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Abstract. Addition modulo 23* — 1 is a basic arithmetic operation in
the stream cipher ZUC. For evaluating ZUC'’s resistance against linear
cryptanalysis, it is necessary to study properties of linear approximations
of the addition modulo 23! — 1. In this paper we discuss linear approxi-
mations of the addition of k inputs modulo 2™ — 1 for n > 2. As a result,
an explicit expression of the correlations of linear approximations of the
addition modulo 2™ — 1 is given when k£ = 2, and an iterative expression
when k£ > 2. For a class of special linear approximations with all masks
being equal to 1, we further discuss the limit of their correlations when
n goes to infinity. It is shown that when k is even, the limit is equal to
zero, and when k is odd, the limit is bounded by a constant depending
on k.
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1 Introduction

Linear cryptanalysis [1] is one of the most powerful and general cryptanalytic
methods. Its main task is to find linear relations between the inputs and outputs
of target functions. In block ciphers, we usually find some linear relations among
keys, plaintexts and ciphertexts that hold with certain probability. If some plain-
text/ciphertext pairs are known, some bits of the key can be recovered with high
probability [1, 2]. In stream ciphers, linear cryptanalysis is usually combined with
distinguishing cryptanalysis together, and its goal is to establish a linear distin-
guisher to distinguish the keystream generated by the target algorithm from a
random sequence [3, 4].

For both block ciphers and stream ciphers, it is important to find an efficient
method to evaluate their resistance against linear cryptanalysis. Most crypto-
graphic algorithms are usually designed by composing distinct and well chosen
components and operations. Hence we should calculate linear approximations
of those components or operations. The addition modulo 2", especially when
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n is equal to the length of a computer word, e.g., 8, 16 or 32, is one of the
most common operations, and is widely used in the design of cryptographic al-
gorithms [5-8]. Many results on the addition modulo 2™ have been obtained,
see [9-15].

The addition modulo 2™ — 1 is another important arithmetic operation [16,
17]. Some properties of the addition modulo 2" —1 have been explored in [18, 19].
However few results on linear approximations on the addition modulo 2™ —1 can
be found from public literature. Recently a new stream cipher named ZUC [20],
together with 128-EEA3 and 128-EIA3, has been proposed as the third suite
of LTE encryption and integrity candidates, see [21] for details. In ZUC, the
addition modulo 23! —1 is a basic operation since the linear feedback shift register
(LFSR) of ZUC is defined over the prime field Fosi_;. For evaluating ZUC’s
resistance against linear cryptanalysis, it is necessary to study the properties of
linear approximations of the addition modulo 23! — 1. In this paper, by means
of known results on the addition modulo 2", we directly derive an expression for
the correlations of arbitrary linear approximations of the addition modulo 2™ —1
with two inputs. For the case where more than two inputs are involved, we give
an iterative expression. Moreover, for a class of special linear approximations
with all masks being equal to 1, we discuss the limit of their correlations when
n goes to infinity. Let k& be the number of inputs of the addition modulo 2™ — 1.
It is shown that when k is even, the limit is equal to zero, and when k is odd,
the limit is a constant depending on k.

The rest of the paper is organized as follows: in section 2, we give the defini-
tions of linear approximations and their correlations and recall some properties
of the addition modulo 2" briefly. In section 3 some basic properties of linear
approximation of the addition modulo 2™ — 1 are given, and more properties for
the case k = 2 are given in section 4. In section 5 we further discuss the limit
of linear approximations with all masks being equal to 1. Finally we conclude in
section 6.

2 Preliminaries

2.1 Linear approximation and its correlation

Let n be a positive integer. Denote Zs» the set of integers x such that 0 < z <
2" — 1. Given an integer x € Zon, let

n—1
2 = 22 O _ §7 @y
1=0

be the binary representation of x, where z(*) {0,1}. We call 2 the i-th bit
of x, 0 < i < n — 1. In the rest of the paper, without further specification, we
always denote by z(? the i-th bit of the integer z in its binary representation.
For arbitrary two integers w,x € Zan, the inner product of w and x is defined
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as
n—1
w-x = @w(i)x(i).
i=0
Let J be a nonempty subset of Zsn, k be a positive integer and f be a
function from J* to J. Given k + 1 constants u,wy, - ,wy € Zon, the linear
approximation of the function f associated with u,ws,--- ,wy is an approximate

relation of the form .
w- flar, - an) = Pwi - a, 1)
i=1

and the (k + 1)-tuple (u,wy, - ,wy) is called a linear mask of f. The efficiency
of the linear approximation (1) is measured by its correlation which is defined
as
k
cory(uywy, - ,wg) =2Pr(u- f(z1, - ,2) = @wi cxy) — 1
= 2
= | 1|k Z (—1)“'1“(9017"'wk)@@f:lw"”“?

(1, ,zK)EJTE
where the probability is taken over uniformly distributed x4, --- ,x) over J, and
|J| denotes the cardinality of the set J.

2.2 Linear approximations of the addition modulo 2™

In this section we recall some properties of linear approximations of the addition
modulo 2" briefly, for more details please refer to [9, 10].

Denote by H the addition modulo 2", that is, for any x1,xs € Zon, we have
x1 Bxze = (21 + 22) mod 2". Let (u,w;,ws) be a linear mask of the addition
B, and denote by corgm(u;wi,ws) the correlation of the linear approximation
u- (z1 Bag) = wy - 21 ® wy - x2. From the linear mask (u,wr,ws) we derive a
sequence z = z,_1 - - - 2o as follows

zi=uP22 4 w2+ 0w =01, n—1 (3)
It’s easy to see that 0 < z; < 7 for all 0 < ¢ < n — 1. Define
n—1
M, (u,wy,wp) = [ A (4)
i=0
where A; (j = 0,1,---,7) are constant matrices of size 2 x 2 and defined as

follows

1/31 1 1 1

1 1 -1 1/3-1
e () (0,

Then we have
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Theorem 1 ([9]). For any given linear mask (u,wy,ws), let M, (u, w1, ws) be
defined as above. Set M, (u, w1, ws) = (M; j)o<ij<1. Then we have

M;;=Pr(u-(r1Bze) =w1 -1 S wa- 22N ey, =i Aco =j)
—Pr(u-(xlEng)#wl-ml@wz-m/\cn:i/\cozj)a

where ¢y is an initial carry bit, and ¢, is the n-th carry bit of the addition of x1
and xo with the initial carry bit co. By convention ¢y = 0, and we have

cormg (u; wi, ’wg) = M())() =+ Ml)(). (5)

Note that for any integers x; and xs, if ¢cg = 1, then the addition of xz; and
xo modulo 2™ with the initial carry c¢g is equivalent to (z1 + x2 + 1) mod 2.
Therefore we get the following corollary.

Corollary 1. Let r1Bry = 21 Bags B 1 and (u, w1, ws) be a linear mask of
H. Denote by corg(u;wy,ws) the correlation of the linear approzimation u -
(x1Hx2) = w1 - 1 ® wy - x2. Then we have

corg(u;wi, wz) = Mo,1 + M 1. (6)

3 Some properties on linear approximations of the
addition modulo 2™ — 1

In this section we will discuss some properties of linear approximations of the
addition modulo 2™ — 1 with k inputs, where we always assume that n > 2 and
k > 2. For consistency with the definition of the addition of the prime field Fon_4
in ZUC [20], here we make the convention that the set of representatives of the
residue class modulo 2" — 1 are {1,2,--- ,2" — 1} instead of {0,1,--- ,2" — 2 }.
It should be pointed out that all results in this paper can induce the correspond-
ing ones in {0,1,---,2™ — 2} directly.

Let J={1,2,---,2" — 1}, and denote by B the addition modulo 2" — 1 as
defined in ZUC, more precisely, for any x1,zs € J, we have

T A ) if 1 + a9 < 27,
vy = { (1 + 22+ 1) mod 2™ if 21 + xo > 2™, (7)

For example, set n = 3, then J = {1,2,---,7}, and 2806 = 1, 34 = 7.

In the following we consider the addition modulo 2" — 1 over J with k inputs.
For any given linear mask (u,ws,- - ,wy), we denote by corg (u; w1, - -+ ,wy) the
correlation of the linear approximation

k
i=1

For simplicity we write corg(u;wy,--- ,wy) as cor(u;wy, - -+, wg).
The following two theorems can easily be derived.
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Theorem 2. For any given linear mask (u,w1,--- ,wy) and any permutation
(i1, -+ ,i) of (1,--- , k), we have

cor(u;wy, -+ ,Wg) = cor(U; Wy, -+ , Wy, ). (8)

Proof. Define
k
J(uywy, - wg) = { (x1,- -, xp) GJ’“|u~(x1EH---EExk):@wi~xi}.
i=1

By the definition of the correlation (see Eqn. (2)), we only need to prove that
|J(U;w1>"'vwk)|:|'](u§wi17""wik)|' (9)

For any (z1,--- , k) € J(u;wy, -+ ,wy), we have

k k
Ny ~k
u- (B2,) =u- (B;2y2) = @wi Sx = @w” ST,
i=1 j=1

which shows (z;,, -+ ,2;,) € J(u;wgy, -+ ,w;, ), and vice versa. So Eqn. (9)
holds. ]
Theorem 3. For any given linear mask (u, w1, -+ ,wx) and integer £ such that

1<?¢<n-—1, we have

cor(u;wy, - ,wg) = cor(u K Lw, KL, ,wp K XL), (10)
where x <& £ denotes the cyclic shift of x € bits to the left .
Proof. Similarly to the proof of Theorem 2, we only need to prove that

|J(wwi, - we)| = |J(u <K Gwy 4w <K L) (11)
It is easy to see that r <& ¢ = 2’z mod (2" — 1) holds for any 2 € J, which
means that for any x1,--- ,zx € J, we have
k k k k
(Z ) < =2 le = Z 2y, = Z(mi <« ) mod (2" - 1),
i=1 i=1 i=1 i=1
K ~k
namely, (H,_,z;) < { =H,_,(z; K 0).
So for any (z1,--- ,xk) € J(u;wy, -+ ,wy), we have
~k ~k ~k
(u l) (B (v )= (u ) (B_yz;) < l) = (u- (B_x;)) KL
k k
= (P uwi-z) < t=Pw < 0) (z; < 0).
i=1 i=1

It follows that (7 <€ £,-- 2 K {) € J(u &K Liwy &K L, w, < L),
that is, |J(u;wy, -, wi)| < |[J(lu < Gwy < £, ,wp <& {£)]. Note that
(x < f) « (n—{) =z for any x € J. By shifting each mask cyclicly n — £ bits
to the left, we have

|J(u << Gwy << Ly < 0| < [T (usway - wy)|.

So Eqn. (11) follows. |
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3.1 Addition of two inputs in Fan_4

In this section we will derive an explicit expression of cor(u;w;,ws) for any
linear mask (u, w7, ws) from Theorem 1. For any given linear mask (u, w1, ws2),
we keep the notations z, M, (u, w;, ws) and M;; (0<14,5 < 1) defined in section
2.

One can notice that when xy + x2 < 2", we have a:lEExQ = x1 H x5, and
when z1 + o > 2", we have xlgﬂxg = x1 H x5 H 1. Thus by Theorem 1 and
Corollary 1, it seems that cor(u;ws,ws) is almost equal to My + My 1 if the
difference between Zs» and J is ignored. Below we give an explicit expression
for cor(u;wy,ws).

Theorem 4. Let (u,w,ws) be a linear mask of the addition B modulo 2" —1,
and M, (u, w1, w2) = (M; j)o<i <1 be defined as above. Then we have

22n(M0’0 —+ Ml,l) + 2” - C + ].
@ - 1) ’

cor(u; wy,wy) = (12)

where
=3, ifu=w =ws and wy(ws) is even,
1, if u# w; = wy and wy(ws) is odd,
0, ifu,wy and wy are pairwise different,
, otherwise,

and wy(wz) denotes the hamming weight of wa in its binary representation.

Proof. For any given x1,22 € J, we consider z,Hz, from the following two
aspects.

First, when 0 < x1 +z5 < 27, it is known that xlEEIJ;Q = x1Hxzy. By Theorem
1, we have

M070 :PI'(U'(ZL’l EExg):w1~:c1@w2~:c2/\0§:c1+x2<2”)
—Pr(u-(l‘laal‘g)#w1'$1®’LU2'1‘2/\0§I1+$2<2n).

Since

Pr(u-(x1Bxe) =wy - x1 Dwy - 22 A0 < 21 + 22 < 27)
+Pr(u-(x1Elﬂx2);éwyxl@wg-xg/\ogxl—i-aﬁg<2”)
2"+ 1

ZPI'(.%'l + 2o < 2”) = W7

thus we have

1 2" +1

M, —_—
B 0,0 +

Pr(u-(z1Baxe) =wy - 21 @we - 22 A0 <21 + 20 < 27) S

It follows that there are 2"~2(2" + 1) + 22"~1 My o pairs (x1,22) satisfying u -
(x1 Bxe) = wy -1 B ws -2 and 0 < 1 + 29 < 2™. We consider those pairs of
the form (0, z2). When x; = 0, we get (u @ ws) - x5 = 0 due to u - xo = wy - Ta.
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It follows that there are 2"~ ! solutions x5 if u # wy and 2" solutions if u = ws.
Hence there are 2"~ ! pairs of the form (0, x5) among all the above pairs not in
J x J if u # wy and 2™ pairs not in J x J if u = ws. By the symmetric position
of 21 and z2, we have the same conclusion for x5 = 0. In addition, the pair (0,0)
always satisfies u - (1 B ) = wy - ©1 ® wy - x2 but is not in J x J.

Second, when x, + x5 > 2", we have xlﬁﬂxg = 1 Hxzo B 1. Similar to the
above case, there are totally 2"2(2" + 1) + 22"~ M ; pairs (z1,2) satisfying
both z1 + 224+ 1> 2" and u- (z1 Bz BH1) = wy - 1 B wsy - 5. Now we consider
how to remove some pairs (x1,x2) satisfying 1 + 22 + 1 = 2" from the above
pairs. Note that z1 Hxzo B 1 = 0, thus we only need to count pairs (z1, z2) such
that 1 + 9 = 2" — 1 and wy - x1 = wa - x2. Since x1 + 12 = 2" — 1 = 21 D @9,
it follows that

(’LU1 D ’LU2) L1 = Wy - (2” - 1) (13)

If wy # wy, Eqn. (13) has 2"~1 solutions; if w; = we, when wg(ws) is an odd
number, Eqn. (13) has no solutions, and when wy(wz) is an even number, Eqn.
(13) has 2™ solutions.

Denote by d the number of pairs (x1,x2) € Zan X Zan which satisfy the
linear approximation defined by mask (u,w;,ws) and 1 = 0 or &2 = 0 or
1 + 22 = 2™ — 1. Combine the above two cases, we have

3.2" — 1, ifu =w; = wse and wy(wsy) is even,
2" — 1, if u # w1 = wy and wy(w2) is odd,
3.-2771 —1, if u,w; and wsy are pairwise different,
2-2" —1, otherwise.

d =

By the definition of correlation, we have

cor(u; wy, ws)
(2n72(2n + 1) + 22n71M070) + (277,72(277, + 1) + 22n71M171) —d

=2 -1
@17

22" (Moo + My1)+3-2" —1—2d

- @ -1 |
Then we can get the desired conclusion. |
3.2 Addition of more than two inputs in Fon_
In this section we will derive an iterative expression of cor(u;ws,- - ,wy) for
any linear mask (u, wy, - zwk)' The addition of k inputs x1, - - - , £} can be seen
as the addition of x1H .- -Hzy_1 and xj.
Theorem 5. For any given linear mask (u, w1, - ,wy) and integer k > 2, we

have

2" -1
2n -1
cor(u;wy, -+ ,wg) = on Z cor(w;wy, -+ ,wg_1)cor(u; w,wg).  (14)
w=0
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Proof. By Eqn. (2), we have

COI'(U;’LUl,'” 7wk): m Z (71)’11« (Bi_ 1) @D, wi i
(1, k) ETF

Denote y = xlgﬂ - Eﬁmk_l. Then we have

2"L_1
Z cor(w;wy, -+ ,wy_1)cor(u; w, w)
w=0
1 21 h
B W Z Z (*1)w'y®@f:_1l wi'zi(71)u'(25306k)€9w-z€9wk-wk
w=0 (1, ’1k71)€Jk71
(z,21)€J2
LS et 3 (e
T (2n — 1)k
(z1,,Tk,z)€JF L 0
Note that

2" —1 .
Z (_l)uwz@wy — 2, itz = Y,
0, ifz#uy.

w=0

Then we have

2" 1

Z cor(w;wy, -+, Wg—1)cor(u; w,wy)

w=0
_ L Z (_1)“-(y§3rk)®®f:1 Wi T
~(2n = 1)k

(1, ,xK)ETF
271

= on 1cor(u;w1, Ce W)

4 More properties of linear approximations of the
addition modulo 2™ — 1 with two inputs

In this section we will provide more properties of linear approximations of the
addition modulo 2" — 1 with two inputs, that is, k = 2. First we introduce some
notations and concepts.

Let Q be the rational field. Define

= {(20) moea),
a-{(5 Y useal
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and call a matrix in the set I (or II) to be type-I (or type-II). It is easy to see
that Ag, As, As, Ag € I and Ay, As, Ay, A7 € II (which are defined in section 2).
The following two properties can easily be verified.

Lemma 1. The product of arbitrary two type-I (or type-I1I) matrices is a type-1
matriz.

Lemma 2. The product of a type-I matriz and a type-II matrix is a type-I1
matrix.

By the definition of M, (u, w1, w2) and Lemmas 1 and 2, we have

Lemma 3. For any given linear mask (u, w1, ws), My, (u, w1, ws) is either type-I
or type-11.

For any given square matrix M, denote by Tr(M) the trace of the matrix
M, that is, the sum of elements on the main diagonal of M. Since the trace of
an arbitrary type-II matrix is zero, thus the following conclusions hold.

Corollary 2. For any given linear mask (u,wi,ws), let 2 = z,_1 -+ 20 be the
sequence derived from (u, wy,wsy) by the formula (8). If the number of elements z;
such that z; € {1,2,4,7} is odd, i = 0,1,--- ;n—1, then Tr(M, (u, wi,ws)) = 0.

Corollary 3. Let u € Zon and wy(u) be odd. Then Tr(M, (u,u,u)) = 0. Thus

we have
1

cor(u;u,u) = 5 g

and
lim cor(u;u,u) = 0.

n—oo

Corollary 4. Let u € Zon and wy(u) be even. Then M, (u,u,u) is type-I, that
is, Moo = My,1. Thus we have

227 20Mo o —3-2" + 1
(27— 1)

cor(u;u,u) =

If all 1’s of u in the binary representation are adjacent, then we have

_wh(w)

i R PO LN |
(2 —1)2

wp(u)
P}

22n . (2

cor(u;u,u) =

and
. _wy(w)
lim cor(u;u,u) =27"2 .
n—oo

Proof. By Theorem 3, we only need to consider the masks whose binary ex-
pression be of the form (0,---,01,---,1). Then M, (u,u,u) = Ag_wH(“)A;"H(u).
—— ——

n—wy(u) wy(uw)

Denote by I the 2 x 2 identity matrix. It is easy to see that A2 = %IQ. Since
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i wp(w) wpp () _
wy (u) is even, we have A;”H(“) =2""35 Iy. So M, (u,u,u) =2""2 Ap wi(u)

Since Ay is a symmetric matrix of the form (Z a)’ it is easily proved by induc-
tion that

(b2 =5 (s b))

for t> 1. Then we have Tr(Ap ") = 1 4 guua(W=n_§o Tr(M, (u,u,u)) =
_ wy (w) wig (u) wy (uw)
2 2

2 T’I‘I‘(Ag_wH(u)) =2- " and the conclusion follows.

Below we give some facts on A;, 0 <4 < 7, which will be used later.

Lemma 4. 1. AgA; = %Ai, forV i€ {1,2,3,4,5,6};

2. AiAo = A; if i € {1,2,4} and A; Ay = S A; if i € {3,5,6};
3. AiA;=0,i€{1,2,4} and j € {1,2,3,4,5,6};

4. A1A7 = AsAr = —A A7 = Ag.

Now we consider a class of special linear masks (u,1,w). Let z = z,_1 -+ 2o
be the sequence derived from (u,1,w). It is easy to see that zy € {1,3,5,7}
and z; € {0,2,4,6}, 1 <i <n— 1. In the rest of the paper we simply write M
instead of M, (u, 1, w).

Lemma 5. For any integers u,w € Zan, if Tr(M) # 0, then the sequence z is
of the form either {0,6}"~1{3,5} or {0,6}*{2,4}0*7.

Proof. Let r be the number of z; such that z; € {2,4},i=1,2,--- ,n— 1. We
first prove that r < 1. Assume that r > 1. Then there exist two indexes ¢ and j
such that z;,z; € {2,4},1 <i < j <n—1. By Items 2 and 3 of Lemma 4, we
have A, --- A., = 0. It follows that M = 0, which contradicts Tr(M) # 0.

When r = 0, if 29 € {1,7}, by Corollary 2, it is known that the matrix M
is of type-II, which contradicts Tr(M) # 0 as well. Thus zy € {3,5}. So z is of
the form {0,6}"~1{3,5}.

When r =1, let z; € {2,4}, where 1 < j < n — 1. First we claim that
z; = 0 for all 1 <4 < j. If there exists some index ¢ such that z; # 0, by Items
2 and 3 of Lemma 4, we have A, --- A, = 0, furthermore M = 0, which is a
contradiction. Second, if zo € {1,3,5}, by Items 2 and 3 of Lemma 4, we have
Az -+ Ay, = 0. So z is of the form {0,6}*{2,4}0*7. |

Theorem 6. For any integers u,w € Zan, Tr(M) # 0 if and only if u = w®2?,
where 0 <1 < LNB(w® 1), LNB(z) denotes the least index where 1 appears in
the binary representation of x if x # 0, and LNB(0) =n — 1.

Proof. The necessity follows directly from Lemma 5. Below we prove the suf-
ficiency. First we prove that Tr(A%) = 27¢ for any ¢t > 1. In fact, it is easy
to calculate two characteristic roots 0 and 271 of Ag. Thus we have Tr(A§) =
Ot + (2—1)t — 2—t.
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If i =0, ie, u=w® 1, then z is of the form {0,6}"1{3,5}. Let ¢ be the
number of z; such that z; =6,¢=1,2,--- ;n — 1. Then 0 occurs in z,_1--- 21
for n — 1 — t times. Thus by Lemma 4, we have

Zp—1 "7 Azo)
92— (nlt)AtA )

Tr(A

Tr(M) (
Tre(
(
(
(

_1)w2 (n—1— t)rI\r(AtGJrl)
_1)11)2—(n—1—t)2—(t+1)
)

—1w2m.

If ¢ > 0, then z is of the form {0,6}*{2,4}0*7 and z; € {2,4}. Let ¢ be the
number of repetitions of 6 appearing in 2z,,_1 - - - z;4+1. Then by Lemma 4, we have
’I‘I‘(M) - rI‘r(Azn—l """ Azo)
(2—(n—1—i—t AtA A7)
( 1) 92~ (n—1—i— t)rI\I,(AtJrl)
( 1) n 1—i— t)2 (t+1)
)

( 1)59~ (n— z)
where s = w® & 1. |

Theorem 6 gives a sufficient and necessary condition for judjing whether or
not M is of type-II for any linear mask (u, 1,w). From its proof we can get the
following result.

Corollary 5. For any integers w,w € Zon such that u = w ® 2¢, where 0 < i <
LNB(w ®1), we have Te(M) = (—1)°2= (=9 where

0 ifi=0andw® =0o0ri>0andw® =1,
s = .
1 otherwise.

By Theorem 4 and Corollary 5, we can derive the following corollary.

Corollary 6. The correlation of the linear approzimation of addition in Fon_4
with a mask of the form (w,1,1) is given by

cor(w;1,1) = o fw=24L1<i<n—,
ﬁ otherwise.

When the mask is of the form (1,w, 1), the correlation is given by

g Yw=0,
cor(l;w,1) = % fw=24+11<i<n-—1,
— otherwise.

2n—1
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Finally we give an upper bound of |cor(u;1,w)|. For any given integer = €
Zon, define '
Jo={r®2|1<i<LNB(z®1)}.

Theorem 7. For any integers u,w € Zon, if w ¢ J,, then

3

i1, < .
|cor(u; 1, w)| T

(15)

Proof. If w # u®1, by Theorem 6, we have Tr(M) = 0, that is, Mo o+ Mi1 = 0.
If u =w =1, Eqn. (15) follows directly from Corollary 6. If u # w, by Theorem 4

we have
2" +1 3

(2n _ 1)2 < oan _1°

jcor(u; 1, w)| <

If w=wu® 1, by Corollary 5 and Theorem 4, we have

|Cor(u.1w)|<22”.2*”+2”+172-2”+1< 3
= (2n —1)2 (2 —1)2 T 2n— 17

5 The limit of cor(1;1%) for the addition in Fsn_; when
n — 00

In this section we will discuss the limit of correlations cor(u;u, - - ,u) when n
——
k

goes to infinity, where wy(u) = 1. By Theorem 3, it is known that cor(u;u, - -, u)
——
k

= cor(1;1,---,1). So below we only consider cor(1;1,--- ,1). For simplicity, we
—— ~——

k k
denote it by cor(1;1%).

Lemma 6. For any integers n > 2 and k > 2, we have

Z lcor(u; 1%)] < (n + 3)*1.

UE Zon

Proof. Note that |J,| < n for all € Zon. When k = 2, by Theorem 7, we have

Z |cor(u;1,1)| = Z |cor(u;1,1)| + Z |cor(u;1,1)]

UEZyn u€eJy uéJy
3
<>y Lt gy d 1<n+3.
ueJy u¢J1

Suppose that when k = kg, we have > |cor(u;1%0)| < (n + 3)*~1 Then
UE Zan
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S Jeor(us 1F0+)

UE Zgn
2" —1
= Z | Z cor(w; 1%)cor(u; w, 1)

UEZan WEZsn

< Z Z |cor(w; 17)cor (u; w, 1))
UE Zan WE Zan
= Z ( Z |cor(w; 1¥)cor (u; w, 1)| + Z |cor(w; 1%)cor (u; w, 1))
UEZan wWEJy, wgJu
. 3
< 2 2 leor(wil) 4 grmg 3 D Jeor(w; 1)
UEZn WEJ,, UEZyn wi Jy,
3
ko—1 n ko—1
<n(n+3)° +ﬁ(2 —1)(n+3)°
= (n+ 3)o
By induction the conclusion of the theorem holds. |

Lemma 7. For any integer t > 1 and ¢ > 2, we have

t
nhnéo Z Z e Z Z cor(uy; 1) H cor(uj_1;uj,1) =0,
L — i

u1€J1 u2€Juy wt—1€Juy o ur@Ju, 4

where ug = 1.

Proof. By Lemma 6 and Theorem 7, we have

Z Z Z Z cor(ut;li)Hcor(uj;l;uj,l)

u1€J1 u2€Jy, ut—1€Juy o ur@Ju

Z Z |cor(u; 1 Hcor (uj—1;uj,1)|

u1€J1 u2€Jy, ut—1€Juy_ o wr@Ju, 4

S2n3_1 Z Z Z Z |cor(u; 1)

w1 €J1 u2€Juy Ut—1€Juy_op ueEJu

t—1

t—1

1(n+3)i_1 Z Z Z 1

u1€J1 u2€Jy, U—1€Juy_,

i1, t—1
2n_1(n+3) n'~.

Since Qn (n + 3)"~In!=1 approaches 0 when n approaches infinity, thus the
conclumon holds. [ |



14 Chunfang Zhou, Xiutao Feng, Chuankun Wu

Lemma 8. For any integer k > 3, if lim cor(1;1%) exists, then
n—o0

k—1
nh_)n;o cor(1; 1k) = nlilrgo Z Z .- Z H cor(ujq; uj, 1),

u1€J1 ug€Jy, Up—2€Jy,_45 j=1
where ug = up_1 = 1.
Proof.
lim cor(1;1%)
n—oo
= lim E cor(up; 1% 1)cor(1; uy, 1)

n— oo
u1E€Zsn

= lim ( Z + Z Yeor(uy; 1Y) cor(1;uy, 1)

u1€J1 u ¢J1
= lim Z cor(uy; 1¥ " Yeor(1;u;,1)  (by Lemma 7)

n—oo

u1€J1
= lim Z Z cor(usg; 1¥72)cor(u1; ug, 1)cor(1;u, 1)

u1€EJ1 u2€EZsn

lim Z( Z + Z )eor (ug; 1¥72)cor (uy; ug, 1)cor(1;u, 1)
nHoou1EJ1 U2 €Jy, w2 Juq

= lim Z Z cor(ug; 177 2)cor(uy; ug, 1)cor(1;u;, 1)  (by Lemma 7)

u1€J1 uz€Jy,

k—1
:nan;o Z Z Z Hcor(uj_l;uj,l).

u1€J1 u2€Jyq Up—2€Juy 4 J=1

Theorem 8. For any integer k > 3, if lim cor(1; 1’“) exists, then

n—oo

k-1
nlgr;o cor(1; 1"”‘) = nl;rr;o Z Z Z H Tr (M, (uj-1,u5,1)),

u1€J1 uz€Jy, Uk—1E€Juy,_, J=1
where ug = uk_1 = 1.

Proof. Recall that A; = Ay and As = Ag, then it is easily proved that for arbi-
trary two integers u, w € Zon, the matrices sequence derived from (u, 1, w) is the
same with the matrices sequence derived from (u,w, 1). So we have M, (u, 1, w) =
M, (u,w,1). By Theorem 4, Theorem 6 and Corollary 5, we have

d(u,w,1)

cor(u;w, 1) = Tr(M, (u,w,1)) + on — 1
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where
‘5(7.14 w 1)‘ = (2”+1 — ]‘)’I‘I‘(Mn(uﬂi), ].)) +2".c4+1
s Wy = ST
< (2n+1 )| Te(Mp(u, 1,w))| + 2™ - || + 1
< T
e Ve A Bl
< ST
<7
Then

k-1
Z Z Z HCOI‘(Uj—l;uja]')

u1 €J1 uz€Juy Uk—2€Jy, 4 j=1

_ Z Z Z (Tr (M, (ug,u1,1)) + 9(uo,u1, 1) Hcor Uj_1;uj, 1)

u1€J1 ua€Juy, up—2€J,

up_3
— A+ B,

where

A= Z Z Z Tr(M,, (ug,uq,1 Hcor Uj_1;uj, 1)

u1€J1 ug€Ju; Uk—2€J,

Uk —3
and
UO Ul
B = E E E - 7 Hcoruj 1;u5,1).
uy €Jq UQEJul kazejuk 3
Since
k—2

u1€J1 u2€Jy, Uk—zEJuk,g, Jj=2

7
LYYy o
u1€J1 u2€Jy, Uk—2E€Juy 4
< ’ nk 1220,
—2n—1

thus we have

lim cor(1;1%) = lim A.

n—oo n—oo

Repeat the above procedure, and we always strip Mfi”l) from cor(u;_1;u;, 1),

j=2,3,--- ,k— 1. Then finally we can get the desired conclusion. |
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Corollary 7. lim cor(1;1%) =0 and lim cor(1;1%) = —3.

n—oo n—o0

Proof. Since M, (1,1,1) = Aj~* A7 is of type-II, thus Tr(M,(1,1,1)) = 0, fur-
thermore we have lim cor(1;1,1) = 0. By Theorem 8 and Corollary 6, we have

n—oo

lim cor(1;1?)

n—oo

= lim Y Tr(M,(u,1,1))Tr(M,(1,u,1))
n—)ooue.h
n—1
= lim_ > Tr(M,(2' + 1,1, 1) Tr (M, (1,2 +1,1))
i=1

n—1

— lim Z(_Q*(n*i)) .9—(n=i)

i=1

n—1
. 1
=— lim » 470" = -3
i=1
[ |

In order to deal with the general case lim cor(1;1¥), for a given integer
k > 3, we define

U = {uourug - - - up—oup—1|u; € Ju, ,,1<j <k—1u,1=uo=1}. (16)
Then Theorem 8 can also be written as:

Theorem 9. For given integer k > 3, if lim cor(1;1F) exists, then
n—oo

k-1
lim cor(1;1%) = lim Tr(M,(u;—1,u;,1)).
Ju cori1 = i 30 T[T 1)

For any string uguius - - - ug_oug—1 € Uy, by the definition of Ju;_y> We have
u; > 0 for 0 < j < k—1, and there is only one bit in u; different from
uj_1, that is, wu(u;—1) — wu(u;) = £1. Note that wu(ug) = 1 is odd, thus
wp(uz), wh(uyg), -+ are all odd and wy(uy), wg(ug), --- are all even.

When k is even, it is known that wy(ug—1) is even, which contradicts ug—1 =
1. It follows that U, = ). Hence we have the following conclusion.

Theorem 10. For any even positive integer k, we have lim cor(1;1%) = 0.

n—oo

When k is odd, set uz; = 1 and ugjy1 = 2" 1+ 1for 0 < j < % Then
Ug -+ Up_oup_1 € Up. It shows that Uy # 0. For all odd integer k, we define

I = {iria - 15-1]2Y = uj B uj_1,u0 - - Ug—2Uk—1 € Uy},
k—1
Ig = {iria - ig_1|d = E ij,i102 - ip—1 € Ip},
i=1

and denote Ny q = |1 4.
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Theorem 11. For any odd integer k > 3, we have

(k=1)(n—1)

Z H 'TI‘ u] 1, Uj, 1)) = (_1)% L2 (h=ln Z N - 2%,

uouy-up—1 €U j=1 d=k—1

Proof. For any ug - - - ug—1 € Uy, by Corollary 5, when wy(u;) — wu(u;—1) = 1,
the sign of Tr(M,,(uj_1,u;,1)) is positive, and when wy(u;) — wu(uj_1) = —1,
the sign of T'r(M,, (uj_1,u;, 1)) is negative. So the sign of Hf;ll Tr(M,(uj_1,uj,1))
is the same as that of Hj:1 (wr(u;) — wa(uj—1)). Note that Zf;ll (wr (u;) —
wn(uj—1)) = 0. It follows that the number of j such that wy(u;) —wn(u—1) =1
is equal to that of j such that wu(u;) — wu(uj—1) = —1. Thus the sign of
Hf;ll Tr(My(uj—1,uj,1)) equals (=1)"=". Then we have

Z HTT‘ n(uj—1,uj,1))

ug-uk—1€UL j=1

k—1
- (_1)% Z H 9—(n—ij)
ipig-ip_1 €I j=1
k—1 -b
= (=17 27k N Ny 2t
d=k—1

Theorem 12. For any odd integer k > 3, if lim cor(1;1%) exists, then

n—oo

1. lim cor(1;1%) > 227 =3) "if k =1 mod 4;

n—oo

2. lim cor(1;1%) < —22-(+=3) jf k =3 mod 4.

n—oo

Proof. For any given ug - - - ui_1 € Uy, denote 2% = uj ®uj—1, 1 <j< k-1
Then iyiz - +ig—1 € I. Note that 211 @ 22 @ -+ & 201 = @V} (u; B uj_q) =
0, which means that iq,45,--- ,ix_1 can be divided into two identical sets. So
d = Ztll i; is always even. Note that 1 < 4; < n—1, thus k —1 < d <
(k—1)(d —1). In addition, by the definition of I and Iy 4, for any even integer
E—1<d<(n-1)(k- 1), it is easy to verify that there exist 41,49, -+ ,ip_1
such that i1¢2--- ix—1 € Iy 4, that is, Ny q > 1. For example, when d = k — 1,
set ij =1for 1 <j<k-—1,theniy---ir_1 € Ip—1; when d = (k—1)(n — 1),
set ij =n—1for1<j<k-—1 theniy---ip_1 € Ik’(kfl)(nfl). By Theorem 11,
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we have
| lim cor(1;1%)|
(k=1)(n—1)/2
— nli}rr;o 27(k71)n Z Nk,2d22d
d=(k—1)/2
(k—=1)(n—1)/2
e d=(k—1)/2
2(k—1)(n—1)+2 _9k-1

v

= lim 2~ (k—1n
n—oo 22 1
1

_ 72—(1@—3)
3

6 Conclusion

In this paper we discussed some properties of linear approximations of the addi-
tion modulo 2™ — 1. We presented an explicit expression for the case when two
inputs are involved, and an iterative expression for the case when more than two
inputs are involved. For a class of special linear approximations with all masks
being equal to 1, we further discussed the limit of their correlations when n ap-
proaches infinity. More precisely, let £ be the number of inputs of the addition
modulo 2" — 1, we show that when & is even, the limit is equal to zero, and when
k is odd, the limit is bounded by a constant depending on k.
Finally when both n and k approach infinity, we have a conjecture on cor(1; 1¥).

Conjecture 1. lim lim cor(1;1%) = 0.

k—oon—o0
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