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Abstract. Grøstl is one of the five finalist hash functions of the SHA-3
competition. For entering this final phase, the designers have tweaked the
submitted versions. This tweak renders inapplicable the best known dis-
tinguishers on the compression function presented by Peyrin [18] that
exploited the internal permutation properties. Since the beginning of the
final round, very few analysis have been published on Grøstl. Currently,
the best known rebound-based results on the permutation and the com-
pression function for the 256-bit version work up to 8 rounds, and up to
7 rounds for the 512-bit version. In this paper, we present new rebound
distinguishers that work on a higher number of rounds for the permuta-
tions of both 256 and 512-bit versions of this finalist, that is 9 and 10
respectively. Our distinguishers make use of an algorithm that we pro-
pose for solving three fully active states in the middle of the differential
characteristic, while the Super-Sbox technique only handles two.
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1 Introduction

Hash functions are one of the main families in symmetric cryptography. They are
functions that, given an input of variable length, produce an output of a fixed
size. They have many important applications, like integrity check of executables,
authentication, digital signatures.

Since 2005, several new attacks on hash functions have appeared. In par-
ticular, the hash standards MD5 and SHA-1 were cryptanalysed by Wang et
al. [21, 22]. Due to the resemblance of the standard SHA-2 with SHA-1, the
confidence in the former has also been somewhat undermined. This is why the
American National Institute of Standards and Technology (NIST) decided to
launch in 2008 a competition for finding a new hash standard, SHA-3. This
competition received 64 hash function submissions and accepted 51 to enter the
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first round. Now, three years and two rounds later, only 5 hash functions remain
in the final phase of the competition.

Amongst these finalists, there is only one AES-based function, though many
were proposed. This hash function is Grøstl [2], and is at the origin of the
introduction of a new cryptanalysis technique that has been widely deployed,
improved and applied to a large number of SHA-3 candidates, hash functions
and other types of constructions. This new technique, called rebound attack, was
introduced by Mendel et al. [11] and has become one of the most important tools
used to analyze the security margin of many SHA-3 candidates as well as their
building blocks. As for Grøstl itself, it has been applied and improved in several
occasions [3,12,13,15,18]. Grøstl is undoubtedly one of the SHA-3 candidates
that have received the largest amount of cryptanalysis. When entering the final
round, a tweak of the function was proposed, which prevents the application
of the attacks from [18]; we denote Grøstl-0 the original submission of the
algorithm and Grøstl its tweaked version. Apart from the rebound results, the
other main analysis communicated on Grøstl was at the presentation of [1]
where a higher order property on 10 rounds of Grøstl-256 permutation with
a complexity of 2509 was shown. In Table 1, we report a summary of the best
known results on both 256 and 512-bit tweaked versions of Grøstl, including
the ones that we will present in the following.

In this paper, we propose new results regarding both versions of the finalist
Grøstl. First, on Grøstl-256, we provide the best known rebound distin-
guishers on 9 rounds of the permutation. From these results, we show how to
make some nontrivial observations on the the compression function, providing
the best known analysis on the compression function exploiting the properties
of the internal permutations. For Grøstl-512, we considerably increase the
number of analyzed rounds, from 7 to 10, providing the best analysis known
on the permutation. Both results are obtained using rebound-like attack tech-
niques and an algorithm that we introduce that allows to solve three fully active
rounds in the middle of the differential characteristic with a much lower cost
than a generic algorithm. Additionnally, we provide in Appendix A the direct
application of our new techniques to the AES-based hash function PHOTON.

These results do not threaten the security of Grøstl, but we believe they
will have an important role in better understanding Grøstl, and AES-based
functions in general. In particular, we believe that our work will help determining
the bounds and limits of rebound-like attacks in these types of constructions.
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2 Generalities

2.1 Description of Grøstl

The hash function Grøstl-0 has been submitted to the SHA-3 competition un-
der two different versions: Grøstl-0-256, which outputs a 256-bit digest and



Target Subtarget Rounds Time Memory Ideal Reference

Grøstl-256 Permutation

8 (dist.) 2112 264 2384 [3]

8 (dist.) 248 28 296 [19]

9 (dist.) 2368 264 2384 Section 3

10 (zero-sum) 2509 − 2512 [1]

Grøstl-512 Permutation
8 (dist.) 2280 264 2448 Section 4

9 (dist.) 2328 264 2384 Section 4

10 (dist.) 2392 264 2448 Section 4
Table 1: Best known analysis on the finalist Grøstl. By best analysis, we mean the
ones on the highest number of rounds.

Grøstl-0-512 with a 512-bit fingerprint. For the final round of the competi-
tion, the candidate have been tweaked to Grøstl, with corresponding versions
Grøstl-256 and Grøstl-512.

The Grøstl hash function handles arbitrary long messages by diving them
into blocks after some padding and uses them to update iteratively an internal
state (initialized to a predefined IV) with a compression function. This function
is itself built upon two different permutations, namely P and Q. Each of those
two permutations updates a large internal state using the well-understood wide-
trail strategy of the AES. As an AES-like Substitution-Permutation Network,
Grøstl enjoys a strong diffusion in each of the two permutations and by its
wide-pipe design, the size of the internal states is ensured to be at least twice as
large as the final digest.

The compression function f256 of Grøstl-256 uses two permutations P256

and Q256, which are similar to the two permutations P512 and Q512 used in the
compression function f512 of Grøstl-512. More precisely, for a chaining value
h and a message block m, the compression functions (Figure 1) produce the
output (⊕ denotes the XOR operation):

f256(h,m) = P256(h⊕m)⊕Q256(m)⊕ h,
or: f512(h,m) = P512(h⊕m)⊕Q512(m)⊕ h.

The internal states are viewed as byte matrices of size 8 × 8 for the 256-bit
version and 8×16 for the 512-bit one. The permutations strictly follow the design
of the AES and are constructed as Nr iterations of the composition of four basic
transformations:

R
def
:= MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

All the linear operations are performed in the same finite field GF (28) as in the
AES, defined via the irreducible polynomial x8+x4+x3+x+1 over GF (2). The
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Figure 1: The compression function of Grøstl hash function using the two permuta-
tions P and Q.

AddRoundConstant (AC) operation adds a predefined round-dependent con-
stant, which significantly differs between P and Q to prevent the internal differ-
ential attack [18] taking advantage of the similarities in P and Q. The SubBytes
(SB) layer is the non-linear layer of the round function R and applies the same
SBox as in the AES to all the bytes of the internal state. The ShiftBytes (Sh)
transformation shifts bytes in row i by τP [i] positions to the left for permuta-
tion P and τQ[i] positions for permutation Q. We note that τ also differs from
P to Q to emphasize the asymmetry between the two permutations. Finally,
the MixBytes (Mb) operation applies a maximum-distance separable (MDS)
circulant constant matrix M independently to all the columns of the state. In
Grøstl-256, Nr = 10, τP = [0, 1, 2, 3, 4, 5, 6, 7] and τQ = [1, 3, 5, 7, 0, 2, 4, 6],
whereas for Grøstl-512, Nr = 14 and τP = [0, 1, 2, 3, 4, 5, 6, 11] and τQ =
[1, 3, 5, 11, 0, 2, 4, 6].

Once all the message blocks of the padded input message have been processed
by the compression function, a final output transformation is applied to the last
chaining value h to produce the final n-bit hash value h′ = truncn(P (h) ⊕ h),
where truncn only keeps the last n bits.

2.2 Distinguishers

In this article, we will describe algorithms that find input pairs (X,X ′) for the
permutation P (or the permutation Q), such that the input difference ∆IN =
X ⊕ X ′ belongs to a subset of size IN and the output difference ∆OUT =
P (X)⊕P (X ′) belongs to a subset of sizeOUT . The best known generic algorithm
(this problem is different than the one studied in [8] where linear subspaces are
considered) in order to solve this problem, known as limited-birthday problem,
has been given in [3] and later a very close lower bound has been proven in [16].
For a randomly chosen n-bit permutation π, the generic algorithm can find such a
pair with complexitymax{min{

√
2n/IN,

√
2n/OUT}, 2n/(IN ·OUT )}. If one is

able to describe an algorithm requiring less computation power, then we consider
that a distinguisher exists on the permutation π.

In the case of Grøstl, it is also interesting to look at not only the internal
permutations P and Q, but also the compression function f itself. For that



matter, we will generate compression function input values (h,m) such that
∆IN = m ⊕ h belongs to a subset of size IN , and such that ∆IN ⊕ ∆OUT =
f(h,m)⊕f(m,h)⊕h⊕m belongs to a subset of size OUT . Then, one can remark
that:

f(h,m)⊕ f(m,h) = P256(h⊕m)⊕Q256(m)⊕ P256(m⊕ h)⊕Q256(h)⊕ h⊕m,
f(h,m)⊕ f(m,h) = Q256(m)⊕Q256(h)⊕ h⊕m.

Hence, it follows that:

f(h,m)⊕ f(m,h)⊕ h⊕m = Q256(m)⊕Q256(h).

Since the permutation Q is supposed to have no structural flaw, the best known
generic algorithm requiresmax{min{

√
2n/IN,

√
2n/OUT}, 2n/(IN ·OUT )} op-

erations (the situation is exactly the same as the permutation distinguisher with
permutation Q) to find a pair (h,m) of inputs such that h ⊕ m ∈ IN and
f(h,m)⊕ f(m,h)⊕ h⊕m ∈ OUT . Note that both IN and OUT are specific to
our attacks.

We emphasize that even if trivial distinguishers are already known for the
Grøstl compression function (for example fixed-points), no distinguisher is
known for the internal permutations. Moreover, our observations on the com-
pression function use the differential properties of the internal permutations.

3 Distinguishers for reduced Grøstl-256 permutations

In this section, we describe a distinguisher for the permutation P256 of the
Grøstl-256 compression function reduced to 9 rounds. We emphasize that in
the latest version of the Grøstl submission [20], the permutation Q256 has
different coefficients in the ShiftRows transformation, but the technique we
describe in the following applies to Q256 as well.

3.1 The truncated differential characteristic

In the following, we will consider truncated differential characteristics, originally
introduced by Knudsen [7] for block cipher analysis. With this technique, already
proven to be efficient for AES-based hash functions cryptanalysis [5,6,10,17], the
attacker only checks if there is a difference in a byte (active byte, denoted by a
black square in the Figures) or not (inactive byte, denoted by an empty square
in the Figures) without caring about the actual value of the difference.

The truncated differential characteristic we use has the sequence of active
bytes

8
R1−→ 1

R2−→ 8
R3−→ 64

R4−→ 64
R5−→ 64

R6−→ 8
R7−→ 1

R8−→ 8
R9−→ 64,

where the size in the input and output differences subsets are both IN =
OUT = 28×8 = 264, since there are eight active bytes in each extreme state



of the truncated characteristic. The actual truncated characteristic is reported
in Appendix B.

Note that we have three fully active internal states in the middle of the
differential characteristic, thus impossible to handle with the classical rebound
or SuperSBox techniques.

3.2 Finding a conforming pair

The method to find a pair of inputs conforming to this truncated differential
characteristic is similar to the rebound technique: we first find many solutions
for the middle rounds (round 3 to round 6) and then we filter them out during
the outwards probabilistic transitions through the MixBytes layers (round 2
and round 7). We denote x → y a non-null truncated differential transition
mapping x active bytes to y active bytes in a column through a MixBytes (or
MixBytes−1) layer, and the MDS property ensures x + y ≥ 9. Its differential
probability is determined by the number (8− y) of inactive bytes on the output:
2−8(8−y) if the MDS property is verified, 0 otherwise.

Therefore, since in our case we have two transitions 8→ 1 (see Figure 2), the
outbound phase has a success probability of

(
2−8×7

)2
= 2−112 and is straight-

forward to handle once we found enough solutions for the inbound phase.

In order to find solutions for the middle rounds (see Figure 2), we pro-
pose an algorithm inspired by the ones in [14, 15]: As in [3, 8], instead of deal-
ing with the classical 8-bit SubBytes SBoxes, one can consider 64-bit SBoxes
(named SuperSBoxes) each composed of two AES SBox layers surrounding one
MixBytes and one AddRoundConstant function1. Indeed, the ShiftBytes
can be taken out from the SuperSBoxes since it commutes with SubBytes.

We start by choosing the input difference δIN after the first SubBytes layer
in state S1 and the output difference δOUT after the last MixBytes layer in
state S12 in a way that the truncated characteristic holds in S0 and S12.
Note that since we have 8 active bytes in S1 and S12, there are as many as
22×64 = 2128 different ways of choosing (δIN , δOUT ). We continue by constructing
the 8 forward SuperSBox independently by considering the 264 possible input
values for each of them in state S3: differences in S1 can be directly propagated
to S3 since MixBytes is linear. This generates 8 independent lists, each of
size 264 and composed by paired values. Doing the same for the 8 backwards
SuperSBoxes from state S12, we again get 8 independent lists of 264 elements
each, and we end up in state S8 where the 8 forward and the 8 backward lists
overlap. In the sequel, we denote Li the ith forward SuperSBox list and L′i the
ith backward one, for 1 ≤ i ≤ 8.

In terms of freedom degrees in state S8, we want to merge 16 lists of 264
elements each for a merging condition on 2×512 = 1024 bits (512 for values and
1 These SuperSBoxes are 64-bit large in the case of Grøstl, but only 4 × 8 = 32
bits for the AES.
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Figure 2: Inbound phase for the 9-round distinguisher attack on the Grøstl permuta-
tion P256. The four rounds represented are the rounds 3 to 6 from the whole truncated
differential characteristic. A gray byte indicates an active byte; hatched and coloured
bytes emphasize one SuperSBox: there are seven similar others.

512 for differences): we then expect 216×64 2−1024 = 1 solution as a result of the
merging process. We detail a method in order to find this solution in time 2256

and memory 264 (see Figure 3).

Step 1. We start by considering every possible combination of elements in each
of the four lists L′1, L′2, L′3 and L′4. There are 2256 possibilities.

Step 2. This fully constraints 2×4 bytes in each of the 8 lists Li, 1 ≤ i ≤ 8 (i.e.
the first 4 columns of the internal state). For each of them, we then expect
264 2−8×8 = 1 element to match the randomized bytes. These elements can
be found with one operation by sorting the lists Li beforehand. At this point,
note that the second half of the state S8 has been fully determined by the
choice in L1, . . . , L8.

Step 3. We now need to ensure that the 4 last lists L′5, L′6, L′7 and L′8 contain
the elements imposed: those lists being of size 264 each, this happens with
probability 264 2−8×(2×8) = 2−64 independently on each list. Again, these
elements can be found with one operation by sorting the lists L′i beforehand.
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(c) Step 3.

Figure 3: Steps to merge the 16 lists. Grey cells denote bytes fully constrained by a
choice of elements in L′

1, . . . , L
′
4 during the first step.

All in all, trying all the 2256 elements in (L′1, L
′
2, L
′
3, L
′
4), we expect to find

2256 2−64×4 = 1 solution that will verify the 1024 bits of condition and we can
find this solution with only a few operations.

Hence, from random differences (δIN , δOUT ), we find a pair of internal states
of the permutation that conforms to the middle rounds in time 2256 and memory
264. To pass the probabilistic transitions of the outbound phase, we need to re-
peat the merging 2112 times by picking another couple of differences (δIN , δOUT ).
In total, we find a pair of inputs to the permutation that conforms to the trun-
cated differential characteristic in time complexity 2368 and memory complexity
264.

3.3 Comparison with ideal case

In the ideal case, obtaining a pair whose input and output differences lie in
a subset of size IN = OUT = 264 for a 512-bit permutation requires 2384

computations: we can directly conclude that this leads to a distinguishing at-
tack on the 9-round reduced version of the Grøstl-256 permutation with 2368

computations and 264 memory. Similarly, as explained in Section 2.2, this re-
sult also induces a nontrivial observation on the 9-round reduced version of the
Grøstl-256 compression function with identical complexity.

Finally, one can also derive slightly cheaper distinguishers by aiming less
rounds: instead of using the 9-round truncated characteristic from Appendix B,
it is possible to remove either round 2 or 8 and spare one 8 → 1 truncated
differential transition. Overall, the generic complexity remains the same and this
gives a distinguishing attack on the 8-round reduced version of the Grøstl-256
permutation with 2312 computations and 264 memory. Unfortunately, this is
worse than previously known results.



4 Distinguishers for reduced Grøstl-512 permutations

The 512-bit version of the Grøstl hash function uses a non-square 8 × 16
matrix as 1024-bit internal state, which therefore presents a lack of optimal
diffusion: a single difference generates a fully active state after three rounds where
a square-state would need only two. This enables us to add an extra round to
the generalization of the regular 9-round characteristic of AES-like permutation
(Section 3) to reach 10 rounds.

4.1 The truncated differential characteristic

To distinguish its permutation P512
2 reduced to 10 rounds, we use the truncated

differential characteristic with the sequence of active bytes

64
R1−→ 8

R2−→ 1
R3−→ 8

R4−→ 64
R5−→ 128

R6−→ 64
R7−→ 8

R8−→ 1
R9−→ 8

R10−→ 64.

where the size of the input differences subset is IN = 2512 and the size of the
output differences subset is OUT = 264.

The actual truncated characteristic is appended in Appendix C. Again, we
split the characteristic into two parts: the inbound phase involving a merging of
lists in the four middle rounds (round 4 to round 7), and an outbound phase that
behaves as a probabilistic filter ensuring both 8 −→ 1 transitions in the outward
directions. Again, passing those two transitions with random values occurs with
probability 2−112.

4.2 Finding a conforming pair

In the following, we present an algorithm to solve the middle rounds in time
2280 and memory 264. In total, we will need to repeat this process 2112 times
to get a pair of internal states that conforms to the whole truncated differential
characteristic, which would then cost 2280+112 = 2392 in time and 264 in memory.
The strategy of this algorithm (see Figure 4) is similar to the ones presented
in [14,15] and the one from the previous section: we start by fixing the difference
to a random value δIN in S1 and δOUT in S12 and linearly deduce the difference
δ′IN in S3 and δ′OUT in S10. Then, we construct the 32 lists corresponding to
the 32 SuperSBoxes: the 16 forward SuperSBoxes have an input difference
fixed to δ′IN and cover states S3 to S8, whereas the 16 backward SuperSBoxes
spread over states S10 to S6 with an output difference fixed to δ′OUT . In the
sequel, we denote Li the 16 forward SuperSBoxes and L′i the backward ones,
1 ≤ i ≤ 16.

The 32 lists overlap in S8, where we merge them on 2048 bits3 to find
264×32 2−2048 = 1 solution, since each list is of size 264. The naive way to find
2 It would work exactly the same way for the other permutation Q512.
3 The 2048 bits come from 1024 bits of values and 1024 bits of differences.
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Figure 4: Inbound phase for the 10-round distinguisher attack on the Grøstl-512
permutation P512. The four rounds represented are the rounds 4 to 7 from the whole
truncated differential characteristic C. A gray byte indicates an active byte; hatched
and coloured bytes emphasize the SuperSBoxes.

the solution would cost 21024 in time by considering each element of the Carte-
sian product of the 16 lists Li to check whether it satisfies the output 1024 bit
difference condition. We describe now the algorithm that achieves the same goal
in time 2280.

First, we observe that due to the geometry of the non-square state, any list
Li intersects with only half of the L′i. For instance, the first list L1 associated to
the first column of state S7 intersects with lists L′1, L′6, L′11, L′12, L′13, L′14, L′15
and L′16. We represent this property with a 16 × 16 array on Figure 5: the 16
columns correspond to the 16 lists L′i and the lines to the Li, 1 ≤ i ≤ 16. The
cell (i, j) is white if and only if Li has a non-null intersection with the list L′j ,
otherwise it is gray.

Then, we note that the MixBytes transition between the states S8 and S9
constraints the differences in the lists L′i : in the first column of S9 for example,
only three bytes are active, so that the same column in S8 can only have 23×8

different differences, which means that knowing three out of the eight differences
in an element of L′1 is enough to deduce the other five. For a column-vector of
differences lying in a n-dimensional subspace, we can divide the 264 elements
of the associated lists in 28n disjointed sets of 264−8n values each. So, whenever
we know the n independent differences, the only freedom that remains lie in the
values. The bottom line of Figure 5 reports the subspace dimensions for each L′i.



Using a guess-and-determine approach, we derive a way to use the previous
facts to find the solution to the merge problem in time 2280. As stated before,
we expect only one solution; that is, we want to find a single element in each of
the 32 lists. We start by guessing the values and the differences of the elements
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Figure 5: A X means we know both value and difference for that byte, a  means that
we only determined the difference for that byte and white bytes are not constrained
yet.

associated to the lists L′2, L′3, L′4 and L′5. For this, we will try all the possible
combinations of their elements, there are 24×64 = 2256 in total. For each one
of the 2256 tries, all the checked cells X now have known value and difference.
From here, 8 bytes are known in each of the four lists L5, L6, L7 and L8: this
imposes a 64-bit constraint on those lists, which filter out a single element in each.
Thereby, we determined the value and difference in the other 16 bytes marked
by X in Figure 5. In lists L′1 and L′16, we have reached the maximum number of
independent differences (three and two, respectively), so we can determine the
differences for the other bytes of those columns: we mark them by  . In L4, the
8 constraints (three X and two  ) filter out one element; then, we deduce the
correct element in L4 and mark it by X. We can now determine the differences
in L′15 since the corresponding subspace has a dimension equals to two.

At this point, no more byte can be determined based on the information
propagated so far. We continue by guessing the elements remaining in L′6. Since
there are already six byte-constraints on that list (three X), only 216 elements
conform to the conditions. The time complexity until now is thus 2256+16 = 2272.
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(a) End of the second guess.
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(b) Near the end.

Figure 6: A X means we know both value and difference for that byte, a  means that
we only determined the difference for that byte and white bytes are not constrained
yet.

Guessing the list L′6 implies a 64-bit constraint of the list L9 so that we get
a single element out of it and determine four yet-unknown other bytes. This
enables to learn the independent differences in L′14 and therefore, we filter an
element from L3 (two X and four  ). At this stage, the list L′1 is already fully
constrained on its differences, so that we are left with a set of 264−3×8 = 240

values constrained on five bytes (five X). Hence, we are able to determine all the
unset values in L′1 (Figure 6a).

Again, the lack of constraints prevent us to determine more bytes. We con-
tinue by guessing the 28 elements left in L1 (two X and three  ), which makes
the time complexity increase to 2280. The list L1 being totally known, we derive
the vector of differences in L′13, which adds an extra byte-constraint on L2 where
only one element was left, and so fully determines it. From here, L′7 becomes
fully determined as well (four X) and so is L16. In the latter, the differences
being known, we were left with a set of 264−2×8 = 248 values, which are now
constrained on six bytes (six X).

We describe in Figure 6b the knowledge propagated so far, with time com-
plexity 2280 and probability 1. We observe that L10 is overdetermined (four X
and one  ) by one byte. This means that we get the correct value with probabil-
ity 2−8, whereas L11 is filtered with probability 1. Similarly, the element of L′8
happens to be correctly defined with probability 2−16; as for L′9 and L′15, with
probability 1. We continue in L′11 by learning the full vector of differences, which
constraints L12 on 11 bytes (five X and one  ) so that we get a valid element
with probability 2−24. Finishing the guess and determine technique is done by



filtering L′10 and L12 with probability 1, L16 with probability 2−40 and L13, L14

and L15 with probability 2−64 each.

In total, for each guess, we successfully merge the 32 lists with probability

2−8−16−24−40−64−64−64 = 2−280,

but the whole procedure is repeated 264×4+16+8 = 2280 times, so we expect to
find the one existing solution. All in all, we described a way to do the merge
with time complexity 2280 and memory complexity 264. The final complexity to
find a valid candidate for the whole characteristic is then 2392 computations and
264 memory.

4.3 Comparison with ideal case

In the ideal case, obtaining a pair whose input difference lies in a subset of size
IN = 2512 and whose output difference lies in a subset of size OUT = 264 for
a 1024-bit permutation requires 2448 computations. We can directly conclude
that this leads to a distinguishing attack on the 10-round reduced version of the
Grøstl-512 permutation with 2392 computations and 264 memory. Similarly,
as explained in Section 2.2, this results also induces a nontrivial observation on
the 10-round reduced version of the Grøstl-512 compression function with
identical complexity.

One can also derive slightly cheaper distinguishers by aiming less rounds
while keeping the same generic complexity: instead of using the 10-round trun-
cated characteristic from Appendix C, it is possible to remove either round 3
or 9 and spare one 8 → 1 truncated differential transition. Overall, this gives a
distinguishing attack on the 9-round reduced version of the Grøstl-512 per-
mutation with 2336 computations and 264 memory. By removing both rounds 3
and 9, we achieve 8 rounds with 2280 computations.

One can further gain another small factor for the 9-round case by using a
8 → 2 truncated differential transition instead of 8 → 1, for a final complexity
of 2328 computations and 264 memory. Indeed, the generic complexity drops to
2384 because we would now have OUT = 2128.

5 Conclusion

In this paper, we have provided new and improved cryptanalysis results on the
building blocks of both 256 and 512-bit versions of the finalist Grøstl. This is
done by using a rebound-like approach as well as an algorithm that allows us
to pass three fully active states in the middle of the differential characteristic
with lower complexity than a general probabilistic approach. To the best of our
knowledge, all previously known methods only manage to control two fully active
states in the middle of the differential characteristic.



On Grøstl-256, we could provide the best known rebound distinguishers on
9 rounds of the permutation. For Grøstl-512, we have considerably increased
the number of analyzed rounds, from 7 to 10, providing the best analysis known
the permutation.

These results do not threaten the security of Grøstl, but we believe they will
have an important role in better understanding AES-based functions in general.
In particular, we believe that our work will help determining the bounds and
limits of rebound-like attacks in these types of constructions. Future works could
include the study of more AES-like functions in regards to this new cryptanalysis
method.
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A Distinguishers for other AES-like permutations

Using the same cryptanalysis technique, it is possible to study other AES-like
schemes using permutations similar to the Grøstl ones. For example, the recent
lightweigth hash function family PHOTON [4] is based on five different versions
of AES-like permutations. We denote s the size of the cells (s = 8 for AES) and c
the size of the square matrix representing the internal state (c = 4 for AES), the
five versions (s, c) for PHOTON are then (4, 5), (4, 6), (4, 7), (4, 8) and (8, 6) for
increasing versions. All versions are defined to apply 12 rounds of an AES-like
process, where the subkey additions are replaced by constant additions. Since the
internal state is always square, by trivially adapting the method from Section 3
to the specific parameters of PHOTON, one can hope to obtain distinguishers for
9 rounds of the PHOTON internal permutations. However, we are able to do so
only for the parameters (4, 8) used in PHOTON-224/32/32 (see Table 2 with the
comparison to previously known results). Indeed, the size c of the matrix plays
an important role in the gap between the complexity of our algorithm and the
generic one. The bigger is the matrix, the better will be the gap between the
algorithm complexity and the generic one.



Target Subtarget Rounds Time Memory Ideal Ref.

PHOTON-224/32/32 Permutation
8 (dist.) 28 24 210 [4]

9 (dist.) 2184 232 2192 Section A
Table 2: Distinguishers on PHOTON internal permutation when applying the method
from Section 3.

The same effect applies on AES in the known-key model, for which distin-
guishers on only 8 rounds are known as of today [3]. When attacking 9 rounds
with the method from Section 3, the middle rounds will cost about 264 operations
per solution, while the two 4 → 1 truncated differential transitions during the
outbound will be verified with probability (2−24)2 = 2−48. Overall, one solution
for the whole characteristic is found with 2112 computation and 232 memory, but
the generic algorithm can find such a pair with only 264.

B 9-round Grøstl-256 permutation truncated
characteristic
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Figure 7: The 9-round truncated differential characteristic used to distinguish the
permutation P of Grøstl-256 from an ideal permutation.



C 10-round Grøstl-512 permutation truncated
characteristic
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Figure 8: The 10-round truncated differential characteristic used to distinguish the
permutation P of Grøstl-512 from an ideal permutation.
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