on Maya as a function of the number of rounds. The complexities in
italics are extrapolations based on the assumption of a linear relationship between the
number of rounds and the log complexity. The median was computed on the assumption
that non-existent complexities are infinite.

Rounds
Case 6 7 8 9 10 11 12 13 14 15 16

1 14.4 16.2 18.6 21.0 24.3 28.5 31.6 35.5 40.5 46.8
2 14.1 15.6 17.3 19.7 22.0 23.7 26.9 29.1 32.0 33.8 36.0
3 14.3 16.3 17.4 19.5 22.2 24.7 27.4 29.7 31.3 33.6 35.9
4 14.8 16.1 17.6 19.8 22.3 25.3 27.9 30.1 32.1 34.8 36.9
5 14.6 15.7 17.4 19.4 21.4 23.5 26.0 27.6 30.0 31.4 35.7
6 15.0 16.1 18.3 20.2 22.7 25.6 28.7 31.8 34.2 36.3 39.3
7 14.2 15.6 17.7 19.7 22.4 25.4 27.4 29.9 32.6 35.4 37.4
8 14.5 15.7 17.5 19.4 21.5 24.4 26.9 29.6 31.9 35.5 37.1
9 15.2 16.8 19.1 21.1 23.6 26.5 28.7 31.5 36.3 39.0 41.2
10 14.9 16.5 18.1 20.2 23.0 24.5 27.6 29.8 34.7 38.6 38.5
11 14.4 15.6 17.5 19.8 22.1 25.1 27.5 30.5 33.4 37.7 39.4
12 15.0 15.7 17.5 19.9 22.4 25.3 29.1 31.5 34.2 36.1 39.5
13 14.9 15.9 17.1 19.6 21.7 24.4 27.9 29.3 31.8 35.8 36.0
14 14.4 15.6 17.5 19.3 21.9 24.3 27.7 30.3 32.1 35.4 36.7
15 14.4 15.6 17.2 19.5 22.3 24.0 26.6 29.9 33.0 36.5 40.5
16 14.2 15.7 17.4 19.7 22.4 24.9 27.6 30.4 32.9 34.9 37.4

Median 14.4 15.7 17.5 19.7 22.3 24.8 27.6 30.2 32.5 35.6 37.4


