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Abstract. Addition modulo 231 − 1 is a basic arithmetic operation in
the stream cipher ZUC. For evaluating ZUC’s resistance against linear
cryptanalysis, it is necessary to study properties of linear approximations
of the addition modulo 231 − 1. In this paper we discuss linear approxi-
mations of the addition of k inputs modulo 2n− 1 for n ≥ 2. As a result,
an explicit expression of the correlations of linear approximations of the
addition modulo 2n − 1 is given when k = 2, and an iterative expression
when k > 2. For a class of special linear approximations with all masks
being equal to 1, we further discuss the limit of their correlations when
n goes to infinity. It is shown that when k is even, the limit is equal to
zero, and when k is odd, the limit is bounded by a constant depending
on k.
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1 Introduction

Linear cryptanalysis [1] is one of the most powerful and general cryptanalytic
methods. Its main task is to find linear relations between the inputs and outputs
of target functions. In block ciphers, we usually find some linear relations among
keys, plaintexts and ciphertexts that hold with certain probability. If some plain-
text/ciphertext pairs are known, some bits of the key can be recovered with high
probability [1, 2]. In stream ciphers, linear cryptanalysis is usually combined with
distinguishing cryptanalysis together, and its goal is to establish a linear distin-
guisher to distinguish the keystream generated by the target algorithm from a
random sequence [3, 4].

For both block ciphers and stream ciphers, it is important to find an efficient
method to evaluate their resistance against linear cryptanalysis. Most crypto-
graphic algorithms are usually designed by composing distinct and well chosen
components and operations. Hence we should calculate linear approximations
of those components or operations. The addition modulo 2n, especially when
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n is equal to the length of a computer word, e.g., 8, 16 or 32, is one of the
most common operations, and is widely used in the design of cryptographic al-
gorithms [5–8]. Many results on the addition modulo 2n have been obtained,
see [9–15].

The addition modulo 2n − 1 is another important arithmetic operation [16,
17]. Some properties of the addition modulo 2n−1 have been explored in [18, 19].
However few results on linear approximations on the addition modulo 2n−1 can
be found from public literature. Recently a new stream cipher named ZUC [20],
together with 128-EEA3 and 128-EIA3, has been proposed as the third suite
of LTE encryption and integrity candidates, see [21] for details. In ZUC, the
addition modulo 231−1 is a basic operation since the linear feedback shift register
(LFSR) of ZUC is defined over the prime field F231−1. For evaluating ZUC’s
resistance against linear cryptanalysis, it is necessary to study the properties of
linear approximations of the addition modulo 231 − 1. In this paper, by means
of known results on the addition modulo 2n, we directly derive an expression for
the correlations of arbitrary linear approximations of the addition modulo 2n−1
with two inputs. For the case where more than two inputs are involved, we give
an iterative expression. Moreover, for a class of special linear approximations
with all masks being equal to 1, we discuss the limit of their correlations when
n goes to infinity. Let k be the number of inputs of the addition modulo 2n − 1.
It is shown that when k is even, the limit is equal to zero, and when k is odd,
the limit is a constant depending on k.

The rest of the paper is organized as follows: in section 2, we give the defini-
tions of linear approximations and their correlations and recall some properties
of the addition modulo 2n briefly. In section 3 some basic properties of linear
approximation of the addition modulo 2n− 1 are given, and more properties for
the case k = 2 are given in section 4. In section 5 we further discuss the limit
of linear approximations with all masks being equal to 1. Finally we conclude in
section 6.

2 Preliminaries

2.1 Linear approximation and its correlation

Let n be a positive integer. Denote Z2n the set of integers x such that 0 ≤ x ≤
2n − 1. Given an integer x ∈ Z2n , let

x = x(n−1)x(n−2) · · ·x(0) =
n−1∑

i=0

x(i)2i

be the binary representation of x, where x(i) ∈ {0, 1}. We call x(i) the i-th bit
of x, 0 ≤ i ≤ n − 1. In the rest of the paper, without further specification, we
always denote by x(i) the i-th bit of the integer x in its binary representation.
For arbitrary two integers w, x ∈ Z2n , the inner product of w and x is defined
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as

w · x =
n−1⊕

i=0

w(i)x(i).

Let J be a nonempty subset of Z2n , k be a positive integer and f be a
function from Jk to J . Given k + 1 constants u,w1, · · · , wk ∈ Z2n , the linear
approximation of the function f associated with u,w1, · · · , wk is an approximate
relation of the form

u · f(x1, · · · , xk) =
k⊕

i=1

wi · xi, (1)

and the (k + 1)-tuple (u,w1, · · · , wk) is called a linear mask of f . The efficiency
of the linear approximation (1) is measured by its correlation which is defined
as

corf (u;w1, · · · , wk) = 2 Pr(u · f(x1, · · · , xk) =
k⊕

i=1

wi · xi)− 1

=
1
|J |k

∑

(x1,··· ,xk)∈Jk

(−1)u·f(x1,··· ,xk)⊕Lk
i=1 wi·xi ,

(2)

where the probability is taken over uniformly distributed x1, · · · , xk over J , and
|J | denotes the cardinality of the set J .

2.2 Linear approximations of the addition modulo 2n

In this section we recall some properties of linear approximations of the addition
modulo 2n briefly, for more details please refer to [9, 10].

Denote by ¢ the addition modulo 2n, that is, for any x1, x2 ∈ Z2n , we have
x1 ¢ x2 = (x1 + x2) mod 2n. Let (u,w1, w2) be a linear mask of the addition
¢, and denote by cor¢(u;w1, w2) the correlation of the linear approximation
u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2. From the linear mask (u,w1, w2) we derive a
sequence z = zn−1 · · · z0 as follows

zi = u(i)22 + w
(i)
2 2 + w

(i)
1 , i = 0, 1, · · · , n− 1. (3)

It’s easy to see that 0 ≤ zi ≤ 7 for all 0 ≤ i ≤ n− 1. Define

Mn(u,w1, w2) =
n−1∏

i=0

Azi
, (4)

where Aj (j = 0, 1, · · · , 7) are constant matrices of size 2 × 2 and defined as
follows

A0 =
1
4

(
3 1
1 3

)
, A1 = A2 = −A4 =

1
4

(
1 1
−1 −1

)
,

−A3 = A5 = A6 =
1
4

(
1 −1
−1 1

)
, A7 =

1
4

(
3 −1
1 −3

)
.

Then we have



4 Chunfang Zhou, Xiutao Feng, Chuankun Wu

Theorem 1 ([9]). For any given linear mask (u,w1, w2), let Mn(u,w1, w2) be
defined as above. Set Mn(u,w1, w2) = (Mi,j)0≤i,j≤1. Then we have

Mi,j = Pr(u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j)
− Pr(u · (x1 ¢ x2) 6= w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j),

where c0 is an initial carry bit, and cn is the n-th carry bit of the addition of x1

and x2 with the initial carry bit c0. By convention c0 = 0, and we have

cor¢(u;w1, w2) = M0,0 + M1,0. (5)

Note that for any integers x1 and x2, if c0 = 1, then the addition of x1 and
x2 modulo 2n with the initial carry c0 is equivalent to (x1 + x2 + 1) mod 2n.
Therefore we get the following corollary.

Corollary 1. Let x1¢x2 = x1 ¢ x2 ¢ 1 and (u,w1, w2) be a linear mask of
¢. Denote by cor¢(u;w1, w2) the correlation of the linear approximation u ·
(x1¢x2) = w1 · x1 ⊕ w2 · x2. Then we have

cor¢(u;w1, w2) = M0,1 + M1,1. (6)

3 Some properties on linear approximations of the
addition modulo 2n − 1

In this section we will discuss some properties of linear approximations of the
addition modulo 2n − 1 with k inputs, where we always assume that n ≥ 2 and
k ≥ 2. For consistency with the definition of the addition of the prime field F2n−1

in ZUC [20], here we make the convention that the set of representatives of the
residue class modulo 2n−1 are { 1, 2, · · · , 2n − 1 } instead of { 0, 1, · · · , 2n − 2 }.
It should be pointed out that all results in this paper can induce the correspond-
ing ones in { 0, 1, · · · , 2n − 2 } directly.

Let J = { 1, 2, · · · , 2n − 1 }, and denote by ¢̂ the addition modulo 2n − 1 as
defined in ZUC, more precisely, for any x1, x2 ∈ J , we have

x1¢̂x2 =
{

x1 + x2 if x1 + x2 < 2n,
(x1 + x2 + 1) mod 2n if x1 + x2 ≥ 2n.

(7)

For example, set n = 3, then J = {1, 2, · · · , 7}, and 2¢̂6 = 1, 3¢̂4 = 7.
In the following we consider the addition modulo 2n−1 over J with k inputs.

For any given linear mask (u,w1, · · · , wk), we denote by cor¢̂(u;w1, · · · , wk) the
correlation of the linear approximation

u · (x1¢̂ · · · ¢̂xk) =
k⊕

i=1

wi · xi.

For simplicity we write cor¢̂(u;w1, · · · , wk) as cor(u;w1, · · · , wk).
The following two theorems can easily be derived.
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Theorem 2. For any given linear mask (u,w1, · · · , wk) and any permutation
(i1, · · · , ik) of (1, · · · , k), we have

cor(u;w1, · · · , wk) = cor(u;wi1 , · · · , wik
). (8)

Proof. Define

J(u;w1, · · · , wk) = { (x1, · · · , xk) ∈ Jk | u · (x1¢̂ · · · ¢̂xk) =
k⊕

i=1

wi · xi } .

By the definition of the correlation (see Eqn. (2)), we only need to prove that

|J(u;w1, · · · , wk)| = |J(u;wi1 , · · · , wik
)|. (9)

For any (x1, · · · , xk) ∈ J(u;w1, · · · , wk), we have

u · (¢̂k

j=1xij
) = u · (¢̂k

i=1xi) =
k⊕

i=1

wi · xi =
k⊕

j=1

wij
· xij

,

which shows (xi1 , · · · , xik
) ∈ J(u;wi1 , · · · , wik

), and vice versa. So Eqn. (9)
holds. ¥
Theorem 3. For any given linear mask (u,w1, · · · , wk) and integer ` such that
1 ≤ ` ≤ n− 1, we have

cor(u;w1, · · · , wk) = cor(u ≪ `;w1 ≪ `, · · · , wk ≪ `), (10)

where x ≪ ` denotes the cyclic shift of x ` bits to the left .

Proof. Similarly to the proof of Theorem 2, we only need to prove that

|J(u;w1, · · · , wk)| = |J(u ≪ `;w1 ≪ `, · · · , wk ≪ `)|. (11)

It is easy to see that x ≪ ` ≡ 2`x mod (2n − 1) holds for any x ∈ J , which
means that for any x1, · · · , xk ∈ J , we have

(
k∑

i=1

xi) ≪ ` ≡ 2`
k∑

i=1

xi ≡
k∑

i=1

2`xi ≡
k∑

i=1

(xi ≪ `) mod (2n − 1),

namely, (¢̂k

i=1xi) ≪ ` = ¢̂k

i=1(xi ≪ `).
So for any (x1, · · · , xk) ∈ J(u;w1, · · · , wk), we have

(u ≪ `) · (¢̂k

i=1(xi ≪ `)) = (u ≪ `) · ((¢̂k

i=1xi) ≪ `) = (u · (¢̂k

i=1xi)) ≪ `

= (
k⊕

i=1

wi · xi) ≪ ` =
k⊕

i=1

(wi ≪ `) · (xi ≪ `).

It follows that (x1 ≪ `, · · · , xk ≪ `) ∈ J(u ≪ `;w1 ≪ `, · · · , wk ≪ `),
that is, |J(u;w1, · · · , wk)| ≤ |J(u ≪ `;w1 ≪ `, · · · , wk ≪ `)|. Note that
(x ≪ `) ≪ (n− `) = x for any x ∈ J . By shifting each mask cyclicly n− ` bits
to the left, we have

|J(u ≪ `;w1 ≪ `, · · · , wk ≪ `)| ≤ |J(u;w1, · · · , wk)|.
So Eqn. (11) follows. ¥
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3.1 Addition of two inputs in F2n−1

In this section we will derive an explicit expression of cor(u;w1, w2) for any
linear mask (u,w1, w2) from Theorem 1. For any given linear mask (u,w1, w2),
we keep the notations z, Mn(u,w1, w2) and Mi,j (0 ≤ i, j ≤ 1) defined in section
2.

One can notice that when x1 + x2 < 2n, we have x1¢̂x2 = x1 ¢ x2, and
when x1 + x2 ≥ 2n, we have x1¢̂x2 = x1 ¢ x2 ¢ 1. Thus by Theorem 1 and
Corollary 1, it seems that cor(u;w1, w2) is almost equal to M0,0 + M1,1 if the
difference between Z2n and J is ignored. Below we give an explicit expression
for cor(u;w1, w2).

Theorem 4. Let (u,w1, w2) be a linear mask of the addition ¢̂ modulo 2n − 1,
and Mn(u,w1, w2) = (Mi,j)0≤i,j≤1 be defined as above. Then we have

cor(u;w1, w2) =
22n(M0,0 + M1,1) + 2n · c + 1

(2n − 1)2
, (12)

where

c =





−3, if u = w1 = w2 and wH(w2) is even,
1, if u 6= w1 = w2 and wH(w2) is odd,
0, if u,w1 and w2 are pairwise different,

−1, otherwise,

and wH(w2) denotes the hamming weight of w2 in its binary representation.

Proof. For any given x1, x2 ∈ J , we consider x1¢̂x2 from the following two
aspects.

First, when 0 < x1 +x2 < 2n, it is known that x1¢̂x2 = x1 ¢x2. By Theorem
1, we have

M0,0 =Pr(u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)
− Pr(u · (x1 ¢ x2) 6= w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n).

Since

Pr(u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)
+Pr(u · (x1 ¢ x2) 6= w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n)

=Pr(x1 + x2 < 2n) =
2n + 1
2n+1

,

thus we have

Pr(u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 ∧ 0 ≤ x1 + x2 < 2n) =
1
2
M0,0 +

2n + 1
2n+2

.

It follows that there are 2n−2(2n + 1) + 22n−1M0,0 pairs (x1, x2) satisfying u ·
(x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 and 0 ≤ x1 + x2 < 2n. We consider those pairs of
the form (0, x2). When x1 = 0, we get (u⊕ w2) · x2 = 0 due to u · x2 = w2 · x2.
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It follows that there are 2n−1 solutions x2 if u 6= w2 and 2n solutions if u = w2.
Hence there are 2n−1 pairs of the form (0, x2) among all the above pairs not in
J × J if u 6= w2 and 2n pairs not in J × J if u = w2. By the symmetric position
of x1 and x2, we have the same conclusion for x2 = 0. In addition, the pair (0, 0)
always satisfies u · (x1 ¢ x2) = w1 · x1 ⊕ w2 · x2 but is not in J × J .

Second, when x1 + x2 ≥ 2n, we have x1¢̂x2 = x1 ¢ x2 ¢ 1. Similar to the
above case, there are totally 2n−2(2n + 1) + 22n−1M1,1 pairs (x1, x2) satisfying
both x1 + x2 + 1 ≥ 2n and u · (x1 ¢ x2 ¢ 1) = w1 · x1 ⊕w2 · x2. Now we consider
how to remove some pairs (x1, x2) satisfying x1 + x2 + 1 = 2n from the above
pairs. Note that x1 ¢ x2 ¢ 1 = 0, thus we only need to count pairs (x1, x2) such
that x1 + x2 = 2n − 1 and w1 · x1 = w2 · x2. Since x1 + x2 = 2n − 1 = x1 ⊕ x2,
it follows that

(w1 ⊕ w2) · x1 = w2 · (2n − 1). (13)

If w1 6= w2, Eqn. (13) has 2n−1 solutions; if w1 = w2, when wH(w2) is an odd
number, Eqn. (13) has no solutions, and when wH(w2) is an even number, Eqn.
(13) has 2n solutions.

Denote by d the number of pairs (x1, x2) ∈ Z2n × Z2n which satisfy the
linear approximation defined by mask (u,w1, w2) and x1 = 0 or x2 = 0 or
x1 + x2 = 2n − 1. Combine the above two cases, we have

d =





3 · 2n − 1, if u = w1 = w2 and wH(w2) is even,
2n − 1, if u 6= w1 = w2 and wH(w2) is odd,

3 · 2n−1 − 1, if u,w1 and w2 are pairwise different,
2 · 2n − 1, otherwise.

By the definition of correlation, we have

cor(u;w1, w2)

=2 · (2n−2(2n + 1) + 22n−1M0,0) + (2n−2(2n + 1) + 22n−1M1,1)− d

(2n − 1)2
− 1

=
22n(M0,0 + M1,1) + 3 · 2n − 1− 2d

(2n − 1)2
.

Then we can get the desired conclusion. ¥

3.2 Addition of more than two inputs in F2n−1

In this section we will derive an iterative expression of cor(u;w1, · · · , wk) for
any linear mask (u,w1, · · · , wk). The addition of k inputs x1, · · · , xk can be seen
as the addition of x1¢̂ · · · ¢̂xk−1 and xk.

Theorem 5. For any given linear mask (u,w1, · · · , wk) and integer k > 2, we
have

cor(u;w1, · · · , wk) =
2n − 1

2n

2n−1∑
w=0

cor(w;w1, · · · , wk−1)cor(u;w, wk). (14)
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Proof. By Eqn. (2), we have

cor(u;w1, · · · , wk) =
1

(2n − 1)k

∑

(x1,··· ,xk)∈Jk

(−1)u·(¢̂k

i=1xi)⊕
Lk

i=1 wi·xi .

Denote y = x1¢̂ · · · ¢̂xk−1. Then we have

2n−1∑
w=0

cor(w;w1, · · · , wk−1)cor(u;w, wk)

=
1

(2n − 1)k+1

2n−1∑
w=0

∑

(x1,··· ,xk−1)∈Jk−1

(z,xk)∈J2

(−1)w·y⊕Lk−1
i=1 wi·xi(−1)u·(z¢̂xk)⊕w·z⊕wk·xk

=
1

(2n − 1)k+1

∑

(x1,··· ,xk,z)∈Jk+1

(−1)u·(z¢̂xk)⊕Lk
i=1 wi·xi

2n−1∑
w=0

(−1)w·z⊕w·y

Note that
2n−1∑
w=0

(−1)w·z⊕w·y =
{

2n, if z = y,
0, if z 6= y.

Then we have
2n−1∑
w=0

cor(w;w1, · · · , wk−1)cor(u;w, wk)

=
2n

(2n − 1)k+1

∑

(x1,··· ,xk)∈Jk

(−1)u·(y¢̂xk)⊕Lk
i=1 wi·xi

=
2n

2n − 1
cor(u;w1, · · · , wk).

¥

4 More properties of linear approximations of the
addition modulo 2n − 1 with two inputs

In this section we will provide more properties of linear approximations of the
addition modulo 2n− 1 with two inputs, that is, k = 2. First we introduce some
notations and concepts.

Let Q be the rational field. Define

I =
{(

a b
b a

)
|a, b ∈ Q

}
,

II =
{(

a −b
b −a

)
|a, b ∈ Q

}
,
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and call a matrix in the set I (or II) to be type-I (or type-II). It is easy to see
that A0, A3, A5, A6 ∈ I and A1, A2, A4, A7 ∈ II (which are defined in section 2).
The following two properties can easily be verified.

Lemma 1. The product of arbitrary two type-I (or type-II) matrices is a type-I
matrix.

Lemma 2. The product of a type-I matrix and a type-II matrix is a type-II
matrix.

By the definition of Mn(u,w1, w2) and Lemmas 1 and 2, we have

Lemma 3. For any given linear mask (u,w1, w2), Mn(u,w1, w2) is either type-I
or type-II.

For any given square matrix M , denote by Tr(M) the trace of the matrix
M , that is, the sum of elements on the main diagonal of M . Since the trace of
an arbitrary type-II matrix is zero, thus the following conclusions hold.

Corollary 2. For any given linear mask (u,w1, w2), let z = zn−1 · · · z0 be the
sequence derived from (u,w1, w2) by the formula (3). If the number of elements zi

such that zi ∈ {1, 2, 4, 7} is odd, i = 0, 1, · · · , n−1, then Tr(Mn(u,w1, w2)) = 0.

Corollary 3. Let u ∈ Z2n and wH(u) be odd. Then Tr(Mn(u, u, u)) = 0. Thus
we have

cor(u;u, u) = − 1
2n − 1

and
lim

n→∞
cor(u;u, u) = 0.

Corollary 4. Let u ∈ Z2n and wH(u) be even. Then Mn(u, u, u) is type-I, that
is, M0,0 = M1,1. Thus we have

cor(u;u, u) =
22n · 2M0,0 − 3 · 2n + 1

(2n − 1)2
.

If all 1’s of u in the binary representation are adjacent, then we have

cor(u;u, u) =
22n · (2wH(u)

2 −n + 2−
wH(u)

2 )− 3 · 2n + 1
(2n − 1)2

and
lim

n→∞
cor(u;u, u) = 2−

wH(u)
2 .

Proof. By Theorem 3, we only need to consider the masks whose binary ex-
pression be of the form (0, · · · , 0︸ ︷︷ ︸

n−wH(u)

1, · · · , 1︸ ︷︷ ︸
wH(u)

). Then Mn(u, u, u) = A
n−wH(u)
0 A

wH(u)
7 .

Denote by I2 the 2 × 2 identity matrix. It is easy to see that A2
7 = 1

2I2. Since
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wH(u) is even, we have A
wH(u)
7 = 2−

wH(u)
2 I2. So Mn(u, u, u) = 2−

wH(u)
2 A

n−wH(u)
0 .

Since A0 is a symmetric matrix of the form
(

a b
b a

)
, it is easily proved by induc-

tion that
(

a b
b a

)t

=
1
2

(
(a + b)t + (a− b)t (a + b)t − (a− b)t

(a + b)t − (a− b)t (a + b)t + (a− b)t

)

for t≥ 1. Then we have Tr(An−wH(u)
0 ) = 1 + 2wH(u)−n. So Tr(Mn(u, u, u)) =

2−
wH(u)

2 Tr(An−wH(u)
0 ) = 2−

wH(u)
2 + 2

wH(u)
2 −n, and the conclusion follows.

¥

Below we give some facts on Ai, 0 ≤ i ≤ 7, which will be used later.

Lemma 4. 1. A0Ai = 1
2Ai, for ∀ i ∈ {1, 2, 3, 4, 5, 6};

2. AiA0 = Ai if i ∈ {1, 2, 4} and AiA0 = 1
2Ai if i ∈ {3, 5, 6};

3. AiAj = 0, i ∈ {1, 2, 4} and j ∈ {1, 2, 3, 4, 5, 6};
4. A1A7 = A2A7 = −A4A7 = A6.

Now we consider a class of special linear masks (u, 1, w). Let z = zn−1 · · · z0

be the sequence derived from (u, 1, w). It is easy to see that z0 ∈ { 1, 3, 5, 7 }
and zi ∈ { 0, 2, 4, 6 }, 1 ≤ i ≤ n− 1. In the rest of the paper we simply write M
instead of Mn(u, 1, w).

Lemma 5. For any integers u,w ∈ Z2n , if Tr(M) 6= 0, then the sequence z is
of the form either {0, 6}n−1{3, 5} or {0, 6}∗{2, 4}0∗7.
Proof. Let r be the number of zi such that zi ∈ { 2, 4 }, i = 1, 2, · · · , n − 1. We
first prove that r ≤ 1. Assume that r > 1. Then there exist two indexes i and j
such that zi, zj ∈ { 2, 4 }, 1 ≤ i < j ≤ n− 1. By Items 2 and 3 of Lemma 4, we
have Azi · · ·Azj = 0. It follows that M = 0, which contradicts Tr(M) 6= 0.

When r = 0, if z0 ∈ { 1, 7 }, by Corollary 2, it is known that the matrix M
is of type-II, which contradicts Tr(M) 6= 0 as well. Thus z0 ∈ { 3, 5 }. So z is of
the form {0, 6}n−1{3, 5}.

When r = 1, let zj ∈ { 2, 4 }, where 1 ≤ j ≤ n − 1. First we claim that
zi = 0 for all 1 ≤ i < j. If there exists some index i such that zi 6= 0, by Items
2 and 3 of Lemma 4, we have Azi · · ·Azj = 0, furthermore M = 0, which is a
contradiction. Second, if z0 ∈ { 1, 3, 5 }, by Items 2 and 3 of Lemma 4, we have
Az0 · · ·Azi

= 0. So z is of the form {0, 6}∗{2, 4}0∗7. ¥

Theorem 6. For any integers u,w ∈ Z2n , Tr(M) 6= 0 if and only if u = w⊕2i,
where 0 ≤ i ≤ LNB(w⊕ 1), LNB(x) denotes the least index where 1 appears in
the binary representation of x if x 6= 0, and LNB(0) = n− 1.

Proof. The necessity follows directly from Lemma 5. Below we prove the suf-
ficiency. First we prove that Tr(At

6) = 2−t for any t ≥ 1. In fact, it is easy
to calculate two characteristic roots 0 and 2−1 of A6. Thus we have Tr(At

6) =
0t + (2−1)t = 2−t.
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If i = 0, i.e., u = w ⊕ 1, then z is of the form {0, 6}n−1{3, 5}. Let t be the
number of zi such that zi = 6, i = 1, 2, · · · , n − 1. Then 0 occurs in zn−1 · · · z1

for n− 1− t times. Thus by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · ·Az0)

= Tr(2−(n−1−t)At
6Az0)

= (−1)w2−(n−1−t)Tr(At+1
6 )

= (−1)w2−(n−1−t)2−(t+1)

= (−1)w2−n.

If i > 0, then z is of the form {0, 6}∗{2, 4}0∗7 and zi ∈ { 2, 4 }. Let t be the
number of repetitions of 6 appearing in zn−1 · · · zi+1. Then by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · ·Az0)

= Tr(2−(n−1−i−t)At
6AziA7)

= (−1)s2−(n−1−i−t)Tr(At+1
6 )

= (−1)s2−(n−1−i−t)2−(t+1)

= (−1)s2−(n−i),

where s = w(i) ⊕ 1. ¥

Theorem 6 gives a sufficient and necessary condition for judjing whether or
not M is of type-II for any linear mask (u, 1, w). From its proof we can get the
following result.

Corollary 5. For any integers u,w ∈ Z2n such that u = w ⊕ 2i, where 0 ≤ i ≤
LNB(w ⊕1), we have Tr(M) = (−1)s2−(n−i), where

s =
{

0 if i = 0 and w(0) = 0 or i > 0 and w(i) = 1,
1 otherwise.

By Theorem 4 and Corollary 5, we can derive the following corollary.

Corollary 6. The correlation of the linear approximation of addition in F2n−1

with a mask of the form (w, 1, 1) is given by

cor(w; 1, 1) =





1
(2n−1)2 if w = 0,

− 1
2n−1 if w = 1,

−2n+i+2n+1
(2n−1)2 if w = 2i + 1, 1 ≤ i ≤ n− 1,

2n+1
(2n−1)2 otherwise.

When the mask is of the form (1, w, 1), the correlation is given by

cor(1;w, 1) =





1
(2n−1)2 if w = 0,
2n+i−2n+1

(2n−1)2 if w = 2i + 1, 1 ≤ i ≤ n− 1,

− 1
2n−1 otherwise.
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Finally we give an upper bound of |cor(u; 1, w)|. For any given integer x ∈
Z2n , define

Jx = {x⊕ 2i|1 ≤ i ≤ LNB(x⊕ 1)}.

Theorem 7. For any integers u,w ∈ Z2n , if w /∈ Ju, then

|cor(u; 1, w)| < 3
2n − 1

. (15)

Proof. If w 6= u⊕1, by Theorem 6, we have Tr(M) = 0, that is, M0,0+M1,1 = 0.
If u = w = 1, Eqn. (15) follows directly from Corollary 6. If u 6= w, by Theorem 4
we have

|cor(u; 1, w)| ≤ 2n + 1
(2n − 1)2

<
3

2n − 1
.

If w = u⊕ 1, by Corollary 5 and Theorem 4, we have

|cor(u; 1, w)| ≤ 22n · 2−n + 2n + 1
(2n − 1)2

=
2 · 2n + 1
(2n − 1)2

<
3

2n − 1
.

¥

5 The limit of cor(1; 1k) for the addition in F2n−1 when
n → ∞

In this section we will discuss the limit of correlations cor(u;u, · · · , u︸ ︷︷ ︸
k

) when n

goes to infinity, where wH(u) = 1. By Theorem 3, it is known that cor(u;u, · · · , u︸ ︷︷ ︸
k

)

= cor(1; 1, · · · , 1︸ ︷︷ ︸
k

). So below we only consider cor(1; 1, · · · , 1︸ ︷︷ ︸
k

). For simplicity, we

denote it by cor(1; 1k).

Lemma 6. For any integers n ≥ 2 and k ≥ 2, we have
∑

u∈Z2n

|cor(u; 1k)| < (n + 3)k−1.

Proof. Note that |Jx| ≤ n for all x ∈ Z2n . When k = 2, by Theorem 7, we have
∑

u∈Z2n

|cor(u; 1, 1)| =
∑

u∈J1

|cor(u; 1, 1)|+
∑

u/∈J1

|cor(u; 1, 1)|

≤
∑

u∈J1

1 +
3

2n − 1

∑

u/∈J1

1 < n + 3.

Suppose that when k = k0, we have
∑

u∈Z2n

|cor(u; 1k0)| < (n + 3)k0−1. Then
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∑

u∈Z2n

|cor(u; 1k0+1)|

=
2n − 1

2n

∑

u∈Z2n

|
∑

w∈Z2n

cor(w; 1k0)cor(u;w, 1)|

<
∑

u∈Z2n

∑

w∈Z2n

|cor(w; 1k0)cor(u;w, 1)|

=
∑

u∈Z2n

(
∑

w∈Ju

|cor(w; 1k0)cor(u;w, 1)|+
∑

w/∈Ju

|cor(w; 1k0)cor(u;w, 1)|)

<
∑

u∈Z2n

∑

w∈Ju

|cor(w; 1k0)|+ 3
2n − 1

∑

u∈Z2n

∑

w/∈Ju

|cor(w; 1k0)|

< n · (n + 3)k0−1 +
3

2n − 1
· (2n − 1) · (n + 3)k0−1

= (n + 3)k0 .

By induction the conclusion of the theorem holds. ¥

Lemma 7. For any integer t ≥ 1 and i ≥ 2, we have

lim
n→∞

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑

ut /∈Jut−1

cor(ut; 1i)
t∏

j=1

cor(uj−1;uj , 1) = 0,

where u0 = 1.

Proof. By Lemma 6 and Theorem 7, we have
∣∣∣∣∣∣

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑

ut /∈Jut−1

cor(ut; 1i)
t∏

j=1

cor(uj−1;uj , 1)

∣∣∣∣∣∣

<
3

2n − 1

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑

ut /∈Jut−1

|cor(ut; 1i)
t−1∏

j=1

cor(uj−1;uj , 1)|

≤ 3
2n − 1

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑

ut /∈Jut−1

|cor(ut; 1i)|

<
3

2n − 1
(n + 3)i−1

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

ut−1∈Jut−2

1

<
3

2n − 1
(n + 3)i−1nt−1.

Since 3
2n−1 (n + 3)i−1nt−1 approaches 0 when n approaches infinity, thus the

conclusion holds. ¥
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Lemma 8. For any integer k ≥ 3, if lim
n→∞

cor(1; 1k) exists, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏

j=1

cor(uj−1;uj , 1),

where u0 = uk−1 = 1.

Proof.

lim
n→∞

cor(1; 1k)

= lim
n→∞

∑

u1∈Z2n

cor(u1; 1k−1)cor(1;u1, 1)

= lim
n→∞

(
∑

u1∈J1

+
∑

u1 /∈J1

)cor(u1; 1k−1)cor(1;u1, 1)

= lim
n→∞

∑

u1∈J1

cor(u1; 1k−1)cor(1;u1, 1) (by Lemma 7)

= lim
n→∞

∑

u1∈J1

∑

u2∈Z2n

cor(u2; 1k−2)cor(u1;u2, 1)cor(1;u1, 1)

= lim
n→∞

∑

u1∈J1

(
∑

u2∈Ju1

+
∑

u2 /∈Ju1

)cor(u2; 1k−2)cor(u1;u2, 1)cor(1;u1, 1)

= lim
n→∞

∑

u1∈J1

∑

u2∈Ju1

cor(u2; 1k−2)cor(u1;u2, 1)cor(1;u1, 1) (by Lemma 7)

= lim
n→∞

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏

j=1

cor(uj−1;uj , 1).

¥

Theorem 8. For any integer k ≥ 3, if lim
n→∞

cor(1; 1k) exists, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−1∈Juk−2

k−1∏

j=1

Tr(Mn(uj−1, uj , 1)),

where u0 = uk−1 = 1.

Proof. Recall that A1 = A2 and A5 = A6, then it is easily proved that for arbi-
trary two integers u,w ∈ Z2n , the matrices sequence derived from (u, 1, w) is the
same with the matrices sequence derived from (u,w, 1). So we have Mn(u, 1, w) =
Mn(u,w, 1). By Theorem 4, Theorem 6 and Corollary 5, we have

cor(u;w, 1) = Tr(Mn(u,w, 1)) +
δ(u,w, 1)
2n − 1

,



Linear Approximations of Addition Modulo 2n-1 15

where

|δ(u,w, 1)| =
∣∣∣∣
(2n+1 − 1)Tr(Mn(u,w, 1)) + 2n · c + 1

2n − 1

∣∣∣∣

≤ (2n+1 − 1)|Tr(Mn(u, 1, w))|+ 2n · |c|+ 1
2n − 1

≤ (2n+1 − 1) + 2n · 3 + 1
2n − 1

< 7.

Then

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏

j=1

cor(uj−1;uj , 1)

=
∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

(Tr(Mn(u0, u1, 1)) +
δ(u0, u1, 1)

p
)

k−1∏

j=2

cor(uj−1;uj , 1)

= A + B,

where

A =
∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

Tr(Mn(u0, u1, 1))
k−1∏

j=2

cor(uj−1;uj , 1)

and

B =
∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

δ(u0, u1, 1)
2n − 1

k−1∏

j=2

cor(uj−1;uj , 1).

Since

|B| ≤ 7
2n − 1

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

|
k−2∏

j=2

cor(uj−1;uj , 1)|

≤ 7
2n − 1

∑

u1∈J1

∑

u2∈Ju1

· · ·
∑

uk−2∈Juk−3

1

≤ 7
2n − 1

nk n→∞−−−−→ 0,

thus we have

lim
n→∞

cor(1; 1k) = lim
n→∞

A.

Repeat the above procedure, and we always strip δ(uj−1,uj ,1)
2n−1 from cor(uj−1;uj , 1),

j = 2, 3, · · · , k − 1. Then finally we can get the desired conclusion. ¥



16 Chunfang Zhou, Xiutao Feng, Chuankun Wu

Corollary 7. lim
n→∞

cor(1; 12) = 0 and lim
n→∞

cor(1; 13) = − 1
3 .

Proof. Since Mn(1, 1, 1) = An−1
0 A7 is of type-II, thus Tr(Mn(1, 1, 1)) = 0, fur-

thermore we have lim
n→∞

cor(1; 1, 1) = 0. By Theorem 8 and Corollary 6, we have

lim
n→∞

cor(1; 13)

= lim
n→∞

∑

u∈J1

Tr(Mn(u, 1, 1))Tr(Mn(1, u, 1))

= lim
n→∞

n−1∑

i=1

Tr(Mn(2i + 1, 1, 1))Tr(Mn(1, 2i + 1, 1))

= lim
n→∞

n−1∑

i=1

(−2−(n−i)) · 2−(n−i)

= − lim
n→∞

n−1∑

i=1

4−(n−i) = −1
3
.

¥
In order to deal with the general case lim

n→∞
cor(1; 1k), for a given integer

k ≥ 3, we define

Uk = {u0u1u2 · · ·uk−2uk−1|uj ∈ Juj−1 , 1 ≤ j ≤ k − 1, uk−1 = u0 = 1}. (16)

Then Theorem 8 can also be written as:

Theorem 9. For given integer k ≥ 3, if lim
n→∞

cor(1; 1k) exists, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑

u0u1···uk−1∈Uk

k−1∏

j=1

Tr(Mn(uj−1, uj , 1)).

For any string u0u1u2 · · ·uk−2uk−1 ∈ Uk, by the definition of Juj−1 , we have
uj > 0 for 0 ≤ j ≤ k − 1, and there is only one bit in uj different from
uj−1, that is, wH(uj−1) − wH(uj) = ±1. Note that wH(u0) = 1 is odd, thus
wH(u2), wH(u4), · · · are all odd and wH(u1), wH(u3), · · · are all even.

When k is even, it is known that wH(uk−1) is even, which contradicts uk−1 =
1. It follows that Uk = ∅. Hence we have the following conclusion.

Theorem 10. For any even positive integer k, we have lim
n→∞

cor(1; 1k) = 0.

When k is odd, set u2j = 1 and u2j+1 = 2n−1 + 1 for 0 ≤ j ≤ k−1
2 . Then

u0 · · ·uk−2uk−1 ∈ Uk. It shows that Uk 6= ∅. For all odd integer k, we define

Ik = {i1i2 · · · ik−1|2ij = uj ⊕ uj−1, u0 · · ·uk−2uk−1 ∈ Uk},

Ik,d = {i1i2 · · · ik−1|d =
k−1∑

j=1

ij , i1i2 · · · ik−1 ∈ Ik},

and denote Nk,d = |Ik,d|.
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Theorem 11. For any odd integer k ≥ 3, we have

∑

u0u1···uk−1∈Uk

k−1∏

j=1

Tr(Mn(uj−1, uj , 1)) = (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑

d=k−1

Nk,d · 2d.

Proof. For any u0 · · ·uk−1 ∈ Uk, by Corollary 5, when wH(uj)− wH(uj−1) = 1,
the sign of Tr(Mn(uj−1, uj , 1)) is positive, and when wH(uj)−wH(uj−1) = −1,
the sign of Tr(Mn(uj−1, uj , 1)) is negative. So the sign of

∏k−1
j=1 Tr(Mn(uj−1, uj , 1))

is the same as that of
∏k−1

j=1 (wH(uj) − wH(uj−1)). Note that
∑k−1

j=1 (wH(uj) −
wH(uj−1)) = 0. It follows that the number of j such that wH(uj)−wH(uj−1) = 1
is equal to that of j such that wH(uj) − wH(uj−1) = −1. Thus the sign of∏k−1

j=1 Tr(Mn(uj−1, uj , 1)) equals (−1)
k−1
2 . Then we have

∑

u0···uk−1∈Uk

k−1∏

j=1

Tr(Mn(uj−1, uj , 1))

= (−1)
k−1
2

∑

i1i2···ik−1∈Ik

k−1∏

j=1

2−(n−ij)

= (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑

d=k−1

Nk,d · 2d.

¥

Theorem 12. For any odd integer k ≥ 3, if lim
n→∞

cor(1; 1k) exists, then

1. lim
n→∞

cor(1; 1k) ≥ 1
32−(k−3), if k ≡ 1 mod 4;

2. lim
n→∞

cor(1; 1k) ≤ − 1
32−(k−3), if k ≡ 3 mod 4.

Proof. For any given u0 · · ·uk−1 ∈ Uk, denote 2ij = uj ⊕ uj−1, 1 ≤ j ≤ k − 1.
Then i1i2 · · · ik−1 ∈ Ik. Note that 2i1 ⊕ 2i2 ⊕ · · · ⊕ 2ik−1 =

⊕k−1
j=1 (uj ⊕ uj−1) =

0, which means that i1, i2, · · · , ik−1 can be divided into two identical sets. So
d =

∑k−1
j=1 ij is always even. Note that 1 ≤ ij ≤ n − 1, thus k − 1 ≤ d ≤

(k− 1)(d− 1). In addition, by the definition of Ik and Ik,d, for any even integer
k − 1 ≤ d ≤ (n − 1)(k − 1), it is easy to verify that there exist i1, i2, · · · , ik−1

such that i1i2 · · · ik−1 ∈ Ik,d, that is, Nk,d ≥ 1. For example, when d = k − 1,
set ij = 1 for 1 ≤ j ≤ k − 1, then i1 · · · ik−1 ∈ Ik,k−1; when d = (k − 1)(n− 1),
set ij = n− 1 for 1 ≤ j ≤ k− 1, then i1 · · · ik−1 ∈ Ik,(k−1)(n−1). By Theorem 11,
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we have

| lim
n→∞

cor(1; 1k)|

= lim
n→∞

2−(k−1)n

(k−1)(n−1)/2∑

d=(k−1)/2

Nk,2d22d

≥ lim
n→∞

2−(k−1)n

(k−1)(n−1)/2∑

d=(k−1)/2

22d

= lim
n→∞

2−(k−1)n 2(k−1)(n−1)+2 − 2k−1

22 − 1

=
1
3
2−(k−3).

¥

6 Conclusion

In this paper we discussed some properties of linear approximations of the addi-
tion modulo 2n − 1. We presented an explicit expression for the case when two
inputs are involved, and an iterative expression for the case when more than two
inputs are involved. For a class of special linear approximations with all masks
being equal to 1, we further discussed the limit of their correlations when n ap-
proaches infinity. More precisely, let k be the number of inputs of the addition
modulo 2n−1, we show that when k is even, the limit is equal to zero, and when
k is odd, the limit is bounded by a constant depending on k.

Finally when both n and k approach infinity, we have a conjecture on cor(1; 1k).

Conjecture 1. lim
k→∞

lim
n→∞

cor(1; 1k) = 0.
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