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Abstract. We discuss a modification of the Cramer-Shoup strong-RSA
signature scheme. Our proposal also presumes the strong RSA assump-
tion, but allows faster signing and verification and produces signatures
of roughly half the size. Then we present a stateful version of our scheme
where signing (but not verifying) becomes almost as efficient as with
RSA-PSS. We also show how to turn our signature schemes into “light-
weight” anonymous yet linkable group identification protocols without
random oracles.

1 Introduction

Existential unforgeability under adaptive chosen-message attacks has become
the salient security criterion for signature schemes. For instance, the well-known
RSA-PSS scheme [4, 17] meets this requirement under the RSA assumption
in the random oracle model. But only very few efficient schemes are known
to achieve this security level without relying on random oracles. One of these
schemes is the Cramer-Shoup signature scheme [10] which is provably secure
under the strong RSA (aka. flexible RSA) assumption.

Here, we present an improvement of the Cramer-Shoup scheme which also
forgos random oracles and is merely based on the strong RSA assumption (and
a collision-intractable hash function for long messages). In the original Cramer-
Shoup scheme each signature requires the signer to generate a prime and to
compute two exponentations, one exponentiation with a full-fledged exponent
and the other one with a smaller exponent. Our solution eliminates the “small”
exponentiation which, according to the implementation figures of the Cramer-
Shoup scheme [10, 18], saves almost one third of the time for signature generation
(when standard speed-up methods like preprocessing and Chinese remainder are
used).

Additionally, our proposal almost halves the size of a signature, e.g., for
a 1024-bit RSA modulus a signature now has 1350 bits instead of 2200 bits as
in the original scheme. The size of the public key in our case marginally grows,
but verification too becomes slightly faster and the key generation times are
essentially identical.
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We then present a stateful variation of our signature system. The state in-
formation consists of a short prime, typically less than 60 bits long. But this
state information buys us another efficiency improvement for the signer while
keeping the effort for the verifier unchanged. Namely, the expensive prime gen-
eration for each signature almost vanishes, such that the signer mainly has to
compute a full-fledged exponentiation. Therefore, signing becomes almost as ef-
ficient as for RSA-PSS (yet, in our case, additional preprocessing techniques
apply). Moreover, the signature size in our stateful variant is decreased even fur-
ther, by approximately 100 bits, making it comparable to the size of RSA-PSS
signatures. Still, RSA-PSS is significantly superior with respect to key generation
and verification, and is of course stateless.

At the end of this paper, we touch anonymous group identification protocols
in which users can prove membership in a group without dicslosing their identity.
We discuss how to construct a “lightweight” anonymous (yet linkable) group
identification scheme from our signature schemes. Our solution does not need
random oracles, and the group’s common public key as well as the performance
of a single identification is independent of the number of users.

2 A Modification of the Cramer-Shoup Protocol

In this section we recall the original Cramer-Shoup scheme, introduce our mod-
ification and prove it to be secure, and compare our proposal to the original
protocol.

We adhere to the notation in [10]; still, the protocol description should be
intelligible without [10]. We remark that the strong RSA assumption (introduced
by Barić and Pfitzmann [2] as well as Fujisaki and Okamoto [13]) says that for
a random RSA modulus n and a random element z ∈ Z

∗
n it is infeasible to find

an integer e ≥ 2 and the e-th root of z in Z
∗
n. Hence, compared to the ordinary

RSA assumption where the exponent is given, a solution for the strong RSA
problem allows to come up with a self-determined exponent.

Recently, Damgȧrd and Koprowski [11] have generalized the Cramer-Shoup
signature scheme to generic groups for which the strong root assumption, the
counterpart to the strong RSA assumption in Z

∗
n, holds. We note that our im-

provements here also apply to the model of Damgȧrd and Koprowski.

2.1 Original Cramer-Shoup Signature Scheme

The original Cramer-Shoup scheme works as follows:

Key Generation: Generate n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for
primes p, q, p′, q′. Also pick two quadratic residues h, x ∈ QRn and a random
(l+1)-bit prime e′. The public verfication key is (n, h, x, e′) and the private
key is (p, q).
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Signing: To sign a message m compute the l-bit hash value H(m) with
a collision-intractable hash function H(·). Pick a random (l + 1)-bit prime
e �= e′ and a random y′ ∈ QRn, compute x

′ where

(y′)e
′
= x′hH(m) mod n

as well as y with
ye = xhH(x′) mod n.

Computing this e-th root is easy given the factorization of n. The signature
equals (e, y, y′).

Verification: First check that e is an odd (l + 1)-bit integer different from e′,
then compute x′ = (y′)e

′
h−H(m) and verify that x = yeh−H(m).

Note that computing the e-th root of xhH(x′) corresponds to an exponenti-
ation with a full-fledged exponent e−1 mod ϕ(n), while the computation of y′

solely involves “small” l-bit exponents. If these exponentiations are performed in
Z
∗
n then the running times differ significantly. However, when using the Chinese
remainder and appropriate preprocessing methods, the implementation results
in [10, 18] show that both exponentiations roughly need the same time. Specif-
ically, according to [10, 18] the prime generation and the exponentiations then
each take approximately one third of the total signing time.

2.2 Modified Cramer-Shoup Signature Scheme

One can view the value H(x′) as a trapdoor commitment of the message m,
using the RSA trapdoor commitment scheme. Therefore, as pointed out in [10],
one may replace this part with any other appropriate trapdoor commitment.
Indeed, [10, Sec. 5] suggest as an example a trapdoor commitment based on the
discrete-log assumption. By this, the signature length shrinks to almost half of
the original size. Unfortunately, this advantage disappears again if one switches
to other trapdoor commitments based on the RSA or factoring assumption, or
even general one-way functions.

The second part of the signature generation can be thought of as a repre-
sentation problem. That is, a representation of x with respect to h, e, n is a pair
(α, y) such that hαye = x mod n. In this sense, a signature in the original proto-
col requires that one finds a representation of x involving the hash value −H(x′)
and a self-determined exponent e. In the modified signature scheme here, we
assimilate the trapdoor commitment to the representation problem:

Key Generation: Generate n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for
primes p, q, p′, q′. Also pick three quadratic residues h1, h2, x ∈ QRn. The
public verfication key is (n, h1, h2, x) and the private key is (p, q).
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Signing: To sign a message m calculate the l-bit hash value H(m) with
a collision-intractable hash function H(·). Pick a random (l+1)-bit prime e,
a random l-bit string α and compute a representation (−α,−(α⊕H(m)), y)
of x with respect to h1, h2, e, n, i.e.,

ye = xhα
1h

α⊕H(m)
2 mod n.

Computing this e-th root y from xhα
1h

α⊕H(m)
2 is easy given the factorization

of n. The signature is given by (e, α, y).

Verification: Check that e is an odd (l + 1)-bit integer, that α is l bits long,
and that ye = xhα

1h
α⊕H(m)
2 mod n.

The idea of splitting H(m) into random (but dependent) parts α and α ⊕
H(m) is not new. It has already been applied for the well-known protocol for
proving knowledge of one out of two discrete logarithms [9] and for security
amplification reducing chosen-message attacks to random-message attacks [8]. As
we will discuss below, it also gives the desired trapdoor information for proving
security here.

We remark that we may instead select α at random in Ze and split the
message into α and α+H(m) mod e. Moreover, we may alternatively define y in
the signature generation as the unique value such that x = hα

1h
α⊕H(m)
2 ye mod n,

i.e., rearrange the equation to derive a “well-formed” representation problem.
Our security proof also works for these variations, even when combined.

2.3 Performance Comparison

Compared to the original scheme with signature size 2|n| + l + 1, both the
modification here as well as the one using the discrete-log trapdoor commitment
produce signatures of size |n| + 2l + 1. Disadvantegeously, both modifications
slightly increase the size of the public key, e.g., adding |n| − l bits in our case.
However, this is outweighed by the shorter signatures.

The same speedup techniques as in [10, Sec. 3, 6 and 7] apply here (e.g.,
computation via Chinese remainder, faster prime number generation, taking e-th
roots efficiently, precomputation techniques, etc.). In particular, selecting x = ha

1

and h2 = ha′
1 for appropriate a, a′ and storing a, a′ in the secret key, the effort

to compute the e-th root of xhα
1h

α⊕H(m)
2 = h

α+a+a′(α⊕H(m))
1 is (almost) the

same as in the original scheme for xhH(x′) = ha+H(x′). That is, the signer first
computes f = e−1(a +H(x′)) mod ϕ(n) in the original scheme or, in our case,
f = e−1(α+ a+ a′(α⊕H(m))) mod ϕ(n) with a few more operations. Then the
signer calculates hf mod n resp. hf

1 mod n, possibly using the Chinese remainder
method and preprocessing techniques. In summary, since our proposal does not
require the computation of the separate trapdoor commitment we eliminate the
“small” exponentiation almost for free.
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For signature verification, the cost for the verifier for checking the single
equation in our scheme with two generators h1, h2 is only marginally higher
than the cost of checking the equation ye = xhH(x′) with a single generator h in
the original scheme. The reason is that, using standard methods, such exponenti-
ations can be carried out with roughly the same effort as in the single generator
case. Yet, in our case the additional verification of the trapdoor commitment
disappears.

Unfortunately, all solutions share the expensive prime generation of e. A pro-
found algorithm to generate e has been presented in [10, Sec. 6] (see also the
corresponding implementation results in [18]). Another possible improvement
is to decrease the length of e at the cost of a larger public key. Namely, if we
put, say, three values h1, h2, h3 into the public key, then we can divide the hash
value H(m) into halves H1(m), H2(m) of 80 bits each, and choose α and e to
be 80 and 81 bits, respectively. A signature is then described by the equation
xhα

1 h
α⊕H1(m)
2 h

α⊕H2(m)
3 = ye, and the signature length is about 80 bits shorter.

The security proof in the next section straightforwardly extends to this case.
If we choose three generators h1, h2, h3, then the effort for the signer to com-

pute the e-th root y given stored values a, a′, a′′ does not change significantly in
comparison to the case of two generators. But an 81-bit prime e is much easier
to find than a 161-bit one. The verifier now has to perform a faster to compute
“quadruple” exponentiation hα

1h
α⊕H1(m)
2 h

α⊕H2(m)
3 ye with 81-bit exponents in-

stead of a “triple” exponentiation hα
1h

α⊕H(m)
2 ye with 161-bit exponents.

Our signature scheme also has the feature that for short messages, e.g., of
80 bits, a collision-intractable hash function becomes obsolete and the signer
may choose e also as a shorter prime, e.g., 81 bits or even 41 bits with the
trick above. Moreover, signing and verifying become slightly faster. This may
be interesting for identification protocols, where users identify by signing short
random messages.

2.4 Security Proof

We discuss that the modified signature scheme is secure against adaptive chosen-
message attacks. Basically, the proof follows the one in [10].

Note that in an adaptive chosen-message attack the adversary is given the
public key of the signer and can ask the signer to sign arbitrary messages. The
choice of the next message submitted to this signature oracle is adaptively de-
termined by the data gathered before. Finally, the adversary outputs a message
that has not been signed by the oracle, together with a putative signature for
this message.

Let mi be the i-th query to the signer and (ei, αi, yi) denote the answer.
Let m and (e, α, y) be the putative forgery of the adversary. We assume that
all ei chosen by the signer during an attack are distinct (yet, the adversary’s
choice e may equal some ej), and that H(m) �= H(mi) for all mi (otherwise we
have found a collision m �= mi).

There are two types of forgers (dubbed according to [10]):
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Type II: The adversary outputs e = ej for some j.
Type III: The adversary outputs a new e, different from all ei.

Type I forgers as in [10] disappear due to our modification. We show that type
II forgers contradict the (ordinary) RSA assumption, whereas type III forgers
refute the strong RSA assumption.

Type II Forger

We assume that we know j, otherwise we can guess it. Since H(mj) �= H(m) we
have αj �= α or αj ⊕H(mj) �= α⊕H(m). With probability 1/2 we can guess in
advance which case will happen, and we assume for simplicity that αj �= α here.
The other case is treated analogously.

We are given n, z ∈ Z
∗
n and an odd prime r and are supposed to output z

1/r.
To do so, we invoke the type II forger on the following public key and signature
oracle: Set ej = r and for all i �= j choose a random (l+1)-bit prime ei (where i
is bounded by the number of queries to the signature oracle in the attack). Let

h1 = z2·
∏

i�=j ei , h2 = v2·
∏

i ei , x = h−β
1 · w2·∏ i ei

for random v, w ∈ Z
∗
n and a random l-bit string β. The “prepared” public key

is (n, h1, h2, x).
To sign the i-the message on behalf of the signer, i �= j, select an l-bit string

αi and compute

yi = w2·∏ k �=i ek · (z2·
∏

k �=j,k �=i ek
)αi−β · (v2·

∏
k �=i ek

)αi⊕H(mi)

=
(
xhαi

1 h
αi⊕H(mi)
2

)1/ei

For the j-th signature query set αj = β and compute yj as1

yj = w2·∏k �=j ek · (v2·
∏

k �=j ek
)αj⊕H(mj) =

(
xh

αj

1 h
αj⊕H(mj)
2

)1/ej

It is not hard to see that the data in this simulation is identically distributed
to the one in a real attack. In particular, x and the signatures for i �= j are
distributed independently of β, and therefore αj in this simulation has the same
distribution as in an actual attack.

The adversary’s output yields another representation of x with respect to
n, h1, h2 and ej = r. More precisely,

h
−αj

1 h
−(αj⊕H(mj))
2 yr

j = x = h
−α
1 h

−(α⊕H(m))
2 yr mod n.

And, plugging in the preselected values,

h
α−αj

1 = h(αj⊕H(mj))−(α⊕H(m))
2 · (yy−1

j )r

z2·
∏

i�=j ei·(α−αj) =
(
v2·

∏
i�=j ei·((αj⊕H(mj))−(α⊕H(m)) · yy−1

j

)r

1 If we had bet on αj ⊕ H(mj) �= α ⊕ H(m) then we would have basically swapped
the roles of h1 and h2 and would now set αj = β ⊕H(mj).
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Since |α−αj | ∈ Zr −{0} and all ek are relatively prime, we can compute an r-th
root of z by standard procedures (see, for instance, [10]).

Type III Forger

This case is almost identical to the one discussed in [10]. Namely, given n, z
preselect all ei and set

h1 = z2·
∏

i ei , x = ha
1 , h2 = ha′

1

for random a, a′ ∈ {1, . . . , n2}. As h1 is a generator of QRn with high probability
and since a, a′ mod p′q′ are statistically close to the uniform distribution on Zp′q′ ,
the values x, h2 are almost uniformly distributed quadratic residues. Also, we can
sign any query mi since we know the ei-th roots of xhαi

1 h
αi⊕H(mi)
2 for any αi.

On the other side, the forgery yields the equation

ye = xhα
1 h

α⊕H(m)
2 = zm

where
m = 2 ·

∏
i

ei · (a+ α+ a′(α ⊕H(m))).

The fact that e � |m with non-negligible probability and that we can compute
a non-trivial e/gcd(e,m)-th root of z now follows as in [10]. Specifically, if r is
a prime dividing e, then r clearly does not divide 2·∏i ei. Write a as a = bp

′q′+c
for 0 ≤ c < p′q′ and note that the adverary’s view is essentially independent of b,
even if given c. Hence, b mod r is almost uniform on Zr and the probability that
r|(a+α+ a′(α⊕H(m))) or, equivalently, that a+α+ a′(α⊕H(m)) = 0 mod r
is negligibly close to 1/r.

We conclude that with probability close to 1 − 1/r for the smallest prime
factor r of e we have e� |m. Once more, in this case it is easy to compute a non-
trivial e/gcd(e,m)-th root of z by standard techniques.

3 Efficient Stateful Signatures

In this section we present a stateful variation of our signature scheme above.
This modification here removes the necessity to generate a 161-bit prime for
each signature. Instead, the signer uses a smaller prime number, e.g., up to 60
bits, which he must update after each signing.

3.1 Description

Our stateful scheme can be outlined as follows. Instead of using random (l+1)-
bit primes e (such that e ≥ 2l−1) as before, the signer here uses shorter primes e
and the smallest power et such that et ≥ 2l−1. The signer starts with e1 = 3 or,
for security reasons [6], rather with e1 = 216 + 1. After signing with this prime,
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he proceeds to the next prime e2 after e1. Having used e2 the signer then picks e3
for the next signature and so on. More generally, for the j-th signature the signer
uses the j-th prime ej (after the offset 216 + 1). For this, the signer stores the
current prime e and, after signing, updates it with algorithm nextprime(e) which
generates the closest prime after e.

Key Generation: Generate n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for
primes p, q, p′, q′. Also pick three quadratic residues h1, h2, x ∈ QRn and
initialize e = 216 + 1. The public verfication key is (n, h1, h2, x) and the
private key is (p, q) and the state information is given by e.

Signing: To sign a message m calculate the l-bit hash value H(m) with a
collision-intractable hash function H(·). Find the smallest integer t such that
et ≥ 2l −1. Then pick a random l-bit string α and compute a representation
(−α,−(α⊕H(m)), y) of x with respect to h1, h2, e

t, n, i.e.,

yet

= xhα
1h

α⊕H(m)
2 mod n.

Computing this et-th root y from xhα
1 h

α⊕H(m)
2 is easy given the factorization

of n. The signature is given by (e, α, y). Finally, update e as nextprime(e).

Verification: Given a putative signature (e, α, y) check that α is l bits long,
that e ≥ 216 + 1 is odd, and that yet

= xhα
1h

α⊕H(m)
2 mod n, where t is the

smallest integer such that et ≥ 2l − 1.

3.2 Performance Comparison

In comparison to the modified Cramer-Shoup scheme in the previous section, in
this stateful scheme here the signer needs to generate a much shorter prime. In
fact, if the signer signs at most 250 messages, then less than 60 bits are enough
to store the current prime.

We remark that short primes are easier to generate. For example, using an
observation by Bleichenbacher [5], reported in [15] and also pointed out in [10],
there is a determinsitic primality test for short numbers. Bleichenbacher has
shown that it suffices to run the Miller-Rabin primality test with fixed bases
B = {2, 3, 5, 7, 11, 13, 23} in order to identify primes up to 53 bits. Additionally,
for shorter primes, e.g., of 30 bits, an even smaller base suffices (see [5, Chap. 3]).
Together with standard trial division, this gives a very efficient way to generate
the primes (up to the approximately first 245 signatures).

In summary, the signing time is now dominated by the computation of the et-
th root y. Thus, the overall effort for signing is pretty close to the one for RSA
signatures where one also computes an e-th root. Yet, in contrast to RSA where
the exponent and its inverse are fixed, here we must first compute the inverse
of et when signing. But in favor of our scheme we observe that preprocessing for
the computation of the root y is applicable.
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Surprisingly, the gain in efficiency compared to the stateless version also
comes with a decrease in signature size. Namely, instead of 161-bit primes, a sig-
nature now contains the j-th smallest prime after 216+1. As noted above, 60 bits
are usually sufficient to append this prime to the signature, thus saving another
100 bits.

3.3 Security Proof

Once more, assume that an adversary successfully runs an adaptive chosen-
message attack. Denote the i-th submission to the signer bymi and let (ei, αi, yi)
be the answer. We also denote by ti the corresponding exponent such that eti

i ≥
2l − 1. The putative forgery is given by m and (e, α, y). For simplicity, assume
again that H(m) �= H(mi) for all mi.

The two types of forgers are:

Type II: The adversary outputs e such that ej |e for some j.
Type III: The adversary outputs e such that no prime ej divides e.

In a sense, these types generalize the ones of the proof in the previous section.
It is therefore not surprising that the proof carries over immediately: Type II
forgers will contradict the RSA assumption (for a small given exponent r = ej ,
that is, the j-th prime ej after 216+1), whereas type III forgers refute the strong
RSA assumption.

Type II Forger

This part of the proof is similar to the case of type II forgers before. Suppose
that we know j with ej|e in advance. Again, from H(mj) �= H(m) it follows
αj �= α or αj ⊕ H(mj) �= α ⊕ H(m), and, to simplify, we only treat the case
αj �= α here.

Given n, z ∈ Z
∗
n and the j-th prime ej after 2

16 + 1, we feed the adversary
the following data: For all i �= j compute the i-th prime ei and the exponent ti
and set

h1 = z2·
∏

i�=j e
ti
i , h2 = v2·

∏
i e

ti
i , x = h−β

1 · w2·∏ i e
ti
i

for random v, w ∈ Z
∗
n and a random l-bit string β. These values make up the

public key (n, h1, h2, x).
To simulate the signing process for the i-the message, i �= j, choose a ran-

dom l-bit value αi and compute

yi = w2·∏k �=i e
tk
k · (z2·

∏
k �=j,k �=i e

tk
k

)αi−β · (v2·
∏

k �=i e
tk
k

)αi⊕H(mi)

=
(
xhαi

1 h
αi⊕H(mi)
2

)1/e
ti
i

For the j-th signature query set αj = β and compute yj as

yj = w2·∏ k �=j e
tk
k · (v2·

∏
k �=j e

tk
k

)αj⊕H(mj) =
(
xh

αj

1 h
αj⊕H(mj)
2

)1/e
tj
j
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A successful forgery of the adversary yields another representation of x with
respect to n, h1, h2 and e

tj

j . Specifically,

h
−αj

1 h
−(αj⊕H(mj))
2 y

e
tj
j

j = x = h−α
1 h

−(α⊕H(m))
2 ye

tj
j mod n.

Therefore,

h
α−αj

1 = h(αj⊕H(mj))−(α⊕H(m))
2 · (yy−1

j )e
tj
j

z2·
∏

i�=j e
ti
i ·(α−αj) =

(
v2·

∏
i�=j e

ti
i ·((αj⊕H(mj))−(α⊕H(m)) · yy−1

j

)e
tj
j

Because α �= αj and e
tj

j ≥ 2l − 1 there is some integer k < tj such that

α = αj mod ekj and α �= αj mod ek+1
j

Applying well-known techniques (see again [10], for example) we can compute

an etj

j -th root a of h
ek

j

1 . Since raising elements to the ej-th power is a permutation,

it follows that ae
tj−k−1
j is an ej-th root of h1 = z2·

∏
i�=j e

ti
i . Once more, this gives

us straightforwardly an ej-th root of the given value z.

Type III Forger

Observing that the smallest prime factor r of the adversary’s choice e does not
divide any eti

i (by assumption), this part of the proof is identical to the previously
given proof. We thus omit this part and note that this completes the proof.

Remark

The devil’s advocate may object that, in this scheme here, type II adversaries
need to break RSA for a small exponent e ≥ 216+1 only, whereas in the stateless
version the adversary must use a large (l + 1)-bit prime. However, we remark
that for low public exponents e ≥ 216 + 1 no better attacks than the ones for
large exponents are known [6]. Additionally, our scheme supports a flexible offset
and one may start with larger primes, for example, e1 ≥ 240. But this also means
a slight loss in efficiency.

4 “Lightweight” Anonymous Group Identification

With an anonymous group identification scheme each user of a group is able
to prove membership in the group while hiding his identity among the group
members. Below, we present an anonymous group identification scheme which
does not rely on random oracles, and where both the size of the group’s public
key as well as the computational effort for an identification are independent of
the number of users in the group. For convenience we only present the protocol
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based on our stateless signature scheme; it is easy to adapt it to the case of
stateful signatures.

Unfortunately, our protocol is linkable in the sense that a verifier is able to
decide if two identifications have been carried out by the same user (although
the verifier is unable to specify the user among the group members). An obvious
countermeasure against this problem is to frequently refresh one’s membership
and receive new keys (as in the case of pseudonyms).

Also note that the group manager is able to identify on behalf of any user
(besides the fact that the manager can issue keys for fake users). Still, our pro-
tocol enjoys other strong security characteristics: it is for instance secure against
any number of users that actively coorperate to intrude as another honest user;
details follow.

Several anonymous group identification schemes (which can be derived for
example from group signature schemes) have been constructed in the past, e.g.,
[12, 7, 1, 14], each with different security and performance features. Our so-
lution seems to exceed all these protocols in performance, but at the cost of
unlinkability.

4.1 Description

The group manager in our anonymous identification scheme picks an RSA mod-
ulus n = pq of strong primes p = 2p′ + 1, q = 2q′ + 1, and a random element
x ∈ QRn together with a generator h1 of QRn. The values (n, x, h1) make up
the group’s public key. If a user u wants to join, then the manager picks a ran-
dom (l + 1)-bit prime eu and a random l-bit value αu, and computes yu such
that hαu

1 yeu
u = x mod n. The manager hands the pair (αu, yu) and eu to the

user.2

Next, we describe the identification protocol; it is also depicted in Figure 1.
If a user u wants to identify as a group member to some verifier, both parties
run Okamoto’s RSA identification protocol [16] on the user’s key and the group’s
public key. That is, the user picks a ∈ Zeu , z ∈ Z

∗
n in order to calculate A =

ha
1z

eu mod n and sends this value A with eu to the verifier.3 The verifier answers
with a random challenge c ∈ Zeu and the user conclusively transmits b, B where
b = a+cαu mod eu and B = zxch

�(a+cαu)/eu�
1 mod n. The verifier checks that eu

is an odd l+1-bit number and the correctness condition Axc = hb
1B

eu mod n of
the identification protocol.

Note that we can add “threshold admittance levels” to our identification
protocol almost for free. That is, each user u is assigned a privilege number !u
2 For ease of notation we switch to a “well-formed” representation problem as ex-
plained at the end of Section 2.2. Also for simplicity we have chosen the version
with “large” (l+ 1)-bit primes eu. The protocol can be easily adapted to work with
shorter primes eu and powers etu

u ≥ 2l − 1 instead.
3 Okamoto’s protocol does not require to send the exponent eu as the exponent is
already part of the public key. Here, the group’s public key does not contain the
users’ exponents, so we let the user append it to the protocol data. Indeed, this is
what makes our protocol linkable.
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User u group key n, x, h1 Verifier

exponent eu, secret key αu, yu

with hαu
1 yeu

u = x mod n

pick a ∈ Zeu , z ∈ Z
∗
n

A = ha
1zeu mod n

A, eu−−−−−−−−−−−→
pick c ∈ Zeu

c←−−−−−−−−−−−
b = a+ cαu mod eu

B = zxch
�(a+cαu)/eu�
1 mod n

b, B−−−−−−−−−−−→
check that

eu is odd l + 1-bit number,
Axc = hb

1B
eu mod n

Fig. 1. Anonymous Identification Protocol

and this user is only allowed to enter (by means of identification) level ! areas for
!u ≥ !. This feature is easy to accomplish in our scheme by demanding that, in
order to enter level !, the user umust identify with respect to an (l+1+!)-bit (or
larger) number eu, and by letting the group manager distribute corresponding
exponents to the users when joining.

4.2 Security

Basically, our identification protocol inherits security from our signature scheme.
Think of the group manager giving each new user u a signature for random
message αu. Note that this message αu is chosen by the group manager, i.e., this
setting corresponds to a random-message attack. Therefore, we do not need a
trapdoor commitment nor a random splitting.

If some malicious user u∗, either a member or not, successfully identifies as
another member using an exponent eu of an honest user u, then, by the proof-
of-knowledge property of Okamoto’s scheme, we can extract a representation
(α∗, y∗) of x with respect to eu from this identification attempt. As Okamoto’s
identification is witness-independent, we have αu �= α∗ with probability 1− 2−l

for the user’s secret key (αu, yu). In this case, party u∗ thus forges a signature of
a new message α∗ which is infeasible under the RSA assumption. Similarly, if u∗

chooses a new eu∗ and successfully proves membership, we obtain a successful
signature forgery for message α∗ for this eu∗ , contradicting the strong RSA
assumption.

We remark that security even holds with respect to any adversary that con-
trols all corrupted users and who may adaptively decide to join further malicious
users, to corrupt existing parties, and to run protocols with the honest users be-
fore trying to intrude. Using techniques developed in [3], one can even extend it
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to the case that some dishonest user u∗ tries to intrude in the name of a user u
while executing the identification protocol with that user u (in the presence of
so-called session IDs).
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