
Cryptanalysis of an Efficient Proof of Knowledge

of Discrete Logarithm

Sébastien Kunz-Jacques1,2, Gwenaëlle Martinet1, Guillaume Poupard1, and
Jacques Stern2

1 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg
F-75700 Paris 07 SP, France

{Sebastien.Kunz-Jacques,Gwenaelle.Martinet,Guillaume.Poupard}@sgdn.pm.gouv.fr
2 École normale supérieure, Département d’informatique

45 rue d’Ulm, F-75230 Paris Cedex 05, France
Jacques.Stern@ens.fr

Abstract. At PKC 2005, Bangerter, Camenisch and Maurer proposed
an efficient protocol to prove knowledge of discrete logarithms in groups
of unknown order. We describe an attack that enables the verifier to
recover the full secret with essentially no computing power beyond what
is required to run the protocol and after only a few iterations of it. We
also describe variants of the attack that apply when some additional
simple checks are performed by the prover.

Keywords: Public key cryptanalysis, discrete logarithm, proof of knowledge.

1 Introduction

Since the seminal paper of Diffie and Hellman [10], the discrete logarithm prob-
lem has been considered a fundamental stone of public key cryptography. In
order to define this problem in a general setting, we consider a multiplicative
group G and an element g ∈ G. We note ω the multiplicative order of g in G i.e.
the smallest non-zero positive integer ω such that gω = 1. The set 〈g〉 =

{

gi
}

i∈Z
of powers of g is a subgroup of G with ω elements. For any member y ∈ 〈g〉, there
exists a unique integer x ∈ {0, ...ω − 1} such that y = gx; by definition x is the
discrete logarithm of y in base g. The computation of such discrete logarithms
is considered to be intractable in many groups of cryptographic interest such as
modular groups or elliptic curves.

An interesting question is how to prove knowledge of a discrete logarithm of
a public data without revealing any other information about this value. Such a
problem is closely related to the concept of zero-knowledge introduced in 1985
by Goldwasser, Micali and Rackoff [13]. A well-known and very nice solution was
proposed by Schnorr [17] in 1989. In this two party-protocol, a prover who knows
the discrete logarithm x of a public value y interacts with a verifier; if the prover
is able to correctly answer the verifier’s challenges, he proves knowledge of x. Two
complementary security aspects can be analyzed; firstly, the soundness property

shows that if a prover is able to correctly answer the challenges then he must
know the secret x. This proof is based on the notion of knowledge extractor that
can extract the secret from the prover using rewinding techniques. Secondly, the
zero-knowledge property shows that the execution of the protocol does not leak
any information about the secret x, even if the verifier tries to bias its challenges.
The proof is based on the notion of simulation of the communications.

In the Schnorr scheme, the soundness property can be easily proved since the
secret is immediately derived from two correct and distinct answers correspond-
ing to the same “commitment” sent by the prover as its first message. Deciding
if the protocol is zero-knowledge is still an open problem when large challenges
are used and if they are not randomly chosen by the verifier. It is significant to
note that the proof of soundness strongly relies on the knowledge of the order ω
of the basis g. Surprisingly, if this order is not known, for example is the context
or RSA groups, the basic extraction strategy no longer applies. It is still possible
to prove the security of the scheme used as an identification scheme [12, 16] but,
in groups of unknown order, Schnorr based proofs cannot be considered as proofs
of knowledge. This interesting open problem has attracted the interest of several
research papers [11, 9] and, at PKC 2005, Bangerter, Camenisch and Maurer [1]
proposed an efficient protocol, the so-called Σ+-Protocol to prove knowledge of
discrete logarithms in groups of unknown order. This scheme is derived from the
Σ-Protocol whose paternity is unclear. The name was first proposed in 1997 by
Cramer [7] in his PhD thesis and used by Cramer and Damg̊ard [8] but original
ideas can be found in the Schnorr scheme [17] and even previously in [5, 4, 2].
However, Girault [12] was the first to observe, in 1991, that the knowledge of
the underlying group order was not necessary to carry Schnorr’s like proofs.

In this paper, we show that the proposal in [1] is not secure since a dishonest
verifier can obtain the secret of the prover. The main flaw in [1] is that the
authors assume that some parameters needed for a protocol run are honestly
chosen by the verifier; in the Σ+ protocol, the prover never checks, and is not
able to check, that these parameters actually have the correct form. Our attack
takes advantage of this mistake. Thus, even if the protocol if proved in [1] to be
a zero-knowledge proof of knowledge, the assumptions made in the proof cannot
be verified with the described protocol. To fulfil the proof’s assumptions, some
additional and non obvious checks are needed which may drastically reduce the
protocol efficiency. Some other solutions may be considered but they require to
revise the protocol’s proof.

Notations and organization of the paper. Throughout this paper, we use
the following notation: for any integer n,

– Zn is the set of integers modulo n,
– Zn

∗ is the multiplicative group of invertible elements of Zn,
– ϕ(n) is the Euler totient function, i.e. the cardinality of Zn

∗,
– ord(g) is the order of an element g ∈ Zn

∗,
– λ(n) is the Carmichael’s lambda function defined as the largest order of the

elements of Zn
∗.

2

It is well known that if the prime factorization of an odd integer n is
∏η

i=1 qi
fi

then ϕ(n) =
∏η

i=1 qi
fi−1(qi − 1) and λ(n) = lcmi=1...η

(

qi
fi−1(qi − 1)

)

.

The paper is organized as follows: section 2 recalls the Σ+-protocol [1]. Then,
in section 3, we make some security related observations which lead to a practical
cheating strategy. We also observe in this section and in section 4 that several
simple and natural countermeasures do not succeed into defeating our strategy.
Finally, annex A gives a detailed analysis of the attack complexity and annex B
describes a detailed algorithm of independent interest, strongly inspired of the
Pohlig-Hellman algorithm [14], to compute discrete logarithms in our setting.

2 The Σ+-Protocol

Let us now briefly recall the Σ+-protocol using the notations of [1]. Let H be an
arbitrary group whose order needs not to be known. For example, H can be the
set Zn

∗ for a composite RSA modulus n. Let h be an element of H such that
the computation of discrete logarithms in base h is intractable.

The Σ+-protocol is a proof of knowledge of discrete logarithms of elements
in H, in base h. Roughly speaking, this means that, for a given y ∈ H, a prover
can convince a verifier that he knows an integer x such that y = hx. As we
will see in the rest of this paper, this protocol is not a zero-knowledge proof of
knowledge of discrete logarithm since the prover reveals some information about
his secret x when interacting with a dishonest verifier.

The proof requires a generator DS(k) that outputs a pair (n, g) s.t. n is
an RSA modulus, g ∈ Zn

∗ and it is hard to compute u ∈ Zn
∗ and an integer

e > 1 fulfilling ue = g mod n. It is stated in [1] that “[the authors] assume that
n = (2p + 1)(2q + 1) with p, q, (2p + 1) and (2q + 1) being primes, and that

g ∈ QRn, where QRn is the subgroup of quadratic residues of Zn
∗”. However

even if this assumption appears to be used in the security analysis, at least in a
side remark to prove the statistical zero-knowledge property of the protocol, it
is not guaranteed by the protocol itself.

We still need a few additional notations coming from [1]:

– k is a security parameter,

– a ∈U A means that the element a is randomly chosen in the set A using a
uniform distribution,

– the equality symbol =̇ is used to denote definitions,

– the secret exponent x is in the range [−∆x,∆x] and the related public ele-
ment of H is y = hx,

– lz is an integer parameter related to the security parameter k,

– c+ is another parameter that determines the set {0, . . . , c+} in which the
verifier picks its challenges c,

– commit(γ, r) is a computationally binding and statistically hiding commit-
ment scheme that commits γ using the random value r; to open the com-
mitment one reveals γ and r.

3

Prover Verifier

Private input : x in [−∆x,∆x]
Common input : h and y = hx both in H

(n, g)← DS(k)

ρ ∈U [0, 2
kbn/4c]

g1=̇g
ρ mod n

(g1, g, n)
←−−−−−−−−−−

x ∈U [0, bn/4c]
y=̇gx1 g

x mod n

r ∈U [−2
lzc+∆x, 2lzc+∆x]

t=̇hr

r ∈U [−2
lzc+bn/4c, 2lzc+bn/4c]

t=̇gr1g
r

Choose ry; y=̇commit(y, ry)
Choose rt; t=̇commit(t, rt)

(y, t, t)
−−−−−−−−−−→

c ∈U
{

0, . . . , c+
}

c
←−−−−−−−−−−

s=̇r + cx
s=̇r + cx

(s, s)
−−−−−−−−−−→

ρ
←−−−−−−−−−−

If g1 6= gρ mod n, then halt.
((t, rt), (y, ry))
−−−−−−−−−−→

If the equalities
y = commit(y, ry)
t = commit(t, rt)
hs = tyc

gs1g
s = tyc mod n

hold, then output 1
else output 0

Fig. 1. The Σ+-Protocol from [1]

The typographic convention of [1] is to use sans serif font for elements related to
computations in Zn

∗ and standard italic font when dealing with elements of H.

The Σ+-protocol described in figure 1 performs a kind of parallel proof of
knowledge of discrete logarithms in two mathematical structures, H and Zn

∗,
in a way similar to proofs of equality of discrete logarithms. However, the main
original part is that the second structure is not a parameter of the system but
is chosen by the verifier and changes from one proof to another.

4

3 Some security related observations

3.1 A preliminary observation

A first simple security related observation is that some basic checks should be
added to the scheme, exactly as for the original Σ-Protocol. This may be consid-
ered implicit but it is probably better to make checks explicit in order to avoid
dramatic consequences in practical implementations.

More precisely, a remark made by D. Bleichenbacher about the GPS iden-
tification scheme during the NESSIE selection process [6] is relevant to the
present context; consider a cheating verifier that does not choose the chal-
lenge c uniformly in the range [0, c+] but sends a value much larger than c+.
If the prover does not check that c ∈ [0, c+], he reveals s = r + cx with
r ∈ [−2lzc+∆x, 2lzc+∆x]. Then, s/c = x+r/c and, if c > 2lz+1c+∆x, the verifier
obtains s/c− 1/2 < x < s/c+ 1/2 and consequently the secret x = bs/c+ 1/2c.

As a consequence, a check on the range of c must be performed by the prover.
In the same vein, even if the consequences are not so important, the verifier
should also check that the answers s and s lie in consistent ranges; this may be
important to perform a full security proof.

This preliminary observation is not used in the sequel and we consider that
the order of magnitude of any transmitted data is always checked.

3.2 First observation: n can be chosen in such a way that discrete

logarithms in Zn
∗ can be efficiently computed

The first immediate idea to attack the Σ+-Protocol is to make the verifier choose
a group Zn

∗ in which he can efficiently compute discrete logarithms. For example,
such a computation can be made if the Pohlig-Hellman algorithm [14] can be
applied efficiently, i.e. if the multiplicative order of g is the product of only
small prime integers. This situation occurs if n is computed as the product of
two primes p and q s.t. p−1 and q−1 are “smooth”, i.e. are equal to the product
of only small prime factors.

Note that this kind of attack was somewhat considered by the authors of [1]
since, as we already mentioned, they explicitly restricted themselves to the op-
posite situation where p and q are strong primes i.e. (p− 1)/2 and (q− 1)/2 are
also primes. But, even if such a choice seems to be specified for a honest verifier
in order to protect him against dishonest provers, a dishonest verifier can choose
different kind of parameters to try to attack a honest prover. Such a cheating
strategy does not seem to be taken into account since the prover does not try
to detect it. The situation is even worse since the prover does not have enough
information to check the correctness of n as a product of two unknown strong
primes. In [3], Camenisch and Michels have shown how to prove that a modulus
is the product of two safe primes. Adding such a proof in Σ+ would drastically
reduce the claimed efficiency of the protocol and render it totally unpractical.

The consequence of this first observation is that a cheating verifier can choose
the modulus n s.t. he can further compute easily the following information:

5

1. xρ+ x mod ord(g) (= logg(y))

2. rρ+ r mod ord(g) (= logg(t))

Furthermore, he obtains from the regular execution of the protocol the answers
s and s:

3. s = xc+ r

4. s = xc+ r

However, even if we obtain four equations with four unknowns (x, x, r and r),
this system cannot be solved to recover the secret x since the equations are not
independent. Some more work is therefore needed.

3.3 Second observation: some information may be revealed by a

honest prover

If a dishonest verifier chooses the prime numbers p and q s.t. (p − 1)/2 and
(q − 1)/2 are relatively prime, we know that the maximal order of an element
in Zn

∗ is given by the Carmichael lambda function λ(n) = lcm(p − 1, q − 1) =
(p−1)(q−1)/2. The verifier can choose an element g with such a maximal order
which is close to n/2. In this case, g is not a quadratic residue in Zn

∗.

Then, an idea is to choose ρ = 1 in combination with a group Zn
∗ where the

verifier can compute discrete logarithms. The consequence is that the attacker
learns logg(y) = (x + x) mod ord(g) which can be seen as the secret x mod
ord(g) masked with x randomly chosen in the range [0, bn/4c]. Since ord(g) ≈
n/2, the mask x does not fully hide the value of x mod ord(g) and, from an
information theoretic point of view, one bit of information is revealed if x is
uniformly distributed modulo ord(g).

It is quite plausible that by repeating this approach one can deduce the
exact value of the secret x from this partial information. However, we propose
an additional trick to make the attack straightforward and effective.

3.4 Third observation: parameter ρ can be chosen in such a way

that the multiplicative order of g1 is small

Using both previously exposed ideas, let us consider that the verifier chooses n
and g s.t.

– p and q are prime integers,

– (p− 1)/2 and (q − 1)/2 are relatively prime,

– p− 1 and q − 1 are smooth,

– g is an element of Zn
∗ of maximal order λ(n) = (p− 1)(q − 1)/2.

Let us now choose ρ = λ(n)/2. As a consequence, g1 = gρ = gλ(n)/2 mod n has
multiplicative order 2.

6

As explained previously, a cheating verifier is able to compute discrete loga-
rithms and thus obtains from a regular proof

logg(y) = xρ+ x mod ord(g)

=

(

x× λ(n)

2

)

+ x mod λ(n)

= (x mod 2)× λ(n)

2
+ x mod λ(n)

As a consequence, since the mask x is chosen in a range of size approximately
λ(n)/2, the observation of the most significant bit of logg(y) reveals the least
significant bit of x, i.e. the value x mod 2.

Indeed, if x mod 2 = 0, then logg(y) = x is uniformly distributed in the range

[0, bn4 c]. If x mod 2 = 1, then logg(y) = x + λ(n)
2 is now uniformly distributed in

[λ(n)
2 , λ(n)

2 + bn4 c]. These intervals are not disjoint but their intersection contains

approximately only p+q
4 points. Thus, with overwhelming probability, the least

significant bit of x leaks from a single execution of the protocol with such a
cheating verifier.

In short, we have seen that a dishonest verifier can choose special parameters
n, g and ρ in such a way that he can learn the secret x modulo two. Note that
this is not detected by a prover who follows the protocol.

Then, the next bits of x can also be obtained by extending this attack.
Suppose the verifier knows the k least significant bits x0, . . . , xk−1 of x, where

x =
∑`

i=0 xi2
i. He then tries to infer the bit xk. To this end, he chooses the

parameters n and g as before with the extra condition that 2k+1 divides λ(n)
and ρ = λ(n)/2k+1. From the prover’s answers during the protocol, he computes
logg(y) = x + x× λ(n)/2k+1 mod λ(n) and considers the value

logg(y)−
k−1
∑

i=0

xi2
i × λ(n)

2k+1
= x +

∑̀

i=k

xi2
i × λ(n)

2k+1

= x + xk ×
λ(n)

2
+
∑̀

i=k+1

xi2
i−(k+1) × λ(n)

= x + xk ×
λ(n)

2
mod λ(n)

which is either in the range [0, bn4 c] or in the range [λ(n)
2 , λ(n)

2 + bn4 c] according
to the value of the bit xk. As before, the verifier can deduce xk with very high
probability from a single execution of the protocol. The precise algorithm is given
in figure 2. In this description, for clarity, the commitment of the values y, t and
t are not described. This does not change anything in the attack.

A strategy for breaking the protocol is thus to choose a special value for n,
i.e. a modulus computed as the product of two primes p and q with smooth
values p − 1 and q − 1, and a generator g which is of maximal order and thus
not a quadratic residue in Zn

∗.

7

– Inputs: the bits x0, x1, . . . , xk−1 of x
– Output: the bit xk of x

1. Generate n = p×q, with p and q prime, (p−1)/2 and
(q − 1)/2 relatively primes, p − 1 and q − 1 smooth
and p− 1 is divisible by 2k+1;

2. Generate g ∈ Zn
∗ of order λ(n) = (p− 1)(q − 1)/2;

3. Set ρ = λ(n)/2k+1 and compute g1 = gρ mod n;
4. Execute a protocol with the prover:
(a) Send (n, g, g1) to the prover;
(b) Receive y = gx1 g

x mod n, t = gr1g
r mod n and

t = hr;
(c) Finish correctly the protocol with the prover;

5. Compute the discrete logarithm of y in base g using
the Pohlig-Hellman algorithm (see annex B):

logg(y) = ρ× x+ x mod ord(g)

6. If logg(y)−

k−1
∑

i=0

xi2
i×ρ ∈ [0, b

λ(n)

2
c[then set xk = 0;

7. Else, if logg(y)−

k−1
∑

i=0

xi2
i×ρ ∈]bn/4c,

λ(n)

2
+ bn/4c],

then set xk = 1;
8. Else, go to step 4;
9. Return: xk

Fig. 2. The attacker strategy to recover xk from x0, x1, . . . , xk−1

The total number of protocol executions to recover a `-bit secret x is finally
`× (1 + 1/

√
n), since each bit requires at least one protocol execution, and the

intersection of the intervals contains approximately
√
n points.

The attack is no longer possible if the prover checks the correctness of n or g.
However, as we will see in the next subsection, if only the quadratic residuosity
is checked, a variant of the attack can be applied.

In annex B, we review some technical details related to the computation of
discrete logarithms in groups of smooth order in order to provide a complete
description of the attack. We also provide in section 5 practical complexity esti-
mates for realistic parameter sizes.

3.5 Final observation: the modulus n can be prime

Let us assume that the protocol is slightly modified so that the prover checks the
quadratic residuosity of g. This can be easily implemented: the verifier sends g0

of maximal order λ(n) and the prover sets g = g2
0 mod n. We still assume that

8

the prover does not make any verification on the modulus n so that it can be
chosen by the cheating verifier without any restriction.

The verifier can then choose n as a prime number such that n− 1 is smooth
and divisible by 2`. In this case, he can still compute discrete logarithms. The
generator g is a quadratic residue of maximal order λ(n)/2 = (n − 1)/2. The
attack we have described previously takes advantage of the short size of the mask
x so it can be applied here. Indeed, by iteratively choosing the value ρ equal to
λ(n)/2i+1 for all the values i less than ` (the bit length of the secret x), the
verifier is able to recover x bit by bit with approximately ` executions of the
protocol.

In the next section, we describe an extension of the attack when the prover
checks that n is not a prime number. This extension works for any unbalanced
modulus, but its complexity grows exponentially with the length of the smallest
factor of n.

4 Extension of the attack for an unbalanced modulus

In this section we consider the special case where the prover checks that g is
chosen in the subgroup of quadratic residues of Zn

∗. This can simply be done by
sending g and g0 such that g = g2

0 mod n. We also assume that g is a quadratic
residue of maximal order λ(n)/2. However we still consider that the sole check
that the prover performs on n is that n is not prime. In that case, the attack of
section 3.5 applies. Thus, n can be chosen by the verifier so that :

– n is unbalanced: its prime factor p is much smaller than q. With such a
choice for n, the approximation of ord(g) by n/4 might not be tight, and the
bias could be exploited by a dishonest verifier;

– p is small enough, and q−1 is smooth and divisible by a large enough power
of 2, so that it is possible for the verifier to compute discrete logarithms in
Zn

∗.

From the value y = gx1g
x = gρx+x, the verifier can recover X = ρx + x mod

ord(g), where x is uniformly distributed in [0, bn4 c].
Let ρ = ord(g)/2. Then X is either x mod ord(g) or x+ord(g)/2 mod ord(g),

depending on the least significant bit of x. The distribution of the X values is
thus dependent on this bit. Since g is a quadratic residue of maximal order in
Zn

∗, we have:

ord(g) =
λ(n)

2
=

n

4
− p+ q − 1

4

We set µ = (p+ q − 1)/4. Thus, n/4 = ord(g) + µ.
The cheating verifier’s strategy is detailed in figure 3. The attack consists in

computing the discrete logarithm of y for each execution of the protocol, with a
suitably chosen value ρ. The distribution of this value, translated according to
previously computed bits, allows to infer one additional bit of the secret x.

The complexity is larger than in the previous attacks since many protocol
executions are required to obtain a single bit of x. This complexity and the attack

9

analysis are both given in annex A. With error probability 1/B, an average of
8p ln(B)/9 executions of the protocol are needed for a cheating verifier to recover
each bit of x from the distribution of logg(y).

Figure 3 describes the attacker strategy to infer a bit of x knowing all the
previous ones.

– Inputs: the bits x0, x1, . . . , xk−1 of x and a bound k̃ depending
on the allowed error probability

– Output: the bit xk of x

1. Generate n = p× q, with p and q prime, (p−1)/2 and (q−1)/2
relatively primes, p < 220, q−1 smooth, and 2k+1 divides q−1;

2. Generate g0 ∈ Zn
∗ of order λ(n) = (p− 1)(q − 1)/2;

3. Compute g = g2
0 mod n;

4. Set ρ = λ(n)/2k+1 and compute g1 = gρ mod n;
5. Set j = 0 and S = 0;
6. While j < k̃, do:
(a) Execute a protocol with the prover:

i. Send (n, g, g1) to the prover;
ii. Receive y = gx1 g

x mod n, t = gr1g
r mod n and t = hr;

iii. Finish correctly the protocol with the prover;
(b) Compute the discrete logarithm of y in base g using the

Pohlig-Hellman algorithm of annex B:

logg(y) = (x× ρ+ x) mod ord(g)

(c) If logg(y)−

k−1
∑

i=0

xi2
i × ρ ∈ [0, µ] then j = j + 1;

(d) If logg(y) −

k−1
∑

i=0

xi2
i × ρ ∈ [

ord(g)

2
,
ord(g)

2
+ µ], then S =

S + 1 and j = j + 1;
7. End while;
8. If S < k̃/2, set xk = 0,
9. Else xk = 1;
10. Return: xk

Fig. 3. The attacker strategy to recover xk from x0, x1, . . . , xk−1 in the unbalanced
case

5 Practical application of the attack

The attack has been implemented using NTL. Using RSA moduli with very
small prime factors in λ(n), a log can be computed in less than 1 second for
a 2GHz PC with a 1024-bit RSA modulus. The optimum seems to be reached
when using prime factors of about 5 bits.

10

In the cases where g is a non quadratic residue or n is prime, only one protocol
run is required per secret bit, and the attack is therefore very practical: for a
160-bit secret, it requires 160 protocol runs and a few minutes of computations.

In the unbalanced case, several protocol interactions and log computations
per secret bit are needed. Typically, 200 runs per bit ensures an overall success
probability above 90% for a 1024-bit modulus and a 160-bit secret: only several
hours of computations are required, but the secret must be extracted from the
data of 160× 200 = 32000 protocol runs, which might prove difficult to acquire
with a real prover device.

6 Conclusion

We have described a cheating strategy for an attacker acting as a verifier in
the Σ+ proof of knowledge of discrete logarithm described in [1]. It enables to
recover the full secret with essentially no computational power beyond what
is required to run the protocol and after only a few iterations of it since each
iteration reveals one bit of secret. We have also described variants of the attack
that apply when some additional simple checks are performed by the prover,
namely verifying that the modulus chosen by the verifier is indeed a composite
integer and that the basis is a quadratic residue.

The correction of the Σ+-protocol is out of the scope of this paper but it
clearly appears that additional checks would probably be a sound idea. Some
solutions, such as adding a proof that the RSA modulus provided by the verifier
is the product of two safe primes, would drastically reduce the claimed efficiency
of the protocol. Another direction would be to choose the parameter x in a large
enough interval so that there is no usable bias in x mod ord(g), even if the
parameters n and g are chosen by a dishonest verifier. While this option only
adds negligible complexity to the Σ+ protocol and thwarts all our attacks, it
does not address the question of the soundness of the protocol proof.

References

1. E. Bangerter, J. Camenisch, and U. Maurer. Efficient Proofs of Knowledge of Dis-
crete Logarithms and Representations in Groups with Hidden Order. In PKC 2005,
LNCS 3386, pages 154–171. Springer-Verlag, 2005.

2. T. Beth. Efficient Zero-Knowledge Identification Scheme for Smart Cards. In
Eurocrypt ’88, LNCS 330, pages 77–86. Springer-Verlag, 1988.

3. J. Camenisch and M. Michels. Proving in Zero-Knowledge That a Number Is
the Product of Two Safe Primes. In Eurocrypt ’99, LNCS 1592, pages 107–122.
Springer-Verlag, 1999.

4. D. Chaum, J. Evertse, and J. van de Graaf. An Improved Protocol for Demonstrat-
ing Possession of Discrete Logarithms and some Generalizations. In Eurocrypt ’87,
LNCS 304, pages 127–141. Springer-Verlag, 1988.

5. D. Chaum, J. Evertse, J. van de Graaf, and R. Peralta. Demonstrating Possession
of a Discrete Logarithm without Revealing it. In Crypto ’86, LNCS 263, pages
200–212. Springer-Verlag, 1987.

11

6. NESSIE consortium. Portfolio of recommanded cryptographic primitives, 2003.
Available from http://www.cryptonessie.org.

7. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol, 1997.
PhD thesis, University of Amsterdam.

8. R. Cramer and I. Damg̊ard. Zero-Knowledge Proofs for Finite Field Arithmetic
or: Can Zero-Knowledge Be for Free. In Crypto ’98, LNCS 1462, pages 424–441.
Springer-Verlag, 1998.

9. I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In Asiacrypt 2002, LNCS 2501, pages 125–
142. Springer-Verlag, 2002.

10. W. Diffie and M. E. Hellman. New Directions in Cryptography. In IEEE Trans-

actions on Information Theory, volume IT–22, no. 6, pages 644–654, november
1976.

11. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modu-
lar Polynomial Relations. In Crypto ’97, LNCS 1403, pages 16–30. Springer-Verlag,
1997.

12. M. Girault. Self-Certified Public Keys. In Eurocrypt ’91, LNCS 547, pages 490–497.
Springer-Verlag, 1992.

13. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM journal of computing, 18(1):186–208, february 1989.

14. S. C. Pohlig and M. E. Hellman. An Improved Algorithm for Computing Log-
arithms over GF(p) and its Cryptographic Significance. IEEE Transactions on

Information Theory, IT–24(1):106–110, january 1978.
15. J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics

of Computation, 32(143):918–924, July 1978.
16. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authen-

tication and Signature Generation. In Eurocrypt ’98, LNCS 1403, pages 422–436.
Springer-Verlag, 1998.

17. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Crypto ’89, LNCS 435, pages 235–251. Springer-Verlag, 1990.

18. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with
Short Exponents. In Eurocrypt ’96, LNCS 1070, pages 332–343. Springer-Verlag,
1996.

A Analysis of the unbalanced modulus case

In the following we show that the attack, described in section 4 in the case of
prime modulus, can also applied if the modulus is unbalanced. In that case, we
will show that its complexity grows exponentially with the length of the smallest
factor.

We recall that the modulus n is unbalanced and that g is a quadratic residue
of maximal order. In the following, we analyze the attack in detail. We briefly
recall some notations already given in section 4. Let x0 denote the least signifi-
cant bit of x, i.e. x0 = x mod 2, X0 the value of X for x0 = 0 and X1 the value
of X for x0 = 1. Since g is a quadratic residue of maximal order in Zn

∗, we have:

ord(g) =
λ(n)

2
=

n

4
− p+ q − 1

4

12

We set µ = (p+ q − 1)/4. Thus, n/4 = ord(g) + µ.
For x0 = 0, X0 = x is uniformly distributed in the interval [0, bn4 c] =

[0, ord(g) + bµc]. Taking the values modulo ord(g), we have :

Pr(X0 ∈ [0, bµc]) = Pr(x ∈ [0, bµc] ∪ [ord(g), ord(g) + bµc])

=
2bµc

ord(g) + bµc ≈
8µ

n

Pr(X0 ∈ [dµe, ord(g)]) ≈ 1− 8µ

n

We can easily infer the distribution for x0 = 1 with a circular shift of
width ord(g)/2. Since X1 = x+ord(g)/2 is uniformly distributed in the interval

[ord(g)
2 , 3 ord(g)

2 + bµc], we thus obtain

Pr(X1 ∈ [0, ord(g)/2] ∪ [ord(g)/2 + dµe, ord(g)]) = Pr(x ∈ [ord(g)/2 + dµe, 3 ord(g)/2])

=
ord(g)− dµe
ord(g) + bµc ≈ 1− 8µ

n

Pr(X1 ∈ [ord(g)/2, ord(g)/2 + bµc]) ≈ 8µ

n

x0 = 0

bµc
ord(g)

2
ord(g) ord(g)

ord(g)
2 ord(g)

2
+ bµc

x0 = 1

8
N

8
N

4
N

4
N

Fig. 4. The distribution of X0 and X1.

The verifier should run the protocol several times to distinguish these two
distributions. Each time the value X obtained is not in the intervals [0, bµc]
or [ord(g)/2, ord(g)/2 + bµc] the verifier gains no information. Accordingly we
consider only the values X in these intervals and try to distinguish x0 = 0 from
x0 = 1. We set X̃ = 0 if X ∈ [0, bµc] and X̃ = 1 if X ∈ [ord(g)/2, ord(g)/2+bµc].
We ignore the other cases so that we keep in average only 3µ values amongst
ord(g) + µ. Depending on the bit x0, X̃ has the following distribution:

if x0 = 0, Pr(x̃ = 0) =
2

3
and Pr(x̃ = 1) =

1

3

if x0 = 1, Pr(x̃ = 0) =
1

3
and Pr(x̃ = 1) =

2

3

13

Let k̃ be the number of values collected by the verifier lying in the suitable
ranges. Let Sb

k̃
the sum of the x̃ depending on the value b of the bit x0. The

Chernoff bound shows that, for every ε > 0,

Pr

(

S0
k̃

k̃
− 1

3
≥ ε

)

≤ e−k̃ε2× 3
4

and

Pr

(

S1
k̃

k̃
− 2

3
≤ ε

)

≤ e−k̃ε2× 1
6

If ε is the sample mean of the two distributions, i.e. ε = 1/2, this allows us
to have a bound on the number of values needed so that the error value is not
too large. For an error probability less than 1/B, then the number k̃ of collected
x̃ values should be such that k̃ ≥ 16 ln(B)/3.

Taking into account the number of unused values X, we obtain that the total
number of verifications to learn 1 bit of information with probability 1/B is:

k ≥ 16
ln(B)

3
× ord(g) + µ

3µ

≥ 16 ln(B)

3
× n

3(p+ q − 1)

≥ 16p ln(B)

9(1 + p−1
q)

>
8p ln(B)

9

Practical results. Such a bound on the number of runs needed to learn one
bit of information allows us to estimate the complexity of the attack depending
on p and q. If p is really small, for example if p = 3, we obtain k ≥ 26 for an
error probability per bit equal to 1/1000.

When p is larger, the number of runs explodes. Indeed, the number of queries
strongly depends on the length of p and becomes too large as soon as p is larger
than say 230. For such a value, and for a 256 bits secret x, the total complexity
of the attack can be approximated by 240, for an error probability for each bit
of x which is 1/B = 1/1000.

Using Additional Information in X. To improve the overall success prob-
ability of the attack, we can analyze what happens when a bit was guessed
incorrectly. In that case, when treating the next bit, one gets the distributions
of figure 4, with a circular shift of ord(g)/4. Irrespectively of the correctness of
the previous guess, the two candidate distributions for X are equal up to a shift
by ord(g)/2. As a consequence, the distribution of 2X mod ord(g) can take
two values: a distribution D1 when the previous bit was guessed correctly, and a

14

distribution D2 otherwise. D1 and D2 have the same shape as the distributions
of figure 4, with µ = 2 p+q−1

4 = p+q−1
2 . Because of the multiplication by 2, the

peak is only 3/2 as high as the rest of the distribution.
These remarks can be used to add new experiments regarding bit xi when

performing the experiments on bit xi+1. D1 and D2 are harder to distinguish
than the distributions of X0 and X1; therefore, the new experiences are less con-
clusive, and ”weight” less than the first series; the weight ratio is ln(3/2)/ ln(2).
This is partly compensated by the higher probability to land in the peaks of
distributions D1 and D2, which are twice as wide as for the distributions of
X0 or X1. Overall, with the same success probability per bit, these additional
experiences save up to 54% of the log computations, depending on µ. The most
attractive case is when the two µ-wide peaks of distributions D1 and D2 do not

overlap, in which case the saving ratio is 2 ln(3/2)
2 ln(3/2)+ln(2) ≈ 0.54.

The algorithm finally obtained is described figure 5.

B Practical computation of discrete logarithms in groups

of smooth order

In the following we show how to compute discrete logarithms when the order’s
factorization of the group element is unknown, but only small factors are known.

Let G be a multiplicative group. We do not assume any specific property of
this group in this section. Let g be an element of multiplicative order ω.

Generic algorithms to compute discrete logarithms, such as Baby step-Giant
step or Pollard rho and lambda methods [15, 18] have complexity O(

√
ω). How-

ever, in some cases, more efficient techniques apply. The well-known Pohlig-
Hellman algorithm [14] takes advantage of the factorization of the order ω when
it is applicable. If we choose the group parameters such that this order is smooth,
this algorithm enables to compute discrete logarithms efficiently.

We now describe a variant strongly inspired from the original Pohlig-Hellman
algorithm. We note

ω =
k
∏

i=1

peii with

∀i ∈ [1, k] pi is a prime integer
∀i ∈ [1, k] ei ∈ N∗

1 ≤ i < j ≤ k ⇒ pi < pj

and we consider the algorithm of figure 6.
Note that if we use this algorithm with ` = k, it just computes discrete

logarithms using the Pohlig-Hellman idea, performing the Chinese remainder
computation whenever it is possible. We can also use it with ` < k; in this
case we can compute some partial information about the discrete logarithms.
This may have important consequences when some optimizations such as so-
called short exponents, i.e. exponents much smaller than the order ω but larger
than 160 bits are used for efficiency reasons. In such a situation, the complete
factorization of the order of g may be unknown but enough small factors pi may
still enable to recover some secrets.

15

– Inputs: a bound k̃ depending on the allowed error probability
– Output: the secret x

1. Generate n = p × q, with p and q prime, p = 3 mod 4, p small,
p− 1 and q − 1 smooth, (p− 1, q − 1) = 2 and 2k+1 divides q − 1;

2. Generate g0 ∈ Zn
∗ of order λ(n) = (p− 1)(q − 1)/2;

3. Compute g = g2
0 mod n;

4. S[i] = 0, i = 0, . . . , k − 1
5. X[j] = 0, j = 0, . . . , k̃
6. z = 0, η = ord(g)/2
7. For i = 0, . . . , k − 1, do
(a) Set ρ = λ(n)/2i+2 = ord(g)/2i+1 and g1 = gρ mod n;
(b) While j < bk̃ × ord(g)/(2µ)c, do:

i. Execute a protocol run and extract

logg(y) = (x× ρ+ x) mod ord(g)

ii. X[j] = logg(y)− z × ρ
iii. If i > 0, do

A. If 2X[j] ∈ [max(0, 2µ−η),min(2µ, η)] then S[i−1]− =
ln(3/2);

B. If 2X[j] ∈ [max(η, 2µ),min(ord(g), η + 2µ))], then
S[i− 1]+ = ln(3/2);

(c) End while;
(d) If i > 0, do

i. If S[i− 1] < 0, set xi−1 = 0;
ii. Else xi−1 = 1;
iii. z = z + xi−12

i−1

(e) While j < bk̃ × ord(g)/(2µ)c, do:
i. If X[j] ∈ [0, µ] then S[i]− = ln(2);
ii. If X[j] ∈ [η, η + µ], then S[i]+ = ln(2);

(f) End while;
8. End For;
9. If S[k − 1] < 0, set xk−1 = 0;
10. Else xk−1 = 1;
11. Return: x =

∑k−1

i=0 xi2
i

Fig. 5. The attacker improved strategy to recover x in the unbalanced case

Theorem 1. On input y ∈ 〈g〉 and ` ∈ [1, k], the algorithm of figure 6 computes

X = logg(y) mod
∏`

i=1 p
ei
i . The time complexity is O

(

∑`
i=1 ei ×

√
pi

)

.

Proof. The justification of the result is done recursively. For any value of indexes
i and j, we have, just before line “i.” the following relations:

– P =
∏i−1

α=1 p
eα
α × pj−1

i

– G = gP

– Ω = ω/P

16

1. input: y ∈ 〈g〉
2. initialization: Y = y, G = g, Ω = ω, P = 1, X = 0
3. for i from 1 to ` do
(a) for j from 1 to ei do

i. Ω = Ω/pi
ii. z = logGΩ

(

Y Ω
)

iii. Y = Y/Gz

iv. G = Gpi

v. X = X + P × z
vi. P = P × pi

4. return: X

Fig. 6. A variant of the Pohlig-Hellman algorithm to compute discrete logarithms

– X = x mod P
– Y = g(x div P)×P = y/gX

After execution of line “i.”, the new value of Ω is Ω = ω/(P × pi). Then, in
line “ii.”, we have

GΩ = g
P× ω

P×pi = gω/pi

and Y Ω = g
(x div P)×P× ω

P×pi = g
(x div P)× ω

pi

so the computation of z = logGΩ
(

Y Ω
)

leads to

z = loggω/pi

(

(

gω/pi
)x div P

)

= (x div P) mod pi

An important fact for the complexity of the algorithm is that z is an integer in
the range [0, pi − 1] because gω/pi has multiplicative order pi. Consequently, if
pi is small, we can use generic discrete logarithm algorithms with running time
O(
√
pi) to efficiently compute z.

Then, after computation “iii.”, we have

Y = g(x div P)×P−(x div P) mod pi = g(x div (P×pi))×(P×pi)

After the next computation, G =
(

gP
)pi

= gP×pi and then

X = x mod P +P × z = x mod P +P × ((x div P) mod pi) = x mod P × pi

and finally P =

i−1
∏

α=1

peαα × pj−1
i × pi =

i−1
∏

α=1

peαα × pji

The result X which is returned is X = x mod
∏i

α=1 p
eα
α .

The main computation is the evaluation of z on line “ii.”. Its complexity is

O(
√
pi) so the global time complexity of the algorithm is O

(

∑`
i=1 ei ×

√
pi

)

.

ut

17

