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Abstract. In 1994 Langford and Hellman introduced a combination of
differential and linear cryptanalysis under two default independence as-
sumptions, known as differential-linear cryptanalysis, which is based on
the use of a differential-linear distinguisher constructed by concatenating
a linear approximation with a (truncated) differential with probability
1. In 2002, by using an additional assumption, Biham, Dunkelman and
Keller gave an enhanced version that can be applicable to the case when
a differential with a probability of smaller than 1 is used to construct a
differential-linear distinguisher. In this paper, we present a new method-
ology for differential-linear cryptanalysis under the original two assump-
tions implicitly used by Langford and Hellman, without using the addi-
tional assumption of Biham et al. The new methodology is more reason-
able and more general than Biham et al.’s methodology, and apart from
this advantage it can lead to some better differential-linear cryptanalytic
results than Biham et al.’s and Langford and Hellman’s methodologies.
As examples, we apply it to attack 10 rounds of the CTC2 block cipher
with a 255-bit block size and key, 13 rounds of the DES block cipher,
and 12 rounds of the Serpent block cipher. The new methodology can
be used to cryptanalyse other block ciphers, and block cipher designers
should pay attention to this new methodology when designing a block
cipher.

Key words: Block cipher, CTC2, DES, Serpent, Differential crypt-
analysis, Linear cryptanalysis, Differential-linear cryptanalysis.

1 Introduction

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [8]. Lin-
ear cryptanalysis was introduced in 1992 by Matsui and Yamagishi [31]. A differ-

? An earlier version of this work appeared in 2010 as part of Cryptology ePrint Archive
Report 2010/025 [28], which was done when the author was with Eindhoven Uni-
versity of Technology (The Netherlands) under the support of the Dutch Sentinels
project PINPASJC (No. TIF.6687).



Table 1. Our and previous main cryptanalytic results on CTC2 and DES

Cipher Attack Technique Rounds Data Time Success Rate Source

CTC2 Algebraic [12] 6 4CP 2253Enc. not specified [11]

(255-bit Differential 7† 215CP 215Enc. not specified [15]

version) Differential-linear 8† 237CP 237Enc. 61.8% [15]
10 2142CP 2207Enc. 99.9% Section 5.4

DES Differential full 247.2CP 237Enc. not specified [10]

Linear full 243KP 247Enc. 85% [29]

Davis’s attack [13] full 250KP 250Enc. 51% [4]

Differential-linear 8 768CP 240Enc. 95% [26]

9 215.75CP 238Enc. 88.8% [14]

10 229.66CP 244Enc. 97% Section 4.2

13 252.1CP 254.2Enc. 99% Section 4.2

†: There is a flaw; see Section 5.2 for detail.

ential cryptanalysis attack is based on the use of one or more so-called differen-
tials, and a linear cryptanalysis attack is based on the use of one or more so-called
linear approximations. Both the cryptanalytic methods were used to attack the
full Data Encryption Standard (DES) [32] algorithm faster than exhaustive key
search [10,29].

In 1994 Langford and Hellman [26] introduced a combination of differential
and linear cryptanalysis under two default independence assumptions, known
as differential-linear cryptanalysis, and they applied it to break 8-round DES.
Such an attack is constructed on a so-called differential-linear distinguisher; a
differential-linear distinguisher treats a block cipher as a cascade of two sub-
ciphers, and it uses a linear approximation for a sub-cipher and, for the other
sub-cipher it uses a differential (or a truncated differential [22]) with a one prob-
ability that does not affect the bit(s) concerned by the input mask of the linear
approximation. In 2002, by using an additional assumption Biham, Dunkelman
and Keller [5] introduced an enhanced version of differential-linear cryptanaly-
sis, which is applicable to the case when a differential with a smaller probability
is used to construct a differential-linear distinguisher; and they applied the en-
hanced version to break 9-round DES. Differential-linear cryptanalysis has been
used to yield the best currently published cryptanalytic results for a number of
state-of-the-art block ciphers [5, 6, 15,16].

In this paper, we present a new methodology for differential-linear cryptanal-
ysis under the two default assumptions implicitly used by Langford and Hellman,
without using the additional assumption due to Biham et al. The new method-
ology is more reasonable and more general than Biham et al.’s methodology, and
it can lead to some better differential-linear cryptanalytic results than Biham et
al.’s and Langford and Hellman’s methodologies. As examples, we apply the new
methodology to mount differential-linear attacks on 10 rounds of the CTC2 [11]
block cipher with a 255-bit block size and key, 13 rounds of DES, and 12 rounds



of the Serpent [1, 2] block cipher. In terms of the numbers of attacked rounds:
The 10-round CTC2 attack is the first published cryptanalytic attack on the
version of CTC2; the 13-round DES attack is much better than any previously
published differential-linear cryptanalytic results for DES, though it is inferior to
the best previously published cryptanalytic results for DES; and the 12-round
Serpent attack matches the best previously published cryptanalytic result for
Serpent, that was obtained under Biham et al.’s methodology. Due to page con-
straints, we will only present the attacks on CTC2 and DES in this paper, and
give the attack on Serpent in the full version of this paper (which contains more
material). Table 1 summarises both our and previous main cryptanalytic results
on CTC2 and DES, where CP and KP refer respectively to the required num-
bers of chosen plaintexts and known plaintexts, and Enc. refers to the required
number of encryption operations of the relevant version of CTC2 or DES.

The remainder of the paper is organised as follows. In the next section we
give the notation used throughout the paper and briefly describe differential
and linear cryptanalysis. In Section 3 we review Langford and Hellman’s and
Biham et al.’s methodologies and give our methodology for differential-linear
cryptanalysis. In Sections 4–5 we present our cryptanalytic results on DES and
CTC2, respectively. We discuss a few possible extensions to our methodology in
Section 6. Section 7 concludes this paper.

2 Preliminaries

In this section we describe the notation, differential and linear cryptanalysis.

2.1 Notation

In the following descriptions, we assume that a number without a prefix is in
decimal notation, and a number with prefix 0x is in hexadecimal notation, unless
otherwise stated. The bits of a value are numbered from right to left, the leftmost
bit is the most significant bit, and the rightmost bit is the least significant bit,
except in the case of DES, where we use the same numbering notation as in
FIPS-46 [32]. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
� dot product of two bit strings of the same length
|| string concatenation
≪ left rotation of a bit string
◦ functional composition. When composing functions X and Y, X ◦Y den-

otes the function obtained by first applying X and then applying Y
ej a 255-bit value with zeros everywhere except for bit position j, (0 ≤ j ≤

254)
ei0,···,ijthe 255-bit value equal to ei0 ⊕ · · · ⊕ eij , (0 ≤ i0, · · · , ij ≤ 254)
E an n-bit block cipher when used with a specific user key



2.2 Differential Cryptanalysis

Differential cryptanalysis [8] takes advantage of how a specific difference in a
pair of inputs of a cipher can affect a difference in the pair of outputs of the
cipher, where the pair of outputs are obtained by encrypting the pair of inputs
using the same key. The notion of difference can be defined in several ways;
the most widely discussed is with respect to the XOR operation. The difference
between the inputs is called the input difference, and the difference between
the outputs of a function is called the output difference. The combination of the
input difference and the output difference is called a differential. The probability
of a differential is defined as follows.

Definition 1 (from [27]). If α and β are n-bit blocks, then the probability of
the differential (α, β) for E, written ∆α→ ∆β, is defined to be

PrE(∆α→ ∆β) = Pr
P∈{0,1}n

(E(P )⊕ E(P ⊕ α) = β).

The following result follows trivially from Definition 1:

Proposition 1 (from [27]). If α and β are n-bit blocks, then

PrE(∆α→ ∆β) =
|{x|E(x)⊕ E(x⊕ α) = β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential for any pair
(α, β) is 2−n. Therefore, if PrE(∆α → ∆β) is larger than 2−n, we can use the
differential to distinguish E from a random function, given a sufficient number
of chosen plaintext pairs.

Sometimes, we simply write ∆α
E→ ∆β to denote the differential ∆α → ∆β

for E in this paper.

2.3 Linear Cryptanalysis

Linear cryptanalysis [29, 31] exploits correlations between a particular linear
function of the input blocks and a second linear function of the output blocks.
The combination of the two linear functions is called a linear approximation.
The most widely used linear function involves computing the bitwise dot product
operation of the block with a specific binary vector (the specific value combined
with the input blocks may be different from the value applied to the output
blocks). The value combined with the input blocks is called the input mask, and
the value applied to the output blocks is called the output mask. The probability
of a linear approximation is defined as follows.

Definition 2 (from [27]). If α and β are n-bit blocks, then the probability of
the linear approximation (α, β) for E, written Γα→ Γβ, is defined to be

PrE(Γα→ Γβ) = Pr
P∈{0,1}n

(P � α = E(P )� β).



We refer to below the dot product P � α as the input parity, and the dot
product E(P )�β as the output parity. The following result follows trivially from
Definition 2:

Proposition 2 (from [27]). If α and β are n-bit blocks, then

PrE(Γα→ Γβ) =
|{x|x� α = E(x)� β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a linear approximation for
any pair (α, β) is 1

2 . The bias of a linear approximation Γα→ Γβ, denoted by ε,
is defined to be ε = |PrE(Γα→ Γβ)− 1

2 |. Thus, if the bias ε is sufficiently large,
we can use the linear approximation to distinguish E from a random function,
given a sufficient number of matching plaintext-ciphertext pairs.

2.4 General Assumptions Used in Practice

Propositions 1 and 2 give the accurate probability values of a differential and
a linear approximation from a theoretical point of view. However, it is usually
hard to apply them in practice to a block cipher with a large block size, for
example, n = 64 or 128 which is currently being widely used in reality, and even
harder when the differential or linear approximation operates on many rounds of
the cipher. In practice, for a Markov block cipher [24], a multi-round differential
(or linear approximation) is usually obtained by concatenating a few one-round
differential characteristics (respectively, linear approximations), and the prob-
ability of the multi-round differential (or linear approximation) is regarded as
the product (respectively, the piling-up function [29]) of the probabilities of the
one-round differential characteristics (respectively, linear approximations) under
the following Assumption 1.

Assumption 1 The involved round functions behave independently.

We note that one may argue the correctness of Assumption 1 and may use
a different assumption, for example, many people would like to use the assump-
tion that the round keys are independent and uniformly distributed; however,
it is not accurate, either, for generally the round keys are actually dependent,
being generated from a global user key under the key schedule algorithm of the
cipher. Anyway, all such assumptions require us to treat the involved rounds as
independent. As mentioned in [17], this is “most often not exactly the case, but
as often it is a good approximation”.

Differential and linear cryptanalyses generally treat a basic unit of input (i.e.
a chosen-plaintext pair for differential cryptanalysis; a known-plaintext for linear
cryptanalysis) as a random variable, and assume that given a set of inputs of the
basic unit, the inputs that satisfy the required property can be approximated by
an independent distribution, as followed in [9, 29].



3 Differential-Linear Cryptanalysis: Previous and Our
Methodologies

In this section we first review previous methodologies on differential-linear crypt-
analysis, namely Langford and Hellman’s and Biham et al.’s methodologies, and
then give our new methodology, followed by a few implications. First observe
that for simplicity we assume that the probability for a linear approximation
with bias ε is 1

2 + ε in all the following descriptions; but the same results can be
obtained when the probability is 1

2 − ε.

3.1 Langford and Hellman’s Methodology

In 1994 Langford and Hellman [26] introduced differential-linear cryptanalysis as
a combination of differential and linear cryptanalysis, which is based on the use of
a differential-linear distinguisher. To construct a differential-linear distinguisher,
they treated E as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1.
A differential-linear distinguisher uses a (truncated) differential ∆α→ ∆β with
probability 1 for E0 and a linear approximation Γγ → Γδ with bias ε for E1,
where the output difference β of the (truncated) differential has a zero value in
the bit positions concerned by the input mask of the linear approximation (thus
β�γ = 0 holds). Let P be a plaintext chosen uniformly at random from {0, 1}n.
Thus, we have E0(P )� γ = E0(P ⊕ α)� γ with probability 1. The differential-
linear distinguisher is concerned with the event δ � E(P ) = δ � E(P ⊕ α); and
under Assumption 1 and the following Assumption 2 it has a probability of
Pr(δ � E(P ) = δ � E(P ⊕ α)) = ( 1

2 + ε)× ( 1
2 + ε) + ( 1

2 − ε)× ( 1
2 − ε) = 1

2 + 2ε2.

Assumption 2 The two inputs E0(P ) and E0(P ⊕ α) of the linear approxima-
tion for E1 behave as independent inputs with respect to the linear approximation.

Note that E(P ) = E1(E0(P )) and E(P ⊕α) = E1(E0(P ⊕α)) in the above de-
scriptions. Assumption 2 is somewhat like assuming an independent distribution
for plaintext pairs generated from a particular plaintext structure with certain
property in differential cryptanalysis.

By contrast, for a random function, the expected probability of a differential-
linear distinguisher is 1

2 . Therefore, if the bias |Pr(δ�E(P ) = δ�E(P⊕α))− 1
2 | =

2ε2 is sufficiently large, we can distinguish E from a random function.

3.2 Biham et al.’s Methodology

A differential-linear distinguisher plays a fundamental role in a differential-linear
cryptanalysis attack. In 2002 Biham, Dunkelman and Keller [5] presented an
enhanced version to make a differential-linear distinguisher cover more rounds
of a block cipher, so that an attacker can potentially break more rounds of the
cipher. Biham et al.’s enhanced version includes the case when the (truncated)
differential ∆α→ ∆β has a smaller probability than 1, p say, with β meeting the



condition β � γ = 0.1 A slightly revised version was given in [14]. They applied
Langford and Hellman’s analysis described above when E0(P )⊕E0(P ⊕α) = β,
and used the following Assumption 3 for the cases where E0(P )⊕E0(P⊕α) 6= β:2

Assumption 3 The output parities δ�E(P ) and δ�E(P ⊕α) have a uniform
and independent distribution in {0, 1} for the cases where E0(P )⊕E0(P⊕α) 6= β.

As a result, under Assumptions 1, 2 and 3, Biham et al. got Pr(δ � E(P ) =
δ � E(P ⊕ α)) = p× ( 1

2 + 2ε2) + (1− p)× 1
2 = 1

2 + 2pε2.
Finally, they concluded that if the bias 2pε2 is sufficiently large, the distin-

guisher can be used as the basis of a differential-linear attack to distinguish E
from a random function. Roughly, the attack has a data complexity of about
O(p−2ε−4).

Note. We learnt from the comments of an anonymous reviewer that the same
methodology appeared earlier in Langford’s PhD thesis [25], (which seems to be
not publicly accessible). For simplicity, in this paper we use the phrase “Biham
et al.’s methodology” to express this methodology, but hope the reader to keep
in mind that Langford proposed the same methodology a few years earlier.

3.3 Our Methodology

In summary, the differential-linear distinguishers described above are concerned
with the correlation between a pair of output parities, where the pair of output
parities are obtained by applying a linear function (e.g. bitwise dot product with
δ) to the outputs of a pair of input blocks with difference α (under the same
key). The combination of the input difference and the linear function is called a
differential-linear distinguisher. More formally, we define the probability of the
differential-linear distinguisher as follows.

Definition 3. If α and δ are n-bit blocks, then the probability of the differential-
linear distinguisher (α, δ) for E, written ∆α→ Γδ, is defined to be

PrE(∆α→ Γδ) = Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ).

The following result follows trivially from Definition 3:

Proposition 3. If α and δ are n-bit blocks, then

PrE(∆α→ Γδ) =
|{x|E(x)� δ = E(x⊕ α)� δ, x ∈ {0, 1}n}|

2n
.

1 A more general condition is β � γ = c, where c ∈ {0, 1} is a constant. Without loss
of generality, we consider the case with c = 0 throughout this paper.

2 We note that Biham et al. used a different assumption when reviewing the enhanced
version in a few other papers, [7] say, where they assumed that E0(P )� γ = E0(P ⊕
α)� γ holds with half a chance for the cases where E0(P )⊕E0(P ⊕α) 6= β, yielding
the same probability value 1

2
+2pε2 as under Assumption 3. We treat this assumption

as Assumption 3, though they are different.



For a random function, the expected probability of a differential-linear distin-
guisher for any combination (α, δ) is 1

2 . Similarly, the bias of the differential-linear
distinguisher ∆α → Γδ is defined to be |PrE(∆α → Γδ) − 1

2 |. Thus, if the bias
is sufficiently large, we can use the differential-linear distinguisher to distinguish
E from a random function, given a sufficient number of chosen plaintext pairs.

In practice, it is usually infeasible to compute the accurate probability of a
differential-linear distinguisher ∆α→ Γδ by Proposition 3, and we have to make
use of some assumptions to approximate it, like Biham et al.’s methodology
described in Section 3.2. However, Biham et al.’s methodology uses the three
assumptions as hypotheses and works only when Assumption 3 holds; otherwise
it may give probability values that are highly inaccurate in some situations;
for example, let’s intuitively consider the naive situation where the differential
∆α → ∆β has probability 1

2 and meets β � γ = 0, and all the other possible

differentials {∆α → ∆β̂} meet β̂ � γ = 1. Such an example can be easily built
for a practical block cipher, DES say. The differential ∆α → ∆β contributes
1
2 [( 1

2 + ε) × ( 1
2 + ε) + ( 1

2 − ε) × ( 1
2 − ε)] = 1

4 + ε2 to the probability of the

distinguisher, and the other differentials {∆α → ∆β̂} contribute 1
2 [( 1

2 + ε) ×
( 1
2 − ε) + ( 1

2 − ε)× ( 1
2 + ε)] = 1

4 − ε
2, which also cause a bias, but in a negative

way, canceling the bias due to ∆α→ ∆β. So the real bias of the distinguisher is
0, that is, the distinguisher has no cryptanalytic significance. But if we applied
Biham et al.’s methodology in this situation, the distinguisher would have a bias
of 2 × 1

2 × ε2 = ε2, and thus the distinguisher would be useful (if ε2 is large
enough); but nevertheless it is useless in fact. Notice that this case is not truly a
counterexample to Biham et al.’s methodology, for it is clear that Assumption 3
does not hold for it, but it suggests that we should be cautious about using
Assumption 3 and actually, we should be careful with using any assumption,
and it is preferable to use as few assumptions as possible.

Biham, Dunkelman and Keller used a heuristic way to approximate the prob-
ability of a differential-linear distinguisher. We make an analysis for the probabil-
ity of a differential-linear distinguisher from a mathematical point, and obtain
a new methodology under only Assumptions 1 and 2. Our result is given as
Theorem 1, followed by a proof.

Theorem 1. An n-bit block cipher E is represented as a cascade of two sub-
ciphers E0 and E1, where E = E0 ◦ E1. If α ( 6= 0) is an input difference for
E0, Γγ → Γδ is a linear approximation with bias ε for E1, and the sum of the
probabilities for the differentials {∆α → ∆β|PrE0

(∆α → ∆β) > 0, γ � β =
0, β ∈ {0, 1}n} is p̂ (=

∑
γ�β=0 PrE0(∆α → ∆β)), then under Assumptions 1

and 2 the probability of the differential-linear distinguisher ∆α→ Γδ is

Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ) =
1

2
+ 2(2p̂− 1)ε2.

Proof. Given the input difference α for E0, there are one or more possible output
differences {β|PrE0

(∆ α → ∆β) > 0, β ∈ {0, 1}n}; these output differences can
be classified into two sets: one is {β|γ�β = 0,PrE0

(∆α→ ∆β) > 0, β ∈ {0, 1}n},
and the other is {β|γ � β = 1,PrE0

(∆α→ ∆β) > 0, β ∈ {0, 1}n}.



Let P be a plaintext chosen uniformly at random from {0, 1}n. Then, under
Assumptions 1 and 2 we have

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= (
1

2
+ ε)× (

1

2
+ ε) + [1− (

1

2
+ ε)]× [1− (

1

2
+ ε)]

=
1

2
+ 2ε2,

and

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= (
1

2
+ ε)× [1− (

1

2
+ ε)] + [1− (

1

2
+ ε)]× (

1

2
+ ε)

=
1

2
− 2ε2.

Next, under Assumptions 1 and 2 we can compute the probability of the
differential-linear distinguisher as follows.

Pr(E(P )� δ = E(P ⊕ α)� δ)
=

∑
β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ,E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)×
Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n
Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,



E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β) (1)

= (
1

2
+ 2ε2)×

∑
β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β) +

(
1

2
− 2ε2)×

∑
β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
1

2
+ 2(2p̂− 1)ε2. �

Consequently, the bias of the differential-linear distinguisher ∆α→ Γδ is

| Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ)− 1

2
| = 2|2p̂− 1|ε2.

3.4 Implications

Biham et al.’s methodology requires Assumptions 1, 2 and 3, while our method-
ology requires only Assumptions 1 and 2. Thus, our methodology is more rea-
sonable than Biham et al.’s methodology.

Biham et al.’s methodology holds only when Assumption 3 holds, and under
the situation we have p̂ = p + (1 − p) 1

2 = 1
2 + p

2 , meaning that the probability
value obtained using Biham et al.’s methodology equals that obtained using our
methodology. Thus, when Biham et al.’s methodology holds, our methodology
always holds. However, our methodology holds under some situations where
Biham et al.’s methodology does not hold, for example, it works for the naive
situation discussed in Section 3.3 where p̂ = p = 1

2 . Therefore, our methodology
is more general than Biham et al.’s methodology. (When Langford and Hellman’s
methodology holds, our methodology always holds as well.)

Our methodology still requires Assumptions 1 and 2. Assumption 1 is ex-
tensively used in and is commonly regarded as necessary for differential and
linear cryptanalysis in practice. Assumption 2 seems irremovable to get such a
simple and practical probability formula; otherwise, the formula could not be
so simple, but a more accurate version can be easily obtained from our above
reasonings, for instance, from Eq. (1), though it is complicated and appears to
be hardly applicable in practice. The assumptions mean that, in some cases, the
probability of a differential-linear distinguisher may be overestimated or under-
estimated, and so is the success probability of the attack; however, computer
experiments [6, 16, 23, 26, 29, 30] have shown that the assumptions work well in
practice for some block ciphers. Anyway, it seems reasonable to take the worst
case assumption from the point of the user of a cipher. We suggest that if pos-
sible an attacker should check the validity of these assumptions when applying
them to a specific cipher.

Our result shows that using only one (truncated) differential satisfying β �
γ = 0 is not sufficient in most situations, and it is likely to be not sufficient
in the general situation; we should use all the differentials satisfying β � γ = 0



instead. This makes the distinguisher harder and even impossible to construct
in practice, due to a large number of possible output differences. Anyway, we
should use at least those differentials with a significant contribution to reduce
the deviation if we are able to do so. Biham et al.’s methodology suggests that if
the bias of the linear approximation keeps constant, the larger p is, the bigger is
the bias of the distinguisher. Now, we know that may be not true in the general
situation: A differential with a bigger probability will not necessarily result in a
distinguisher with a bigger bias.

When constructing a differential-linear distinguisher, in Biham et al.’s method-
ology the attacker first chooses a (truncated) differential that meets the condition
(as followed in [5, 6, 15, 16], in practice the output difference of the differential
has zeros in the bit positions concerned by the input mask of the linear approxi-
mation), then calculates the probability of the differential, and finally takes this
probability as the value of p. Our new methodology suggests a different format,
that is, computing p̂. Once the linear approximation and the input difference
of the differentials are chosen, that how many rounds can be constructed for a
distinguisher depends to some extent on the computational power available for
the attacker.

Our new methodology can lead to some better differential-linear cryptan-
alytic results than Biham et al.’s and Langford and Hellman’s methodologies,
as to be demonstrated by its applications to the block ciphers DES and CTC2
in the following two sections. Before further proceeding, observe that DES is a
Markov cipher under the XOR difference notion [24], and similarly we can learn
that CTC2 as well as Serpent is a Markov cipher under the XOR difference
notion.

At last, to be conservative, we would like to suggest that one should pay
attention to all these methodologies, for a real situation is usually hard to predict,
and it may make the Assumption 3 for Biham et al.’s methodology hold.

4 Application to the DES Block Cipher

The DES block cipher is well known to both academia and industry, which has a
64-bit block size, a 56-bit user key, and a total of 16 rounds. We refer the reader
to [32] for the specifications of DES.

In 1994, under the two default Assumptions 1 and 2 Langford and Hell-
man [26] used their methodology to obtain a 6-round differential-linear distin-
guisher of DES, and finally applied it to break 8-round DES; the attack recovers
16 key bits with a time complexity of 214.6 8-round DES encryptions, so it would
take 240 encryptions to recover the remaining 40 key bits with an exhaustive
search, meaning that a total of approximately 240 8-round DES encryptions are
required to recover the whole 56 key bits (Note that there might exist an efficient
way to obtain the remaining key bits). In 2002, under Assumptions 1, 2 and 3,
Biham, Dunkelman and Keller [5] described a 7-round differential-linear distin-
guisher of DES using their enhanced methodology, and finally gave differential-
linear attacks on 8 and 9-round DES; and an improved version of the 9-round



attack appeared in pages 108–111 of [14]. Their attack recovers 18 key bits with
a time complexity of 229.17 9-round DES encryptions, the remaining 38 key bits
would take 238 encryptions to recover with a key exhaustion, and thus it has a
total of approximately 238 9-round DES encryptions to recover the whole 56 key
bits.

Nevertheless, we find that our new methodology enables us to construct 7
and 8-round differential-linear distinguishers of DES based on the same 3-round
linear approximation as used in the previous differential-linear cryptanalysis of
DES [5,26]; the 8-round distinguisher can allow us to break 10-round DES. More
importantly, we are able to construct a 11-round differential-linear distinguisher
of DES, and finally use it as the basis of a differential-linear attack on 13-round
DES. Below we describe the 11-round differential-linear distinguisher and our
attack on 13-round DES. We write the subkey used in the Sl S-box of Round m
as Km,l, where 1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 11-Round Differential-Linear Distinguisher with Bias 2−24.05

The 11-round differential-linear distinguisher is made up of a 6-round linear
approximation Γγ → Γδ with bias 1.95 × 2−9 ≈ 2−8.04 and all the 5-round
differentials {∆α → ∆β} with ∆α = 0x4000000000000000. The 6-round lin-
ear approximation Γγ → Γδ is 0x0000000001040080 → 0x2104008000008000,
(which is the best 6-round linear approximation given in [29]). Let’s compute
the probability of the 11-round differential-linear distinguisher using our new
methodology.

We first consider the 5-round differentials {∆α → ∆β}. There is a one
probability in the first round, meaning that the first round is bypassed by
the differential characteristic with probability 1. After the E expansion oper-
ation of the second round, 0x4 in ∆α becomes 0x8, which enters the S1 S-
box of the second round and generates 11 differences after the S-box: {ω|ω =
0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}; the probabilities for the
output differences are given in the second column of Table 2. We represent ω as
a concatenation of four one-bit variables a||b||c||d, where a, b, c, d ∈ {0, 1}. Thus,
the right half of the third round has the input difference 00000000a0000000b00000
c0000000d0 in binary notation, and this input difference can make at most 6 S-
boxes of the third round active: S2,S3,S4,S5,S6,S8.

In the third round, the S2 S-box has an input difference 00000a in binary
notation, the S3 S-box has an input difference 0a0000 in binary notation, the
S4 S-box has an input difference 00000b in binary notation, the S5 S-box has an
input difference 0b0000 in binary notation, the S6 S-box has an input difference
000c00 in binary notation, and the S8 S-box has an input difference 000d00 in
binary notation. We denote respectively by x0, x1, x2 the most significant bit,
the second most significant bit and the second least significant bit of the output
difference of the S2 S-box, by x3||x4||x5||x6 the output difference of the S3 S-
box, by x7, x8, x9 the second most significant bit, the second least significant
bit and the least significant bit of the output difference of the S4 S-box, by
x10||x11||x12||x13 the output difference of the S5 S-box, by x14, x15, x16 the most



Table 2. Probabilities for the eleven output differences in {ω}

ω PrS1
(∆0x8→ ∆ω) Pr(∆βω � Γγ = 0|∆0x8→ ∆ω)

0x3 12
64

0.49779944866895676

0x5 8
64

0.49595199525356293

0x6 8
64

0.50433863041689619

0x7 4
64

0.50256029706542904

0x9 6
64

0.50855094581311278

0xA 2
64

0.50591027818154544

0xB 8
64

0.50239421910760029

0xC 8
64

0.49929085310759547

0xD 2
64

0.49968796220765910

0xE 2
64

0.50061782109781916

0xF 4
64

0.50005227406592345

significant bit, the second most significant bit and the second least significant bit
of the output difference of the S6 S-box, and by x17, x18, x19 the most significant
bit, the second least significant bit and the least significant bit of the output
difference of the S8 S-box.

In the fourth round, the S1 S-box has the input difference 0||x9||(x2⊕1)||x13||
x14||x17, and we denote by y0 the second most significant bit of its output dif-
ference; the S2 S-box has the input difference x14||x17||x6||0||x10||0, and we de-
note by y1 the least significant bit of its output difference; the S3 S-box has
the input difference x10||0||x8||x16||0||x0, and we denote by y2 the second most
significant bit of its output difference; the S4 S-box has the input difference
0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit of its
output difference; the S6 S-box has the input difference x7||x19||0||0||x3||x12, and
we denote by y4 the least significant bit of its output difference; the S8 S-box
has the input difference x1||x15||x5||0||0||x9, and we denote by y5 the least sig-
nificant bit of its output difference. Thus we have that the input difference of
the S5 S-box of the fifth round is y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask
Γγ depend on: (1) x10, x11 and x12; and (2) The three most significant bits of
the output difference of the S5 S-box of the fifth round; and we denote the XOR
of the three bits by z.

For each difference ω, we denote by βω the output difference(s) of the 5-round
DES. Now, by the differential distribution tables of the S-boxes (see [9]) we can
compute the probability that the XOR of the concerned three bits of βω (i.e.,
x10⊕x11⊕x12⊕z) is zero by performing a computer program over all the possible
(truncated) differential characteristics. These probabilities are given in the third
column of Table 2. The largest number of possible differential characteristics
happens when ω = 0xF , which is 7× 10× 4× 10× 6× 7× 26 × 2 ≈ 223.9; and
it takes a few seconds to check on a personal computer.



Finally, by Theorem 1 we have that the probability of the 11-round distin-
guisher ∆α → Γδ is 1

2 + 2 × [2 ×
∑
ω PrS1

(∆0x8 → ∆ω) × Pr(∆βω � Γγ =

0|∆0x8 → ∆ω) − 1] × (2−8.04)2 ≈ 1
2 + 2 × 2−8.97 × (2−8.04)2 = 1

2 + 2−24.05.
Therefore, the 11-round distinguisher has a bias of 2−24.05.

4.2 Differential-Linear Attack on 13-Round DES

The 11-round distinguisher ∆α → Γδ can be used to break 13-round DES. We
assume the attacked rounds are the first thirteen rounds from Rounds 1 to 13. A
simple analysis on the key schedule of DES reveals that K1,1 and K13,1 overlap
in 2 bits (i.e. bits 17 and 34 of the user key), and thus given K1,1 we know 2 bits
of K13,1. The attack procedure is as follows.

1. Choose 247.1 structures Si, (i = 1, 2, · · · , 247.1), where a structure is defined
to be a set of 24 plaintexts Pi,j with bits (9,17,23, 31) of the left half taking
all the possible values, bit (2) of the right half fixed to 0 and the other 59
bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 24 plaintexts in each of the 247.1 structures; we
denote by Ci,j the ciphertext for plaintext Pi,j .

2. Choose 247.1 structures Ŝi, (i = 1, · · · , 247.1), where a structure Ŝi is ob-
tained by setting 1 to bit (2) of the right half of all the plaintexts Pi,j in Si.
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 24

plaintexts in each Ŝi.
3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs
consisting of the possible values for a couple of the 10 ciphertext bits:
bit (17) of the left half and bits (1,2,3,4,5,8,14,25,32) of the right half.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed K1,1

to get its intermediate value immediately after Round 1; we denote it by
εi,j .

(c) Partially decrypt εi,j ⊕ 0x4000000000000000 with the guessed K1,1 to

get its plaintext, and find the plaintext in Ŝi; we denote it by P̂i,j , and

denote by Ĉi,j the corresponding ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in
a table.

(d) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding

to the pair of the 10 ciphertext bits specified by (Ci,j , Ĉi,j).

(e) Guess a value for the unknown 4 bits of K13,1, and do as follows.

i. For each of the 220 pairs of the concerned 10 ciphertext bits, par-
tially decrypt it with the guessed K13,1 to get the pair of the 5 bits
concerned by the output mask Γδ, and compute the XOR of the pair
of the 5 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the
XOR of the pair of the 5 bits concerned by Γδ is zero, and compute
its deviation from 250.1.



iii. If the guess for (K1,1,K13,1) is the first guess for (K1,1,K13,1), then
record the guess and the deviation computed in Step 3(e)(ii); oth-
erwise, record the guess and its deviation only when the deviation
is larger than that of the previously recorded guess, and remove the
guess with the smaller deviation.

4. For the (K1,1,K13,1) recorded in Step 3(e)(iii), exhaustively search for the
remaining 46 key bits with two known plaintext-ciphertext pairs. If a 56-bit
key is suggested, output it as the user key of the 13-round DES.

The attack requires 252.1 chosen plaintexts. The required memory for the
attack is dominated by the storage of the plaintexts and ciphertexts, which is
252.1 × 16 = 256.1 bytes. Steps 1 and 2 have a time complexity of 252.1 13-round
DES encryptions. Steps 3(b) and 3(c) have a time complexity of 2× 251.1× 26×

1
8×13 ≈ 251.4 13-round DES encryptions. Step 3(d) has a time complexity of

251.1×26 = 257.1 memory accesses. Roughly, an extremely conservative estimate
is: 13 memory accesses equal a 13-round DES encryption in terms of time, as-
suming that the 13-round DES is implemented with 8 parallel S-box lookups per
round and one round is equivalent to one memory access. So the time complexity

of Step 3(d) is equivalent to 257.1

13 ≈ 253.4 13-round DES encryptions. The time
complexity of Step 3(e) is dominated by the time complexity of Step 3(e)(i),
which is 2 × 26 × 24 × 220 × 1

8×13 ≈ 224.3 13-round DES encryptions. Step 4

has a time complexity of 246 13-round DES encryptions. Therefore, the attack
has a total time complexity of approximately 254.2 13-round DES encryptions,
faster than exhaustive key search. There are 251.1 plaintext pairs (Pi,j , P̂i,j) for
a guess of (K1,1,K13,1), and thus following Theorem 2 of [33], we can know that
the attack has a success probability of about 99%.

This shows that our new methodology enables us to break more rounds of
DES than Biham et al.’s or Langford and Hellman’s methodology. Since our
attack works under only two assumptions, it is more reasonable than Biham et
al.’s attack.

Note. Using the new methodology we can obtain a few differential-linear dis-
tinguishers operating on a smaller number of rounds, for example, a 7-round
distinguisher (∆α = 0x4000000000000000, Γ δ = 0x2104008000008000) with
bias 2−7.94 and an 8-round distinguisher (∆α = 0x4000000000000000, Γ δ =
0x2104008000008000) with bias 2−12.83, both using the same 3-round linear ap-
proximation as used in Biham et al.’s and Langford and Hellman’s differential-
linear cryptanalysis of DES. These distinguishers can allow us to break DES
with a smaller number of rounds at a smaller complexity, for example, the 8-
round distinguisher can similarly be used to break 10-round DES with a data
complexity of 229.66 chosen plaintexts and a time complexity of 244 10-round
DES encryptions at a success rate of about 97%.



5 Application to the CTC2 Block Cipher

The CTC2 [11] cipher was designed to show the strength of algebraic crypt-
analysis [12] on block ciphers by the proposer of algebraic cryptanalysis, who
described an algebraic attack on 6 rounds of the version of CTC2 that uses a
255-bit block size and a 255-bit key. Using Biham et al.’s methodology, in 2009
Dunkelman and Keller [15] described 6 and 7-round differential-linear distin-
guishers for the version of CTC2, and finally presented differential-linear attacks
on 7 and 8 rounds of CTC2 (with a 255-bit block size and key). The 8-round
attack is known as the best previously published cryptanalytic result on the
version of CTC2 in terms of the numbers of attacked rounds.

In this section, we first describe a flaw in the previous differential-linear
cryptanalysis of CTC2. Then, under the new methodology we present an 8.5-
round differential-linear distinguisher with bias 2−68 for the CTC2 with a 255-bit
block size and key, and finally give a differential-linear attack on 10-round CTC2
(with a 255-bit block size and a key). First we briefly describe the CTC2 cipher.

5.1 The CTC2 Block Cipher

The CTC2 [11] block cipher has a variable block size, a variable length key and
a variable number of rounds. There are many combinations for the block size,
key size and round number. As in [15], we only consider the version of CTC2
that uses a 255-bit block size and a 255-bit key. CTC2 uses the following two
elementary operations to construct its round function.

– S is a non-linear substitution operation constructed by applying the same
3× 3-bit bijective S-box 85 times in parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y = (Y254, · · · , Y1,
Y0) as input, and outputs a 255-bit block Z = (Z254, · · · , Z1, Z0), computed
as defined below.{

Z151 = Y2 ⊕ Y139 ⊕ Y21
Z(i×202+2) mod 255 = Yi ⊕ Y(i+137) mod 255 i = 0, 1, 3, 4, · · · , 254

CTC2 takes as input a 255-bit plaintext block P , and its encryption proce-
dure for Nr rounds is, where Z0, Xi, Yi, Zi, XNr

, YNr
, ZNr

are 255-bit variables,
and K0,Ki,KNr

are round keys generated from a user key K as Kj = K≪ j
in our notation, (0 ≤ j ≤ Nr).
1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕Ki−1,
– Yi = S(Xi),
– Zi = D(Yi).

3. XNr
= ZNr−1 ⊕KNr−1, YNr

= S(Xi), ZNr
= D(YNr

).
4. Ciphertext = ZNr ⊕KNr .

To keep in accordance with [11], the ith iteration of Step 2 in the above
description is referred to as Round i, (1 ≤ i ≤ Nr − 1), and the transformations
in Steps 3 and 4 are referred to as Round Nr. We number the 85 S-boxes in a
round from 0 to 84 from right to left.



5.2 A Flaw in Previous Differential-Linear Cryptanalysis of CTC2

Observe that Dunkelman and Keller used the 0.5-round differential e30,151
D→ e2

with probability 1 in their differential-linear attacks presented in [15]. However,
we find that this differential is not correct: For the D operation, given the input
difference e30,151, we cannot get the output difference e2; and the correct output
difference should be e25,63,159,197. On the other hand, for the D operation, given
the output difference e2, the input difference has over fifty non-zero bits, much
more than the number two in e30,151. As a consequence, the differential-linear
cryptanalytic results are flawed.

Note that Dunkelman and Keller also described differential attacks on 5,

6 and 7-round CTC2 in [15], and the 0.5-round differential e30,151
D→ e2 with

probability 1 was also used and played a very important role in the differential
results; thus they are flawed, too. It seems very hard to correct these differential
and differential-linear cryptanalytic results to break that many rounds of CTC2.

5.3 An 8.5-Round Differential-Linear Distinguisher with Bias 2−68

The 8.5-round differential-linear distinguisher with bias 2−68 is made up of a
5.5-round linear expression Γγ → Γδ with bias 2−33 and all the 3-round differ-
entials {∆α→ ∆β} with ∆α = e0. The 5.5-round linear expression Γγ → Γδ is
e5,33,49,54,101,112,131,138,155,168,188,193,217,247,251 → e32,151. Using the new method-
ology we can compute that the 8.5-round distinguisher ∆α → Γδ has a bias of
2−68, in a manner similar to that for the above 11-round DES distinguisher.

5.4 Differential-Linear Attack on 10-Round CTC2 with a 255-Bit
Block Size and Key

The above 8.5-round distinguisher can be used as the basis for a differential-linear
attack breaking the version of CTC2 that has a 255-bit block size, a 255-bit key
and a total of 10 rounds.

We assume the attacked rounds are the first ten rounds from Rounds 1 to
10; and we use the distinguisher from Rounds 2 until before the D operation
of Round 10. We can learn that the input difference α propagates to 16 bit
positions after the inverse of the D operation of Round 1: Bits 17, 21, 40, 59,
78, 97, 116, 135, 139, 154, 158, 177, 196, 215, 234 and 253. The 16 active bits
correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13, 19, 26, 32, 38, 45, 46,
51, 52, 59, 65, 71, 78 and 84; let Θ be the set of the 16 S-boxes, and KΘ be the
48 bits of K0 corresponding to the 16 S-boxes in Θ. Another observation is that
we do not need to guess the subkey bits from K10, because the output mask Γδ
of the 8.5-round distinguisher concerns the intermediate value immediately after
the S operation of Round 10, and for a pair of ciphertexts (C, Ĉ) the value of

δ �D−1(C) ⊕ δ �D−1(Ĉ) equals to δ �D−1(C ⊕ Ĉ), which is independent of
K10. The attack procedure is as follows.



1. Choose 294 structures Si, (i = 0, 1, · · · , 294− 1), where a structure is defined
to be a set of 248 plaintexts Pi,j with the 48 bits for the S-boxes in Θ taking
all the possible values and the other 207 bits fixed, (j = 0, 1, · · · , 248 − 1).
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 248

plaintexts in each of the 294 structures; we denote by Ci,j the ciphertext for
plaintext Pi,j .

2. Initialize 248 counters to zero, which correspond to all the possible values for
KΘ.

3. For every structure Si, guess a value for KΘ, and do as follows.

(a) Partially encrypt every (remaining) plaintext Pi,j with the guessed KΘ

to get its intermediate value immediately after the S operation of Round
1; we denote it by εi,j .

(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139,
154, 158, 177, 196, 215, 234, 253) of εi,j , and keep the other bits of εi,j
invariant; we denote the resulting value by ε̂i,j .

(c) Partially decrypt ε̂i,j with the guessed KΘ to get its plaintext, and find

the plaintext in Si; we denote it by P̂i,j , and denote by Ĉi,j the corre-

sponding ciphertext for P̂i,j .

(d) For (Ci,j , Ĉi,j), compute the XOR of bits 32 and 151 of D−1(Ci,j⊕ Ĉi,j).
If the XOR is zero, add 1 to the counter corresponding to the guessed
KΘ.

4. For the KΘ with the highest deviation from 2140, exhaustively search for the
remaining 207 key bits with a known plaintext-ciphertext pair. If a 255-bit
key is suggested, output it as the user key of the version of CTC2.

The attack requires 2142 chosen plaintexts. Note that we start to collect
another structure of plaintexts only after testing a structure of plaintexts, so
that we can reuse the memory for storing the structure of plaintexts, hence the
required memory of the attack is dominated by the storage of the 248 counters
and a structure of 248 plaintext-ciphertext pairs, which is 248× 48

8 +2×248× 255
8 ≈

254.2 bytes of memory. The time complexity of Step 3 is dominated by the time
complexity of Steps 3(a), 3(c) and 3(d), which is approximately 2× 2141× 248×

16
85×10 + 2141 × 248 × 1

10 ≈ 2186.2 10-round CTC2 encryptions. Step 4 has a

time complexity of 2207 10-round CTC2 encryptions. Therefore, the attack has a
total time complexity of 2207 10-round CTC2 encryptions to find the 255-bit key.
There are 2141 plaintext pairs (Pi,j , P̂i,j) for a guess of KΘ. Following Theorem
2 of [33], we can learn that the probability that the correct guess for KΘ has the
highest deviation is about 99.9%. Thus, the attack has a success probability of
about 99.9%.

6 Possible Extensions of Our Methodology

In this section we briefly discuss several possible extensions of our methodology,
although particulars should be noticed.



The first possible extension is to consider the case when using two different
values for the output mask δ in Definition 3, say δ1, δ2; that is, we might con-
sider the event E(P ) � δ1 = E(P ⊕ α) � δ2 for a randomly chosen P ∈ {0, 1}n.
The resulting differential-linear distinguisher would have a bias of 2(2p̂− 1)ε1ε2
for some ε1 and ε2 denoting the respective bias of the two linear approxima-
tions. From a theoretical point of view, there seems no need to use two different
output masks, for we can always choose the output mask with a bigger bias,
and a key-recovery attack based on a differential-linear distinguisher with two
different output masks requires us to guess no less key bits than that based on
a differential-linear distinguisher with one output mask; however, the case with
two different output masks may depend on Assumption 2 to a lesser degree than
the discussed case with one output mask, for the two linear approximations can
be independent somewhat, instead of two identical linear approximations used
in the case with one output mask, and thus it may potentially be particularly
helpful when making a practicable attack in reality.

The second possible extension is to consider the case when applying our
methodology in a related-key [3,19,21] attack scenario. The notion of the related-
key differential-linear analysis appeared in [18], and later Kim [20] described an
enhanced version based on Biham et al.’s enhanced methodology. Likewise, we
can get a more reasonable and general version based on our new methodology.

Other possible extensions are to obtain new methodologies, in a way similar
to the above new methodology for differential-linear cryptanalysis, for the high-
order differential-linear attack, the differential-bilinear attack and the differential-
bilinear-boomerang attack, which were proposed in [7]. At present, however,
these attack techniques appear to be hard to apply to obtain good cryptanalytic
results in practice.

7 Conclusions

In this paper we have given a new methodology for differential-linear crypt-
analysis under only the two assumptions implicitly used in the very first pub-
lished paper on this technique. The new methodology is more reasonable and
more general than Biham et al.’s methodology, and it can lead to some better
differential-linear cryptanalytic results for some block ciphers than the previously
known methodologies.

Using the new methodology, we have presented differential-linear attacks on
13-round DES and 10-round CTC2 with a 255-bit block size and key. In terms of
the numbers of attacked rounds, the 10-round CTC2 attack is the first published
cryptanalytic attack on the version of CTC2; and the 13-round DES attack is
much better than any previously published differential-linear cryptanalytic re-
sults for DES, though it is inferior to the best previously published cryptanalytic
results for DES. In addition, an important merit for these new differential-linear
cryptanalytic results is that they are obtained under only two assumptions and
thus are more reasonable than those obtained using Biham et al.’s methodology.
Like most cryptanalytic results on block ciphers, most of these attacks are far



less than practical at present, but they provide a comprehensive understanding
of the security of the block ciphers.

The new methodology is a general cryptanalysis technique and can be po-
tentially used to cryptanalyse other block ciphers; and block cipher designers
should pay attention to this new methodology when designing ciphers.

The new methodology still requires Assumptions 1 and 2. As a direction
for future research on differential-linear cryptanalysis, it would be interesting to
investigate how to further reduce the number of assumptions used, making a
more reasonable and more general methodology that could be used in practice.
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