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Abstract. The Galois/Counter Mode (GCM) of operation has been standardized
by NIST to provide single-pass authenticated encryption. The GHASH authen-
tication component of GCM belongs to a class of Wegman-Carter polynomial
universal hashes that operate in the field GF (2128). GCM uses the same block
cipher key K to both encrypt data and to derive the generator H of the authen-
tication polynomial. In present literature, only the trivial weak key H = 0 has
been considered. In this note we show that GHASH has much wider classes of
weak keys in its 512 multiplicative subgroups, analyze some of their properties,
and give experimental results when GCM is used with the AES algorithm.
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1 Introduction

Authenticated encryption modes and algorithms provide confidentiality and in-
tegrity protection in a single processing step. This results in performance and
cost advantages as data paths can be shared.

The Galois/Counter Mode (GCM) has been standardized by NIST [9] to be
used in conjunction with a 128-bit block cipher for providing authenticated en-
cryption functionality. When paired with the AES [10] algorithm, the resulting
AES-GCM combination has been used as a replacement to dedicated hash-based
HMAC [1] in popular cryptographic protocols such as SSH [4], IPSec [6] and
TLS [12].

In AES-GCM, data is encrypted using the Counter Mode (CTR). A single
AES key K is used to both encrypt data and to derive authentication secrets.
The component that is used by GCM to produce a message authentication code
is called GHASH. GCM also supports Additional Authenticated Data (AAD)
which is authenticated using GHASH but transmitted as plaintext.

The GHASH algorithm belongs to a widely studied class of Wegman-Carter
polynomial universal hashes. The security bounds known for these algorithms
indicate that a n-bit tag will give 2−

n
2 security against forgery [2, 13].



In this paper we give further evidence that this is not only the security lower
bound but an upper bound as well. It can be argued that universal hashes sacri-
fice some communication bandwidth for convenience as traditional hash-based
MACs are designed to reach the information theoretic 2−n bound against mes-
sage forgery.

This paper is structured as follows. We give a description of GHASH in Sec-
tion 2, followed by a key observation regarding collisions derived from cycles
in Section 3. Section 4 contains an analysis of cycle lengths and group orders.
In Section 5 we discuss the probability of successful forgery. Section 6 contains
a test and experimental results related to cycle lengths. In Section 7 we analyze
the impact of the attacks described in this paper, followed by conclusions in
Section 8.

2 Description of GHASH

Let X be a concatenation of unencrypted authenticated data, CTR-encrypted
ciphertext, and padding. This data is split into m 128-bit blocks Xi:

X = X1 || X2 || · · · || Xm.

AES is used to derive the root authentication key H = EK(0). The same
AES key K is also used as the data encryption key. In the present work we
assume that H is unknown to the attacker as the scheme would be otherwise
trivially breakable.

GHASH is based on operations in the finite field GF (2128). Horner’s rule is
used in this field to evaluate the polynomial Y .

Ym =

m∑
i=1

Xi ×Hm−i+1. (1)

The authentication tag is T = Ym + EK(IV || 031 || 1), assuming that a
96-bit Initialization Vector (IV) is used. The IV value must never be repeated as
that would lead to the “forbidden attack” discussed by Joux in [5].

3 Collisions from Weak Keys

It has been observed that if EK(0) = H = 0, the polynomial Y evaluates to
zero and the security of GHASH breaks down. In fact, some sources assume
that this pathological case is the only weak key [3]. AES keys K that produce



this fixed point are not known.1 However, It is easy to see why such keys should
exist for AES, especially when the size of K is more than 128 bits.

Our main observation is that sometimes the powers of H will repeat in a
relatively short cycle. A trivial example occurs when H is equal to the identity
element 1, which will lead to all powers being equal. Due to the commutativity
of addition in Equation 1, a GHASH collision can be achieved by swapping any
two ciphertext blocks Xi and Xj . This amounts to message forgery.

More generally, if we know that Hm−i+1 = Hm−j+1 with i 6= j, we may
simply swap Xi and Xj and the resulting authentication tag stays the same, as
can be easily observed from Equation 1. From number theory we know that the
powers of H will repeat in cycles which are determined by n = ord(H), the
multiplicative order of H . Hence we may produce collisions by swapping Xi

and Xi+nm for arbitrary i and m.

4 Cycle Lengths and Group Orders

From Lagrange’s theorem in group theory we know that all subgroups divide
the group of order 2128 − 1. Numbers of this type factor into Fermat numbers

22
n − 1 =

n∏
i=1

22
i−1

+ 1. (2)

We can easily obtain the full factorization of 2128 − 1:

3×5×17×257×641×65537×274177×6700417×67280421310721. (3)

As this is a “smooth number”, we can see that there are classes of H and there-
fore K values that produce cycles of length n = 1, 3, 5, 15, 17, 51, . . .; any one
of the 29 = 512 combinations the primes in Equation 3 is a valid group order.2

We will illustrate this with few trivial examples. Due to the way finite field
arithmetic is defined in the GCM standard [9], the identity element with ord(H) =
1 is:

H = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Apparently this was considered as the “first bit” by those who originally imple-
mented GCM. Otherwise standard polynomial arithmetic is used with the field
representation defined by the reducing polynomial x128 + x7 + x2 + x+ 1.

The following two elements will produce a cycle of length ord(H) = 3 (the
cycle obviously goes through the identity as well):

1 Some block ciphers such as GOST allow such fixed-point keys to be very easily found.
2 The term smooth number comes from factorization theory and indicates that a number factors

into a large number of small primes.



H = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94
H = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

And these four elements have ord(H) = 5:

H = 46 36 BD BD 1C 76 43 D3 4E E4 BB 1B F9 CA 08 4F
H = 92 17 8D 40 26 DA 1D CA 42 96 77 87 30 EB 9A 9E
H = 82 C7 C0 65 DF EF 4B 2C DD CE B9 A8 BD E8 C0 0A
H = D6 E6 F0 98 E5 43 15 35 D1 BC 75 34 74 C9 52 DB

We do not know which actual AES keys produce these H values, nor do we
recommend testing against these particular values as the probability of hitting
them is exceedingly small.

5 Message Forgery

We know that the field GF (2128) offers a generous serving of 29 = 512 different
multiplicative subgroups. Figure 1 shows that these are quite evenly distributed
in the range due to the super-exponential progression of the factors.

In our attack the adversary does not know H but will simply attempt blind
forgery by swapping two (or more) message blocks in transit as discussed in
Section 3.

It is easy to show that it is sufficient that the group order divides the dis-
tance between swapped elements. Since each subgroup of size n has exactly n
elements, we arrive at the following observation:

Theorem 1. Let n be a number satisfying gcd(2128 − 1, n) = n. Blindly swap-
ping blocks Xi and Xj , where i ≡ j (mod n) will result in a successful forgery
with probability of at least n

2128
.

Proof. The distance congruence implies that the distance between Xi and Xj

is a multiple of n. The gcd(2128 − 1, n) = n condition implies that n is one
of the 29 = 512 possible multiplicative subgroup sizes in GF (2128). If indeed
ord(H) | n then H i = Hj and the forgery is successful due to commutativity
of equation 1. We observe that the cycles are unique; there are n members in a
subgroup of size n and the set of n elements is unique to each subgroup size.
Hence the probability of hitting one of these cycle elements is n

2128
. ut

If the condition given in Theorem 1 does not hold, there is no reason to
expect that the forgery is successful with a probability higher than 1

2128
.

Assuming that an oracle has indicated a successful message forgery, any
number of consecutive forgeries can be produced with probability 1.
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Fig. 1. Probability of hitting a cycle of given size (or smaller) with a random key.

5.1 Bit Forgeries

We note that more elaborate forgeries can be made. If i − j is a multiple of
ord(H) the authentication tag will remain valid as long as the equation

Xi ×Hm−i+1 +Xj ×Hm−j+1 = c (4)

holds for some unknown constant c. Since Hm−i+1 = Hm−j+1 = Hc, this can
be simplified to

Xi +Xj = c×H−1
c . (5)

One may therefore flip individual bits in block Xi if the corresponding bit in
Xj is also flipped. Any number of such modifications can be done to a message
without affecting the probability of success (assuming that the same distance is
used).

5.2 A Note on Finite Fields

The main observation of the previous sections does not hold for all polynomial
hashes as finite fields exist that do not have a smooth multiplicative order.



As an example we could use a prime field GF (p) with a Sophie Germain
prime p = 2128 + 12451. Since p−1

2 is also a prime, all but three elements
{0, 1, p − 1} have order in excess of 2127. The swapping attacks described in
this paper do not work in this field. Hence a binary field is probably not an ideal
choice for authentication algorithms of this type.

6 Testing for Weak Keys

We know that finding weak H values is easy, so a natural question arises on how
to determine weak AES keys K that produce these weak H roots.

To determine group order, we use a simple algorithm which is related to the
Silver-Pohlig-Hellman algorithm for discrete logarithms [11]. Our algorithm is
based on the following elementary observation:

Theorem 2. Let p be one of the prime divisors given in Equation 3. If and only
if p divides 2128−1

ord(H) we have

H
2128−1

p = 1. (6)

Proof. Trivial. ut

By performing the exponentiation test of Theorem 2 for each one of the
nine prime divisors of 2128−1 in Equation 3, we may completely determine the
multiplicative order of H .

We have implemented a reasonably efficient exponentiation algorithm in
GCM’s GF (2128), together with an AES-128 key setup and encryption function
for deriving H values from K values. Our implementation is currently able to
fully determine the order of 25000 AES keys per second on a Linux laptop that
has a single 1.7 gHz AMD V140 processor.

Over couple of days we tested 232 AES-128 keys and found progressively
smaller subgroups:

n ≈ 2126.4 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

n ≈ 2125.6 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03

· · ·
n ≈ 296.52 K = 00 00 00 00 00 00 00 00 00 00 00 00 24 3E 8B 40

n ≈ 296.00 K = 00 00 00 00 00 00 00 00 00 00 00 00 37 48 CF CE

n ≈ 293.93 K = 00 00 00 00 00 00 00 00 00 00 00 00 42 87 3C C8

n ≈ 293.41 K = 00 00 00 00 00 00 00 00 00 00 00 00 EC 69 7A A8



As indicated by Figure 1, a significantly smaller group than 2128−32 = 296

was found with 232 effort, due to the large number of multiplicative subgroup
sizes available in GF (2128).

There is clearly room for improvement. The search is fully parallelizable,
and hence a massively parallel FPGA or GPU-based search could be performed
to find subgroups of magnitude n ≈ 264 or less.

7 Risk Analysis for Cryptographic Protocols

The probability of randomly hitting an exploitable weak key with a real-world
AES-GCM cryptographic protocol such as SSH [4], IPSec [6] or TLS [12] is
acceptably small.

However, malicious players may exploit subtle weaknesses in more compli-
cated cryptographic protocols in surprising ways. One feature of cycle attacks is
that an attacker may first test for short cycles and then force a re-keying event if
the test fails; once a long-term key with a short cycle is found, she may exploit
it any number of times.

It is clear that risks rise quadratically when GCM is used with a 64-bit block
cipher as suggested in Appendix A of [8]. There is a substantial risk of hitting a
bad long-term key and therefore we recommend against using the 64-bit GCM.

8 Conclusions

We have shown that the GHASH algorithm has other weak key classes besides
the trivial H = 0 case considered in current literature [3]. This is a result of
the multiplicative group of GF (2128) having a particularly smooth order. We
suggest that Sophie Germain prime fields are used in similar future constructions
as this minimizes the total number of weak keys to three (H ∈ {0, 1, p− 1}).

We have also described a straightforward method of detecting GHASH weak
keys. We performed an exhaustive experiment that found many AES-128 keys
that produce H with order below n ≈ 296.

One interesting future research direction and open question is the feasibility
of mapping the weak H values to K symmetric keys with various block ciphers
other than AES.
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